一种低/无铁磁性、高强度织构镍钨合金复合基带的制备方法转让专利

申请号 : CN201510988119.9

文献号 : CN105415795B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 刘志勇杨枫陈永强张娜何庭伟

申请人 : 河南师范大学

摘要 :

本发明公开了一种低/无铁磁性、高强度织构镍钨合金复合基带的制备方法,该镍钨合金复合基带表层初始原料为真空熔炼方法获得的钨的原子百分含量为12%的镍钨合金,芯层初始原料是钨的原子百分含量为5%~7%的镍钨混合粉末,采用放电等离子体烧结获得复合坯锭,然后进行大变形量冷轧及中间去应力退火,最后对冷轧基带进行再结晶退火获得了低/无铁磁性、高强度织构镍钨合金复合基带,该方法制得的镍钨合金复合基带与同类镍钨合金复合基带相比具有更低的铁磁性和更高的屈服强度。

权利要求 :

1.一种低/无铁磁性、高强度织构镍钨合金复合基带的制备方法,其特征在于包括以下步骤:步骤S100:复合坯锭的设计

步骤S101:利用线切割将采用真空熔炼方法获得的钨的原子百分含量为12%的镍钨合金切割成厚度为5mm的坯锭,再将该坯锭表面打磨干净作为复合坯锭的外层材料,将这层材料定义为A;

步骤S102:将钨的原子百分含量为5% 7%的镍钨混合粉末作为复合坯锭的芯层材料,将~这层材料定义为B,将A和B以A-B-A的顺序逐层放入到放电等离子体烧结使用的模具中,采用30MPa的预压力保压20分钟,保压后B的厚度为5mm;

步骤S103:采用放电等离子体烧结对经过步骤S102处理的模具进行热处理获得三层镍钨复合坯锭,放电等离子体烧结压力为60MPa,烧结温度为700℃;

步骤S200:复合坯锭的冷轧及中间去应力退火步骤S201:将步骤S103得到的三层镍钨复合坯锭冷轧至厚度为3mm;

步骤S202:将步骤S201冷轧后的三层镍钨复合坯锭进行去应力退火,退火工艺参数为:

600 620℃保温10分钟;

~

步骤S203:将步骤S202处理后的三层镍钨复合坯锭继续冷轧至0.25mm厚得到镍钨复合基带,其中,冷轧过程中的道次变形量均为10% 15%;

~

步骤S300:冷轧复合基带的再结晶热处理步骤S301:将经过步骤S203得到的镍钨复合基带在氮气氛围中进行再结晶热处理,再结晶热处理工艺为:1300 1400℃保温2小时,最后制得低/无铁磁性、高强度织构镍钨合金~复合基带。

说明书 :

一种低/无铁磁性、高强度织构镍钨合金复合基带的制备方法

技术领域

[0001] 本发明涉及一种低/无铁磁性、高强度织构镍钨合金复合基带的制备方法,属于高温涂层超导体强韧化织构金属基带技术领域。

背景技术

[0002] 第二代高温涂层超导材料具有高的电流密度和不可逆场,且YBCO涂层导体不涉及贵重金属,其成本较低,正是这些优点使得YBCO涂层导体在超导电缆、超导电机等领域成为取代Bi系超导的可能。制备YBCO涂层超导材料最常用的方法是RABiTS方法,即通过对金属大形变量轧制及再结晶退火以获得强立方织构的金属基带,再通过缓冲层将立方织构传递给外层的YBCO超导层,而作为涂层超导用的织构金属基带是RABiTS技术路线中制备高性能超导带材的关键,目前RABiTS方法基带研究的对象主要是镍合金,其中,镍钨合金基带由于其良好的综合性能,是RABiTS方法研究最多的金属基带。目前,Ni-5at.%W(Ni5W)合金基带已经商业化生产,但是由于其在液氮温区的铁磁性和低的屈服强度,使得第二代高温涂层超导带材进一步的广泛应用受到了一定的限制。而研究发现层状复合基带可以降低基带整体的磁性能并提高屈服强度,因此层状复合基带的研究是解决以上问题的有效途径之一。有中国专利已经公开了Ni基合金复合基带及其制备方法,制备思路为将容易得到立方织构的镍钨合金作为复合坯锭的外层材料,高强度、无铁磁性镍钨合金作为复合坯锭的芯层材料,通过复合及后续加工获得了低铁磁性、高强度立方织构的镍钨复合基带,但是其铁磁性仍有待降低,机械性能仍有待于进一步提高,在控制加工成本、简化工艺的条件下如何制备低/无铁磁性、高强度的镍钨合金复合基带是现在涂层超导带材用织构金属基带领域面临的新挑战。

发明内容

[0003] 本发明的目的是提供了一种低/无铁磁性、高强度织构镍钨合金复合基带的制备方法,通过合理设计复合坯锭的结构和加工方法得到低/无铁磁性、高强度织构镍钨合金复合基带,满足制备高性能高温涂层超导体的应用要求。
[0004] 本发明为实现上述目的采用如下技术方案,一种低/无铁磁性、高强度织构镍钨合金复合基带的制备方法,其特征在于包括以下步骤:
[0005] 步骤S100:复合坯锭的设计
[0006] 步骤S101:利用线切割将采用真空熔炼方法获得的钨的原子百分含量为12%的镍钨合金切割成厚度为5mm的坯锭,再将该坯锭表面打磨干净作为复合坯锭的外层材料,将这层材料定义为A;
[0007] 步骤S102:将钨的原子百分含量为5% 7%的镍钨混合粉末作为复合坯锭的芯层材~料,将这层材料定义为B,将A和B以A-B-A的顺序逐层放入到放电等离子体烧结使用的模具中,采用30MPa的预压力保压20分钟,保压后B的厚度为5mm;
[0008] 步骤S103:采用放电等离子体烧结对经过步骤S102处理的模具进行热处理获得三层镍钨复合坯锭,放电等离子体烧结压力为60MPa,烧结温度为700℃;
[0009] 步骤S200:复合坯锭的冷轧及中间去应力退火
[0010] 步骤S201:将步骤S103得到的三层镍钨复合坯锭冷轧至厚度为3mm;
[0011] 步骤S202:将步骤S201冷轧后的三层镍钨复合坯锭进行去应力退火,退火工艺参数为:600 620℃保温10分钟;~
[0012] 步骤S203:将步骤S202处理后的三层镍钨复合坯锭继续冷轧至0.25mm厚得到镍钨复合基带,其中,冷轧过程中的道次变形量均为10% 15%;~
[0013] 步骤S300:冷轧复合基带的再结晶热处理
[0014] 步骤S301:将经过步骤S203得到的镍钨复合基带在氮气氛围中进行再结晶热处理,再结晶热处理工艺为:1300 1400℃保温2小时,最后制得低/无铁磁性、高强度织构镍钨~合金复合基带。
[0015] 本发明设计的复合基带外层为钨的原子百分含量12%的镍钨合金,芯层初始原料为低钨含量的镍钨混合粉末,这一设计利用了以下优势:高温再结晶退火过程中芯层部分容易获得强的立方织构,芯层部分强立方织构的晶粒迅速长大吞并外层非立方晶粒,进而在复合基带表面形成强立方织构。该复合基带在液氮温区具有低/无铁磁性的特点,在室温下复合基带的强度与同类镍钨合金复合基带相比有大幅度提高。

附图说明

[0016] 图1是本发明实施例1制得的镍钨合金复合基带表面的(001)面极图;
[0017] 图2是本发明实施例2制得的镍钨合金复合基带表面的(001)面极图。

具体实施方式

[0018] 以下结合实施例进一步描述本发明。应该指出,本发明并非局限于下述各实施例。
[0019] 实施例1
[0020] 步骤S100:复合坯锭的设计
[0021] 步骤S101:利用线切割将采用真空熔炼方法获得的钨的原子百分含量为12%的镍钨合金切割成厚度为5mm的坯锭,再将该坯锭表面打磨干净作为复合坯锭的外层材料,将这层材料定义为A;
[0022] 步骤S102:将钨的原子百分含量为5%的镍钨混合粉末作为复合坯锭的芯层材料,将这层材料定义为B,将A和B以A-B-A的顺序逐层放入到放电等离子体烧结使用的模具中,采用30MPa的预压力保压20分钟,保压后B的厚度为5mm;
[0023] 步骤S103:采用放电等离子体烧结对经过步骤S102处理的模具进行热处理获得三层镍钨复合坯锭,放电等离子体烧结压力为60MPa,烧结温度为700℃;
[0024] 步骤S200:复合坯锭的冷轧及中间去应力退火
[0025] 步骤S201:将步骤S103得到的三层镍钨复合坯锭冷轧至厚度为3mm;
[0026] 步骤S202:将步骤S201冷轧后的三层镍钨复合坯锭进行去应力退火,退火工艺参数为:600℃保温10分钟;
[0027] 步骤S203:将步骤S202处理后的三层镍钨复合坯锭继续冷轧至0.25mm厚得到镍钨复合基带,其中,冷轧过程中的道次变形量为10%;
[0028] 步骤S300:冷轧复合基带的再结晶热处理
[0029] 步骤S301:将经过步骤S203得到的镍钨复合基带在氮气氛围中进行再结晶热处理,再结晶热处理工艺为:1300℃保温2小时,最后制得低/无铁磁性、高强度织构镍钨合金复合基带。
[0030] 该镍钨合金复合基带在室温下的屈服强度达到了310MPa,明显高于Ni-5at.%W系复合基带的屈服强度。该镍钨合金复合基带表面的(001)面极图如图1所示,表明该镍钨合金复合基带表面获得了强立方织构。
[0031] 实施例2
[0032] 步骤S100:复合坯锭的设计
[0033] 步骤S101:利用线切割将采用真空熔炼方法获得的钨的原子百分含量为12%的镍钨合金切割成厚度为5mm的坯锭,再将该坯锭表面打磨干净作为复合坯锭的外层材料,将这层材料定义为A;
[0034] 步骤S102:将钨的原子百分含量为7%的镍钨混合粉末作为复合坯锭的芯层材料,将这层材料定义为B,将A和B以A-B-A的顺序逐层放入到放电等离子体烧结使用的模具中,采用30MPa的预压力保压20分钟,保压后B的厚度为5mm;
[0035] 步骤S103:采用放电等离子体烧结对经过步骤S102处理的模具进行热处理获得三层镍钨复合坯锭,放电等离子体烧结压力为60MPa,烧结温度为700℃;
[0036] 步骤S200:复合坯锭的冷轧及中间去应力退火
[0037] 步骤S201:将步骤S103得到的三层镍钨复合坯锭冷轧至厚度为3mm;
[0038] 步骤S202:将步骤S201冷轧后的三层镍钨复合坯锭进行去应力退火,退火工艺参数为: 620℃保温10分钟;
[0039] 步骤S203:将步骤S202处理后的三层镍钨复合坯锭继续冷轧至0.25mm厚得到镍钨复合基带,其中,冷轧过程中的道次变形量为15%;
[0040] 步骤S300:冷轧复合带材的再结晶热处理
[0041] 步骤S301:将经过步骤S203得到的镍钨复合基带在氮气氛围中进行再结晶热处理,再结晶热处理工艺为:1400℃保温2小时,最后制得低/无铁磁性、高强度织构镍钨合金复合基带。
[0042] 该镍钨合金复合基带在室温下的屈服强度达到了370MPa,明显高于Ni-7at.%W系复合基带的屈服强度。该镍钨合金复合基带表面的(001)面极图如图2所示,表明该镍钨合金复合基带表面获得了强立方织构。
[0043] 以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。