针对物理下行链路共享信道(PDSCH)的传输时间间隔(TTI)捆绑转让专利

申请号 : CN201480041165.1

文献号 : CN105409316B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : W·陈徐浩P·加尔季庭方

申请人 : 高通股份有限公司

摘要 :

本公开内容的某些方面提出了用于长期演进(LTE)中针对物理下行链路共享信道(PDSCH)的传输时间间隔(TTI)捆绑的技术。根据某些方面,提供了一种用于无线通信的方法。该方法可以例如由用户设备(UE)来执行。该方法通常包括识别传输时间间隔(TTI)捆,该TTI捆包括来自用于在物理下行链路共享信道(PDSCH)上发送数据的子帧集合的子帧子集,以及在该子帧子集中在PDSCH上接收数据。

权利要求 :

1.一种用于用户设备(UE)进行无线通信的方法,包括:识别传输时间间隔(TTI)捆,所述TTI捆包括来自用于在物理下行链路共享信道(PDSCH)上发送数据的子帧集合的子帧子集,其中所述子帧子集针对不同类型的PDSCH传输包括不同的子帧;

识别被配置要在所述子帧子集中的一个或多个子帧里发送的信号;

确定是否在所述一个或多个子帧里监视所述信号;以及在所述子帧子集中在所述PDSCH上接收所述数据。

2.根据权利要求1所述的方法,其中,所述PDSCH是广播或单播。

3.根据权利要求1所述的方法,其中,所述数据处于频分双工(FDD)或时分双工(TDD)的帧结构中。

4.根据权利要求1所述的方法,其中,所述子帧子集包括针对广播PDSCH的非多广播单频网络(MBSFN)子帧。

5.根据权利要求1所述的方法,还包括:识别被配置为在所述子帧子集中的至少一个子帧中发送的另一个信号;以及响应于所述识别来采取动作。

6.根据权利要求5所述的方法,其中:所述PDSCH是针对寻呼、系统信息广播或随机接入响应中的至少一者的;

所述另一个信号包括信道状态信息(CSI)参考信号(CSI-RS);以及所述采取动作包括以下中的至少一者:在所述子帧子集中用所述CSI-RS对所述PDSCH打孔,或者在所述CSI-RS占有的资源元素(RE)附近执行针对所述PDSCH的速率匹配。

7.根据权利要求5所述的方法,其中:所述另一个信号包括参考信号(RS);以及所述采取动作包括丢弃所述RS。

8.根据权利要求7所述的方法,其中:所述RS包括信道状态信息(CSI)参考信号(CSI-RS);以及所述丢弃所述RS包括在以下中的至少一者中丢弃所述CSI-RS:用于针对寻呼的TTI捆绑的所有可能的子帧,涉及针对寻呼的TTI捆绑的特定于小区的子帧,用于具有系统信息广播(SIB)的广播PDSCH的所述子帧子集,或者

所述子帧子集的第一子帧。

9.根据权利要求7所述的方法,其中:所述RS包括定位参考信号(PRS);以及所述丢弃所述RS包括在所述子帧子集的第一子帧中丢弃所述PRS,还包括:在所述子帧子集的剩余子帧中丢弃或部分地丢弃PDSCH传输。

10.根据权利要求7所述的方法,其中:所述RS包括定位参考信号(PRS);以及所述丢弃所述RS包括在所述子帧子集中丢弃所述PRS。

11.根据权利要求5所述的方法,其中:所述采取动作包括跳过对所述子帧子集中的多广播单频网络(MBSFN)子帧的解码。

12.根据权利要求5所述的方法,其中,所述采取动作包括基于所述子帧子集中的多广播单频网络(MBSFN)子帧中的特定于小区的参考信号(CRS)或特定于UE的RS来接收PDSCH。

13.根据权利要求5所述的方法,其中,所述采取动作包括宣告针对所述子帧子集中的多广播单频网络(MBSFN)子帧的错误事件。

14.一种用于基站(BS)进行无线通信的方法,包括:识别传输时间间隔(TTI)捆,所述TTI捆包括来自用于在物理下行链路共享信道(PDSCH)上发送数据的子帧集合的子帧子集,其中所述子帧子集针对不同类型的PDSCH传输包括不同的子帧;

识别被配置要在所述子帧子集中的一个或多个子帧里发送的信号;

确定是否在所述一个或多个子帧里丢弃所述信号;以及在所述子帧子集中在所述PDSCH上发送所述数据。

15.根据权利要求14所述的方法,其中,所述PDSCH是广播或单播。

16.根据权利要求14所述的方法,其中,所述数据处于频分双工(FDD)或时分双工(TDD)的帧结构中。

17.根据权利要求14所述的方法,其中,所述子帧子集包括针对具有系统信息块(SIB)的PDSCH的非多媒体广播单频网络(MBSFN)子帧。

18.根据权利要求14所述的方法,还包括:识别被配置为在所述子帧子集中的至少一个子帧中发送的另一个信号;以及响应于所述识别来采取动作。

19.根据权利要求18所述的方法,其中:所述PDSCH是针对寻呼、系统信息广播或随机接入响应中的至少一者的;

所述另一个信号包括信道状态信息(CSI)参考信号(RS);以及所述采取动作包括以下中的至少一者:在所述子帧子集中对用所述CSI-RS对所述PDSCH打孔,或者在所述CSI-RS占有的资源元素(RE)附近执行针对所述PDSCH的速率匹配。

20.根据权利要求18所述的方法,其中:所述另一个信号包括参考信号(RS);以及所述采取动作包括丢弃所述RS。

21.根据权利要求20所述的方法,其中:所述RS包括信道状态信息(CSI)参考信号(CSI-RS);以及所述丢弃包括在以下中的至少一者中丢弃所述CSI-RS:用于针对寻呼的TTI捆绑的所有可能的子帧,涉及针对寻呼的TTI捆绑的特定于小区的子帧,用于具有系统信息广播(SIB)的广播PDSCH的所述子帧子集,或者

所述子帧子集的第一子帧。

22.根据权利要求20所述的方法,其中:所述RS包括定位参考信号(PRS);以及所述丢弃所述RS包括在所述子帧子集的第一子帧中丢弃所述PRS,还包括:在所述子帧子集的剩余子帧中丢弃或部分地丢弃PDSCH传输。

23.根据权利要求20所述的方法,其中:所述RS包括定位参考信号(PRS);以及所述丢弃所述RS包括在所述子帧子集中丢弃所述PRS。

24.根据权利要求18所述的方法,其中,所述采取动作包括基于所述子帧子集中的多广播单频网络(MBSFN)子帧中的特定于小区的参考信号(CRS)或特定于UE的RS来发送PDSCH。

25.一种用于用户设备(UE)进行无线通信的装置,包括:用于识别传输时间间隔(TTI)捆的单元,所述TTI捆包括来自用于在物理下行链路共享信道(PDSCH)上发送数据的子帧集合的子帧子集,其中所述子帧子集针对不同类型的PDSCH传输包括不同的子帧;

用于识别被配置要在所述子帧子集中的一个或多个子帧里发送的信号的单元;

用于确定是否在所述一个或多个子帧里监视所述信号的单元;以及用于在所述子帧子集中在所述PDSCH上接收所述数据的单元。

26.根据权利要求25所述的装置,还包括:用于识别被配置为在所述子帧子集中的至少一个子帧中发送的另一个信号的单元;以及用于响应于所述识别来采取动作的单元。

27.一种用于基站(BS)进行无线通信的装置,包括:用于识别传输时间间隔(TTI)捆的单元,所述TTI捆包括来自用于在物理下行链路共享信道(PDSCH)上发送数据的子帧集合的子帧子集,其中所述子帧子集针对不同类型的PDSCH传输包括不同的子帧;

用于识别被配置要在所述子帧子集中的一个或多个子帧里发送的信号的单元;

用于确定是否在所述一个或多个子帧里丢弃所述信号的单元;以及用于在所述子帧子集中在所述PDSCH上发送所述数据的单元。

28.根据权利要求27所述的装置,还包括:用于识别被配置为在所述子帧子集中的至少一个子帧中发送的另一个信号的单元;以及用于响应于所述识别来采取动作的单元。

说明书 :

针对物理下行链路共享信道(PDSCH)的传输时间间隔(TTI)

捆绑

[0001] 基于35U.S.C.§119要求优先权
[0002] 本申请要求于2013年7月26日递交的美国临时专利申请No.61/859,111的权益,以引用方式将该临时专利申请全部并入本文。

技术领域

[0003] 本公开内容的某些实施例总体上涉及无线通信,并且更具体地涉及在长期演进(LTE)中针对物理下行链路共享信道(PDSCH)的传输时间间隔(TTI)捆绑。

背景技术

[0004] 无线通信系统被广泛地部署,以提供诸如语音、数据等各种类型的通信内容。这些系统可以是能够通过共享可用的系统资源(例如,带宽和发射功率)来支持与多用户进行通信的多址系统。这样的多址系统的示例包括码分多址(CDMA)系统、时分多址(TDMA)系统、频分多址(FDMA)系统、3GPP长期演进(LTE)系统以及正交频分多址(OFDMA)系统。
[0005] 通常,无线多址通信系统可以同时支持多个无线终端进行通信。每个终端经由在前向链路和反向链路上的传输与一个或多个基站进行通信。前向链路(或下行链路)指的是从基站到终端的通信链路,而反向链路(或上行链路)指的是从终端到基站的通信链路。可以经由单输入单输出系统、多输入单输出系统或多输入多输出(MIMO)系统来建立此通信链路。
[0006] MIMO系统采用多个(NT个)发送天线和多个(NR个)接收天线用于数据传输。可以将由NT个发送天线和NR个接收天线组成的MIMO信道分解成NS个独立的信道,其也可以被称为空间信道,其中,NS≤min{NT,NR}。NS个独立的信道中的每一个信道对应于一个维度。如果由多个发送天线和接收天线创造的额外的维度被利用,则MIMO系统可以提供改善的性能(例如,更高的吞吐量和/或更大的可靠性)。
[0007] MIMO系统可以支持时分双工(TDD)和/或频分双工(FDD)系统。在TDD系统中,前向和反向链路传输在相同的频率区域上,使得互易原理允许根据反向链路信道来估计前向链路信道。当多个天线在基站处可用时,这使得基站能够提取在前向链路上的发送波束成形增益。在FDD系统中,前向和反向链路传输在不同的频率区域上。
[0008] 传统LTE设计将主要注意力集中在对频谱效率、无处不在的覆盖、增强的服务质量(QoS)支持等的改进上。这典型地产生了高端设备,诸如最新水平的智能电话、平板计算机等。但是,同样需要支持低成本、低速率设备。一些市场预测显示,低成本设备的数量可以远远超出当今的手机的数量。
[0009] 在LTE版本11中,完成了基于LTE的对低成本MTC(机器类型通信)UE的供给的研究项目。特别地,正在研究下面的项目:最大带宽的减小、单接收RF链、峰值速率的减小、发送功率的减小、半双工操作。
[0010] 由于针对低成本设备所预期的数据速率小于100kbps,所以有可能仅以窄带宽度来操作设备以降低成本。可以考虑两个操作场景。一个直接的部署场景是留出某个窄的带宽(例如,1.25MHz)以支持MTC操作。这样的操作不需要标准的变化。另一个更加令人感兴趣的场景是在大的带宽中操作低成本UE。在这种情况下,低成本UE可以与普通UE共存。可以针对在大的带宽中操作低成本UE来考虑两个可能的场景。在一个场景中,低成本UE可以在整个可用的带宽(例如,大至20MHz)上操作。此场景可能不对标准产生任何影响,但是可能不会有助于降低成本和电池功耗。在另一个场景中,低成本UE可以在带宽的一小部分上操作。

发明内容

[0011] 本文所提供的技术和装置用于无线通信,并且更具体地涉及在长期演进(LTE)中针对物理下行链路共享信道(PDSCH)的传输时间间隔(TTI)捆绑。“LTE”可以指代LTE和先进的LTE(LTE-Advanced)。
[0012] 本公开内容的某些方面提供了一种用于用户设备(UE)进行无线通信的方法。所述方法通常包括:识别传输时间间隔(TTI)捆,所述TTI捆包括用于在物理下行链路共享信道(PDSCH)上发送数据的子帧集合中的子帧子集,以及在所述子帧子集中在所述PDSCH上接收所述数据。
[0013] 本公开内容的某些方面提供了一种用于基站(BS)进行无线通信的方法。所述方法通常包括:识别传输时间间隔(TTI)捆,所述TTI捆包括来自用于在物理下行链路共享信道(PDSCH)上发送数据的子帧集合的子帧子集,以及在所述子帧子集中在所述PDSCH上发送所述数据。
[0014] 本公开内容的某些方面提供了一种用于用户设备(UE)进行无线通信的装置。所述装置通常包括用于识别传输时间间隔(TTI)捆的单元,所述TTI捆包括来自用于在物理下行链路共享信道(PDSCH)上发送数据的子帧集合的子帧子集,以及用于在所述子帧子集中在所述PDSCH上接收所述数据的单元。
[0015] 本公开内容的某些方面提供了一种用于用户设备(UE)进行无线通信的装置。所述装置通常包括至少一个处理器,其被配置为识别传输时间间隔(TTI)捆,所述TTI捆包括来自用于在物理下行链路共享信道(PDSCH)上发送数据的子帧集合的子帧子集,以及在所述子帧子集中在所述PDSCH上接收所述数据。所述装置通常还包括与所述至少一个处理器耦合的存储器。
[0016] 本公开内容的某些方面提供了一种包括程序指令的计算机可读存储介质以实现无线通信系统。所述存储介质通常包括识别传输时间间隔(TTI)捆的程序指令,所述TTI捆包括来自用于在物理下行链路共享信道(PDSCH)上发送数据的子帧集合的子帧子集,以及在所述子帧子集中在所述PDSCH上接收所述数据的程序指令。
[0017] 本公开内容的某些方面提供了一种用于基站(BS)进行无线通信的装置。所述装置通常包括用于识别传输时间间隔(TTI)捆的单元,所述TTI捆包括来自用于在物理下行链路共享信道(PDSCH)上发送数据的子帧集合的子帧子集,以及用于在所述子帧子集中在所述PDSCH上发送所述数据的单元。
[0018] 本公开内容的某些方面提供了一种用于基站(BS)进行无线通信的装置。所述装置通常包括至少一个处理器,其被配置为识别传输时间间隔(TTI)捆,所述TTI捆包括来自用于在物理下行链路共享信道(PDSCH)上发送数据的子帧集合的子帧子集,以及在所述子帧子集中在所述PDSCH上发送所述数据。所述装置通常还包括与所述至少一个处理器耦合的存储器。
[0019] 本公开内容的某些方面提供了一种包括程序指令的计算机可读存储介质以实现无线通信系统。所述存储介质通常包括识别传输时间间隔(TTI)捆的程序指令,所述TTI捆包括来自用于在物理下行链路共享信道(PDSCH)上发送数据的子帧集合的子帧子集,以及在所述子帧子集中在所述PDSCH上发送所述数据的程序指令。
[0020] 提供了许多其它方面,包括方法、装置、系统、计算机程序产品以及处理系统。

附图说明

[0021] 为了详尽地理解本公开内容的上述特征,通过参照附图中所说明的一些方面以及其它方面,可以获得对上文简要总结的发明内容的更加具体地描述。但是,需要注意的是,附图仅说明了本公开内容的某些典型的方面并且因此不被认为是限制本公开内容的范围,因为本公开内容的描述可以包含其它同等有效的方面。
[0022] 图1示出了根据本公开内容的某些方面的多址无线通信系统。
[0023] 图2示出了根据本公开内容的某些方面的通信系统的框图。
[0024] 图3示出了根据本公开内容的某些方面的用于广播PDSCH TTI捆绑的示例性的可能的子帧。
[0025] 图4示出了根据本公开内容的某些方面的用于用户设备(UE)进行无线通信的示例操作。
[0026] 图5示出了根据本公开内容的某些方面的用于基站(BS)进行无线通信的示例操作。

具体实施方式

[0027] 本文所提供的技术用于长期演进(LTE)中的传输时间间隔(TTI)捆绑和物理下行链路共享信道(PDSCH)。根据某些方面,针对PDSCH的TTI捆绑可以是依赖于子帧的,以便在与参考信号(RS)(例如,信道状态信息(CSI)RS或定位RS(PRS))有冲突的情况下确保合适的系统操作。例如,仅可能的子帧的子集可以被捆绑。为了避免冲突,可以在某些子帧中丢弃参考信号。针对某些方面,参考信号可以对PDSCH打孔,或者可以在参考信号占有的资源元素附近执行速率匹配。针对某些方面,不同的技术可以用于不同类型的PBSCH(例如,寻呼或具有系统信息广播(SIB)的PBSCH)。
[0028] 现在参照附图来描述各个方面。在下文描述中,出于解释的目的,阐述了许多具体细节,以便提供对一个或多个方面的全面理解。但是,显而易见的是,在没有这些具体细节的情况下,可以实施这样的方面。
[0029] 如本申请所使用的,术语“组件”、“模块”、“系统”等旨在包括与计算机相关的实体,诸如但不限于:硬件、软件/固件、硬件和软件/固件的组合、或在执行中的软件/固件。例如,组件可以是,但不限于是:在处理器上运行的过程、处理器、对象、可执行文件、执行的线程、程序和/或计算机。通过说明的方式,在计算设备上运行的应用和计算设备二者可以是组件。一个或多个组件可以存在于过程和/或执行的线程中,以及组件可以位于一个计算机中和/或分布在两个或更多计算机之间。此外,这些组件可以从具有在其上存储的各种数据结构的各种计算机可读介质中执行。组件可以通过本地和/或远程过程的方式,诸如根据具有一个或多个数据分组的信号,通过信号的方式与其它系统进行通信,其中所述数据分组诸如是来自于一个组件与在本地系统中、在分布式系统中、和/或跨越网络(诸如互联网)的另一个组件交互的数据。
[0030] 此外,本文结合终端描述了多个方面,终端可以是有线终端或无线终端。终端也可以被称为系统、设备、用户单元、用户站、移动站、移动台、移动设备、远程站、远程终端、接入终端、用户终端、通信设备、用户代理、用户装置或用户设备(UE)。无线终端可以是蜂窝电话、卫星电话、无绳电话、会话发起协议(SIP)电话、智能电话、平板计算机、超级本、上网本、智能本、无线本地环路(WLL)站、个人数字助理(PDA)、具有无线连接能力的手持式设备、计算设备或者连接到无线调制解调器的其它处理设备。此外,本文结合基站描述了多个方面。基站可以用于与无线终端进行通信,并且还可以被称作为接入点、节点B或某种其它术语。
[0031] 此外,术语“或”旨在意指包含性的“或”而不是排他性的“或”。即,除非另有规定或根据上下文清楚可知,否则短语“X使用A或B”旨在于意味着任何自然的包含性的排列。即,任何以下的实例满足短语“X使用A或B”:X使用A;X使用B;或者X使用A和B二者。此外,除非另有规定或者根据上下文清楚可知特指单数形式,否则在本申请以及所附的权利要求书中所使用的冠词“一”和“一个”通常应当被解释为意指“一个或多个”。
[0032] 本文所描述的技术可以用于诸如码分多址(CDMA)网络、时分多址(TDMA)网络、频分多址(FDMA)网络、正交FDMA(OFDMA)网络、单载波FDMA(SC-FDMA)网络等各种无线通信网络。术语“网络”和“系统”经常被互换使用。CDMA网络可以实现诸如通用陆地无线接入(UTRA)、CDMA2000等无线技术。UTRA包括宽带CDMA(W-CDMA)。CDMA2000涵盖IS-2000、IS-95以及IS-856标准。TDMA网络可以实现诸如全球移动通信系统(GSM)的无线技术。
[0033] OFDMA网络可以实现诸如演进的UTRA(E-UTRA)、电气与电子工程师协会(IEEE)802.11、IEEE 802.16、IEEE 802.20、Flash-OFDM等的无线技术。UTRA、E-UTRA和GSM是通用移动电信系统(UMTS)的一部分。长期演进(LTE)是使用E-UTRA的UMTS的最近版本。在来自名称为“第三代合作伙伴计划”(3GPP)的组织的文档中描述了UTRA、E-UTRA、GSM、UMTS和LTE。
在来自于名称为“第三代合作伙伴计划2”(3GPP2)的组织的文档中描述了CDMA2000。这些不同的无线技术和标准是本领域已知的。为了清楚起见,下文针对LTE/先进的LTE(LTE-A)描述了本技术的某些方面,并且在下文描述的多处中使用LTE/LTE-A术语。应当注意的是,通过说明的方式来使用LTE术语,并且本公开内容的范围不限于LTE。事实上,本文所描述的技术可以用在涉及无线传输(诸如个人区域网(PAN)、身体区域网(BAN)、定位、蓝牙、GPS、UWB、RFID等)的各种应用中。此外,本技术还可以用在有线系统(诸如电缆调制解调器、基于光纤的系统等)中。
[0034] 利用单载波调制和频域均衡的单载波频分多址(SC-FDMA)具有与OFDMA系统类似的性能和基本相同的整体复杂度。由于SC-FDMA信号固有的单载波结构,所以其可以具有较低的峰均功率比(PAPR)。SC-FDMA可以用在较低PAPR在发送功率效率方面极大地有利于移动终端的上行链路通信中。SC-FDMA目前是3GPP长期演进(LTE)或演进的UTRA中的上行链路多址方案的工作假设。
[0035] 示例无线通信系统
[0036] 参照图1,示出了根据一个方面的多址无线通信系统100。接入点102(AP)包括多个天线组,一个天线组包括104和106,另一个天线组包括108和110,以及额外的天线组包括112和114。在图1中,针对每个天组仅显示了两个天线,但是,针对每个天线组可以利用更多或更少个天线。接入终端116(AT)与天线112和114相通信,其中,天线112和114通过前向链路120向接入终端116发送信息,并且通过反向链路118从接入终端116接收信息。接入终端
122与天线106和104相通信,其中,天线106和104通过前向链路126向接入终端122发送信息,并且通过反向链路124从接入终端122接收信息。在频分双工(FDD)系统中,通信链路
118、120、124、和126可以使用不同的频率进行通信。例如,反向链路118可以使用与前向链路120所使用的频率不同的频率。
[0037] 每个天线组和/或该天线组被设计为在其中进行通信的区域经常被称为接入点的扇区。在一方面中,天线组均被设计为与在接入点102覆盖的区域的扇区中的接入终端进行通信。
[0038] 在通过前向链路120和126进行的通信中,接入点102的发送天线利用波束成形,以便改善针对不同的接入终端116和122的前向链路的信噪比。此外,与通过单个天线向所有其接入终端进行发送的接入点相比,使用波束成形来向随机地散布于其覆盖中的接入终端进行发送的接入点对相邻小区中的接入终端造成更小的干扰。
[0039] 接入点可以是用于与终端进行通信的固定站,并且还可以被称为节点B、演进型节点B(eNB)或某种其它术语。接入终端还可以被称为移动站、用户设备(UE)、无线通信设备、终端或某种其它术语。针对某些方面,AP 102或接入终端116、122可以利用所提议的干扰消除技术以改善系统性能。
[0040] 图2是MIMO系统200中的发射机系统210和接收机系统250的方面的框图。在发射机系统210处,将针对多个数据流的业务数据从数据源212提供给发送(TX)数据处理器214。本公开内容的实施例还可以应用于图2的有线(有线的)等效系统。发射机系统210和接收机系统250二者可以发送和接收(例如,如下文概述)。
[0041] 在一个方面中,每个数据流通过各自的发送天线来发送。TX数据处理器214基于针对每个数据流所选择的特定的编码方案来格式化、编码以及交织针对该数据流的业务数据以提供编码数据。
[0042] 可以使用OFDM技术将针对每个数据流的编码数据与导频数据进行多路复用。导频数据典型地为被以已知的方式处理的已知的数据模式,并且可以在接收机系统处用于估计信道响应。可以随后基于针对每个数据流所选择的特定的调制方案(例如,二进制相移键控(BPSK)、正交相移键控(QPSK)、M-PSK(其中,M可以是2的幂)或M-QAM(正交振幅调制))来调制(例如,符号映射)针对该数据流的所多路复用的导频和编码数据以提供调制符号。可以通过由处理器230执行的指令来确定针对每个数据流的数据速率、编码和调制,处理器230可以与存储器232相连。
[0043] 随后将针对所有数据流的调制符号提供给TX MIMO处理器220,其可以进一步地处理调制符号(例如,针对OFDM)。TX MIMO处理器220随后将NT个调制符号流提供给NT个发射机(TMTR)222a至222t。在某些方面中,TX MIMO处理器220将波束成形权重应用于数据流的符号以及应用于发送该符号的天线。
[0044] 每个发射机222接收并且处理各自的符号流以提供一个或多个模拟信号,并且进一步地修整(例如,放大、滤波以及上变频)模拟信号以提供适于通过MIMO信道传输的调制信号。随后从NT个天线224a至224t分别发送来自发射机222a至222t的NT个调制信号。
[0045] 在接收机系统250处,由NR个天线252a至252r接收所发送的调制信号,并且将每个天线252接收的信号提供给各自的接收机(RCVR)254a至254r。每个接收机254修整(例如,滤波、放大以及下变频)各自的接收信号,数字化所修整的信号以提供采样,并且进一步地处理采样以提供相应的“接收的”符号流。
[0046] 接收(RX)数据处理器260随后基于特定的接收机处理技术来接收和处理来自NR个接收机254的NR个接收的符号流以提供NT个“检测的”符号流。RX数据处理器260随后解调、解交织以及解码每个检测的符号流以恢复针对数据流的业务数据。RX数据处理器260进行的处理与在发射机系统210处的TX MIMO处理器220和TX数据处理器214所执行的处理互补。如下文以进一步地细节描述的,RX数据处理器260可以利用干扰消除来消除对所接收的信号的干扰。
[0047] 与存储器272相连的处理器270生成反向链路消息。反向链路消息可以包括关于通信链路和/或所接收的数据流的各种类型的信息。反向链路消息随后由TX数据处理器238来处理(TX数据处理器238还从数据源236接收针对多个数据流的业务数据),由调制器280来调制,由发射机254a至254r来修整,并且被发送回发射机系统210。
[0048] 在发射机系统210处,来自接收机系统250的调制信号由天线224来接收,由接收机222来修整,由解调器240来解调并且由RX数据处理器242来处理,以提取由接收机系统250发送的反向链路消息。
[0049] 针对PDSCH的示例性TTI捆绑
[0050] 在某些系统(例如,长期演进(LTE)版本8至10)中,可以基于每用户设备(UE)来配置传输时间间隔(TTI)(或子帧)捆绑。子帧捆绑操作可以通过由较高层提供的参数ttiBundling来配置。
[0051] 如果针对UE来配置TTI捆绑,则子帧捆绑操作仅可以应用于上行链路(UL)共享信道(SCH),而不应用于其它UL信号/业务(例如,上行链路控制信息(UCI))。捆绑尺寸可以被固定为4个子帧。即,物理上行链路共享信道(PUSCH)可以在4个连续的子帧中发送。可以在所捆绑的子帧中的每一个子帧中使用相同的混合自动重传请求(HARQ)进程号。资源分配尺寸可以被限制为多至3个资源块(RB)。调制阶可以被设置为2(例如,正交相移键控(QPSK))。一个捆(bundle)可以被作为单个资源来对待,例如,针对每个捆使用单个授权和单个HARK确认(ACK)。
[0052] TTI捆绑可以主要用于低速率业务。如果由于针对上行链路的低链路预算而没有在单个TTI中发送基于互联网协议的语音(VoIP)分组,则可以应用层2(L2)分段。例如,可以将VoIP分组分割为在四个连续的TTI中发送的四个无线链路控制(RLC)协议数据单元(PDU),并且可以把两个或三个HARQ重传作为目标以实现足够的覆盖。但是,此方法可能具有一些缺点。例如,每个额外的区段可以引入一个字节的RLC、一个字节的介质访问控制(MAC)以及三个字节的L1循环冗余校验(CRC)开销(例如,在假设33个字节的RLC服务数据单元(SDU)尺寸时为15%的开销)这意味着对于四个区段,可以存在45%的额外的L1/L2开销。
[0053] 另外,针对每个区段的HARQ传输/重传可以在物理下行链路控制信道(PDCCH)上使用授权,这可以消耗显著的PDCCH资源。每个HARQ传输或重传之后可以在物理HARQ指示符信道(PHICH)上跟有HARQ反馈。假设NACK-ACK错误率为10-3,则大量的HARQ反馈信号可以导致高的分组丢失概率。例如,如果发送了十二个HARQ反馈信号,则HARQ反馈错误率可以是1.2*10-2的数量级。大于10-2的分组丢失率对于VoIP业务可能是无法接受的。
[0054] 在TTI捆绑中,针对每TTI捆仅使用单个上行链路授权和单个PHICH信号是有优势的。此外,由于不要求L2分段,所以L1和L2开销可以被最小化。
[0055] 针对介质数据速率物理上行链路共享信道(PUSCH)和UL VoIP的覆盖改善可能是期望的。对于介质数据速率PUSCH和UL VoIP二者,考虑指定潜在解决方案的最小增益可以是1dB。潜在解决方案是针对介质数据速率和VoIP的TTI捆绑增强,同时考虑L1/较高层协议开销和等待时间。
[0056] 除低成本之外,15dB至20dB的覆盖增强可能是期望的,以便覆盖在低覆盖区域中(例如,在地下室中)的设备(例如,机器类型通信(MTC)设备)。大的TTI捆绑尺寸(例如,100个子帧的数量级)可以是解决UL覆盖增强的一个可能的解决方案。大的TTI捆绑尺寸同样可以被可能地考虑用于下行链路(DL)覆盖增强。
[0057] 在下行链路上,TTI捆绑被提议用于物理广播信道(PBCH)、物理下行链路控制信道(PDCCH)、增强的PDCCH(ePDCCH)、PHICH以及物理下行链路共享信道(PDSCH)。在上行链路上,TTI捆绑被提议用于随机接入信道(RACH)、物理上行链路控制信道(PUCCH)以及PUSCH。
[0058] 广播PDSCH包括用于寻呼的PDSCH、用于系统信息广播(SIB)的PDSCH、用于随机接入响应的PDSCH等。在TTI捆绑是针对广播PDSCH的情况下,一些特殊的规则可以确保合适的系统操作。
[0059] 在第一示例中,UE可以假设在主小区中在如下所述的子帧中不发送信道状态信息(CSI)参考信号(RS),其中,所述子帧是被配置用于在主小区中根据特定于小区的寻呼配置为任何UE发送寻呼消息的子帧。
[0060] 在第二示例中,UE可以假设在如下所述的子帧中不发送CSI-RS,其中所述子帧是CSI-RS的传输会与SystemInformationBlockType1(系统信息块类型1)消息发生冲突的子帧。
[0061] 在第三示例中,UE可以假设定位参考信号(PRS)不出现在如下所述的RB中,其中,在所述RB中,UE根据检测出的PDCCH来解码PDSCH,其中根据用于该UE的下行链路控制信息(DCI)格式1A或1C来利用系统信息无线网络临时标识符(SI-RNTI)或寻呼RNTI(P-RNTI)对该PDCCH的循环冗余校验(CRC)进行了加扰。
[0062] 在第四示例中,广播PDSCH可以基于特定于小区的参考信号(CRS)。在允许非-MBMS(多媒体广播多播服务)业务的多媒体广播单频网络(MBSFN)子帧中,可以不存在CRS并且仅可以支持基于UE-RS的PDSCH(MBSFN还可以被称为MBMS单频网络、多媒体广播单频网络等)。
[0063] 因此,期望的是用于针对PDSCH的TTI捆绑的技术,其可以确保合适的系统操作。
[0064] 本文所提供的技术用于长期演进(LTE)中的传输时间间隔(TTI)捆绑和物理下行链路共享信道(PDSCH)。根据某些方面,针对PDSCH的TTI捆绑可以是依赖于子帧的,以便在与参考信号(RS)(例如,信道状态信息(CSI)RS或定位RS(PRS))有冲突的情况下确保合适的系统操作。例如,仅可能的子帧的子集可以被捆绑。为了避免冲突,可以在某些子帧中丢弃参考信号。针对某些方面,参考信号可以对PDSCH打孔,或者可以在参考信号占有的资源元素附近执行速率匹配。针对某些方面,不同的技术可以用于不同类型的PDSCH(例如,用于寻呼的PDSCH、具有系统信息广播(SIB)的广播PDSCH、用于随机接入响应的PDSCH)。
[0065] 根据某些方面,与在所有可能的子帧中执行相比,针对广播PDSCH的TTI捆绑可以仅在子帧的子集中执行。图3示出了根据本公开内容的某些实施例的示例帧配置300,其中具有用于针对FDD的广播PDSCH TTI捆绑的可能的子帧。在一些方面中,TTI捆绑可以是依赖于子帧的,即,可以在某些子帧中执行TTI捆绑,而不在其它子帧中执行TTI捆绑。如图3所示,在一个示例中,针对频分双工(FDD)PDSCH传输,可以仅在子帧0、4、5和9中执行TTI捆绑。尽管未在图3中示出,但是在另一个示例中,针对时分双工(TDD)PDSCH传输,可以在子帧0、
1、5和6中执行TTI。
[0066] 根据某些方面,可以在规范中硬编码用于广播PDSCH TTI捆绑的子帧子集。替代地,可以将用于广播PDSCH TTI捆绑的子帧的子集用信号发送(例如,经由广播或专用信令)给UE。用信号发送子集可以是更灵活的方法。
[0067] 根据某些方面,不同类型的广播PDSCH(例如,寻呼、具有SIB的PDSCH等)可以使用相同或不同的子帧子集。例如,寻呼TTI捆绑可以仅在子帧0/4/5/9中,而具有SIB的广播PDSCH可以在被配置用于小区的任何非MBSFN子帧中(例如,如果小区具有用作MBSFN子帧的子帧3和7,则针对具有SIB的广播PDSCH的TTI捆绑可以在子帧0、1、2、4、5、6、8和9中)。
[0068] 在一些情况下,PDSCH可以与RS冲突。根据某些方面,PDSCH可以与CSI-RS冲突。在一些方面中,如果UE知道针对寻呼的TTI捆绑,则可以在潜在地涉及针对寻呼的TTI捆绑的所有子帧中丢弃CSI-RS。CSI-RS的丢弃可以不仅限于最初定义的特定于小区的寻呼子帧的集合。
[0069] 在一些方面中,可以仅针对最初定义的特定于小区的寻呼子帧的集合来丢弃CSI-RS,并且可以不在涉及针对寻呼的TTI捆绑的其它子帧中丢弃CSI-RS。在一些方面中,CSI-RS然后可以对在涉及针对寻呼的TTI捆绑的其它子帧中的相应的PDSCH打孔。替代地,可以在CSI-RS占有的RE附近执行针对PDSCH的速率匹配。
[0070] 根据某些方面,具有SIB的PDSCH可以与CSI-RS冲突。在一些方面中,可以丢弃与具有SIB的PDSCH冲突的CSI-RS,无论该PDSCH是在捆中的第一子帧中还是在捆中的随后的子帧中。替代地,可以仅在捆中的第一子帧中丢弃CSI-RS,但是不在捆中的随后的子帧中丢弃CSI-RS。在针对SIB的捆中的PDSCH的第一子帧和针对用于其它UE的SIB不具有捆绑的PDSCH的第一子帧可以在相同的子帧中。例如,可以存在具有SIB的PDSCH的两个集合,一个集合针对执行捆绑的UE,而另一个集合针对普通UE,并且两个集合可以在子帧中对齐。在第三替代方式中,可以仅在发送具有针对普通UE的SIB的PDSCH(例如,没有具有SIB的PDSCH TTI捆绑)的子帧中丢弃CSI-RS。如果CSI-RS被配置为是特定于小区的,和/或针对普通UE和机器类型通信(MTC)UE的CSI-RS在很大程度上重合,则此方法可能是尤其期望的。
[0071] 根据某些方面,如果CSI-RS与具有SIB的任何PDSCH冲突,则CSI-RS可以对PDSCH打孔。替代地,可以在CSI-RS占有的RE附近执行速率匹配。
[0072] 根据某些方面,对于TTI捆绑下的与SI-RNTI或P-RNTI相关联的PDSCH,捆中的一些PDSCH传输可以不与PRS冲突(例如,在非PRS子帧中),而捆中的其它PDSCH传输可以与PRS冲突(例如,在PRS子帧中,并且PRS是窄带或宽带的)。
[0073] 根据某些方面,冲突处置可以取决于捆中的子帧。作为示例,如果在TTI捆绑的第一子帧中存在冲突,则UE可以假设将要丢弃PRS。但是,如果在除TTI捆绑的第一子帧之外的子帧中存在冲突,则UE可以假设将要丢弃PDSCH传输。替代地,如果存在冲突,则UE可以假设将要在TTI捆绑的第一子帧中丢弃PRS,并且如果PDSCH传输与PRS冲突,则可以在TTI捆绑的随后的子帧中部分地丢弃PDSCH传输,并且该丢弃仅针对重叠部分。在第三替代方式中,当存在冲突时,总是丢弃PRS而不考虑捆中的子帧。
[0074] 根据某些方面,TTI捆可以落在MBSFN子帧中。在一些方面中,UE可以跳过对该MBSFN子帧的解码。替代地,UE可以基于该子帧中的CRS(例如,CRS在MBSFN区域中被部分地或完全地重新激活)来发送PDSCH。在另一替代方式中,UE可以基于该子帧中的UE-RS模式来发送PDSCH。在第四替代方式中,UE可以将该冲突作为错误事件对待。
[0075] 根据某些方面,上述方法可以应用于单播或广播PDSCH。特别地,对于单播PDSCH和MBSFN子帧,有可能但不期望的是使基于CRS的PDSCH和基于UE-RS的PDSCH在相同的TTI捆的不同的子帧中。
[0076] 图4示出了根据本公开内容的某些方面的用于无线通信的示例操作400。操作400可以例如由UE(例如,类似于AT 122)来执行。在402处操作400开始,识别传输时间间隔(TTI)捆,该TTI捆包括来自用于在物理下行链路共享信道(PDSCH)上发送数据的子帧集合的子帧子集。在一些方面中,UE可以从BS接收指示该子帧子集的信令。该子帧子集可以是针对具有SIB的PDSCH的MBSFN子帧。
[0077] 在404处,UE可以在该子帧子集中在PDSCH上接收数据。针对某些方面,PDSCH可以是广播或单播PDSCH,并且可以具有FDD或TDD的帧结构。
[0078] 根据某些方面,UE可以识别被配置为在该子帧子集中的至少一个子帧中发送的另一个信号(例如,检测到PDSCH和其它信号之间的冲突)。在一些方面中,该信号可以是PRS、CSI-RS或MBSFN子帧。UE可以丢弃该其它信号,该信号可以对PDSCH打孔,或者可以在该信号占有的RE附近执行速率匹配。
[0079] 图5示出了根据本公开内容的某些实施例的用于无线通信的示例操作500。操作500可以例如由基站(BS)(例如,类似于AP 102)来执行。在502处操作500开始,识别传输时间间隔(TTI)捆,该TTI捆包括来自用于在物理下行链路共享信道(PDSCH)上发送数据的子帧集合的子帧子集。在一些方面中,BS可以将对该子帧子集的指示用信号发送给UE。该子帧子集可以是针对具有SIB的PDSCH的MBSFN子帧。
[0080] 在504处,BS可以在该子帧子集中在PDSCH上发送数据。在一些方面中,PDSCH可以是广播或单播PDSCH,并且可以处于FDD或TDD的帧结构中。
[0081] 根据某些方面,BS可以识别被配置为在该子帧子集中的至少一个子帧中发送的另一个信号(例如,检测到PDSCH和其它信号(例如,PRS、CSI-RS或MBSFN子帧)之间的冲突)。BS可以丢弃该其它信号,该信号可以对PDSCH打孔,或者可以在该信号占有的RE附近执行速率匹配。
[0082] 如本文所使用的,称为条目列表“中的至少一个”的短语指的是这些条目的任何组合,包括单个成员。作为示例,“a、b或c中的至少一个”旨在于涵盖:a、b、c、a-b、a-c、b-c和a-b-c。
[0083] 上文描述的方法的各种操作可以由对应于在图中示出的模块加功能框的各种硬件和/或软件/固件组件和/或模块来执行。结合本公开内容所描述的各种说明性的逻辑框、模块和电路可以利用被设计为执行本文描述的功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑器件(PLD)、分立门或者晶体管逻辑器件、分立硬件部件或者其任意组合来实现或执行。通用处理器可以是微处理器,但是在替代的方式中,处理器可以是任何商品化的可用的处理器、控制器、微控制器或者状态机。处理器还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、一个或多个微处理器与DSP内核的结合,或者任何其它这样的配置。
[0084] 结合本公开内容所描述的方法或者算法的步骤可直接地体现在硬件中、由处理器执行的软件/固件模块中,或者其组合中。软件/固件模块可以位于本领域已知的任何形式的存储介质中。可被使用的存储介质的一些示例包括随机存取存储器(RAM)、只读存储器(ROM)、闪速存储器、EPROM存储器、EEPROM存储器、相变存储器(PCM)、寄存器、硬盘、可移动盘、CD-ROM等。软件/固件模块可以包括单个指令或许多指令,并且可以分布于若干不同的代码段上、不同的程序中、以及多个存储介质中。可以将存储介质耦合到处理器,使得处理器可以从存储介质读取信息,以及向存储介质写入信息。在替代的方式中,存储介质可以被整合到处理器中。
[0085] 本文所公开的方法包括用于实现所描述的方法的一个或多个步骤或动作。在不脱离本权利要求书的范围的情况下,所述方法步骤和/或动作可以相互交换。换句话说,除非规定了步骤或动作的具体次序,否则在不脱离本权利要求书的范围的情况下,可以修改具体步骤和/或动作的次序和/或使用。
[0086] 所描述的功能可以在硬件、软件/固件或其组合中实现。如果在软件/固件中实现,则可以将所述功能作为一个或多个指令储存在计算机可读介质上。存储介质可以是可由计算机存取的任何可用的介质。通过举例而非限制性的方式,这样的计算机可读介质可包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储装置、磁盘存储装置或其它磁储存设备、或可用于以指令或数据结构的形式携带或存储期望的程序代码并且可由计算机存取的任何其它介质。如本文所使用的,磁盘和光盘包括压缩光盘(CD)、激光光盘、光盘、数字多功能光盘(DVD)、软盘和蓝光光盘,其中磁盘通常磁性地复制数据,而光盘则利用激光来光学地复制数据。
[0087] 可以通过传输介质来发送软件/固件指令。例如,如果使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或无线技术(诸如红外、无线和微波)从网站、服务器或其它远程源发送软件/固件,则同轴电缆、光纤光缆、双绞线、DSL或无线技术(诸如红外、无线和微波)包括在传输介质的定义中。
[0088] 此外,应该意识到的是可以由用户终端和/或基站下载和/或否则以适当方式获取用于执行本文所描述的方法和技术的模块和/或其它适当的单元。例如,这样的设备可以耦合到服务器以促进用于执行本文所描述的方法的单元的转移。替代地,可以经由存储单元(例如,RAM、ROM、诸如压缩盘(CD)或软盘等物理存储介质)提供本文所描述的各种方法,使得当将存储单元耦合到或提供给设备时,用户终端和/或基站可以获取各种方法。再者,可以利用用于向设备提供本文所描述的方法和技术的任何其它适当的技术。
[0089] 要理解的是,权利要求书不受限于上文说明的精确配置和组件。在不脱离权利要求书的范围的情况下,可以在对描述的方法和装置的排列、操作和细节做出各种修改、改变和变形。
[0090] 虽然前述内容是针对于本公开内容的实施例的,但在不脱离其基本范围的情况下,本公开内容的其它和进一步的实施例可以被设计出来,以及其范围是由所附的权利要求书来确定的。