一种有机电致发光材料及其应用转让专利

申请号 : CN201510809990.8

文献号 : CN105441066B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 高自良刘英瑞石宇盛磊巨成良胡葆华

申请人 : 中节能万润股份有限公司

摘要 :

本发明涉及一种有机电致发光材料及其应用,该类材料具有符合式(Ⅰ)所示的分子结构,该材料具有较好的薄膜稳定性和适合的分子能级,可以作为空穴传输材料,应用在有机电致发光领域中。

权利要求 :

1.一种有机电致发光材料,其特征在于,具有如下所示的分子结构:

2.一种有机电致发光材料的应用,其特征在于,在有机电致发光器件中,至少有一个功能层含有权利要求1所述的有机电致发光材料。

说明书 :

一种有机电致发光材料及其应用

技术领域

[0001] 本发明涉及一种有机电致发光材料及其应用,具体涉及一种含有氮杂芴结构的三芳胺类小分子有机电致发光材料,并涉及该材料在有机电致发光领域的应用。

背景技术

[0002] 有机电致发光现象,最早在1963年由Pope教授发现,他将数百伏的偏压施加于蒽晶体上,观察到了发光现象,但是由于电压过高,效率不佳,而没能引起人们的关注,直至1987年,柯达公司Tang等人,首创了双层薄膜夹心结构,制成了高亮度的绿色发光器件,从此掀起了有机发光二级管(OLED)风起云涌的时代。
[0003] 有机发光二级管(OLED)具有自发光、广视角、响应速度快、可实现柔性显示等诸多优点,这使其成为下一代平板显示技术的最有利竞争者,受到人们极大的关注。
[0004] OLED器件分为小分子器件和高分子器件,其中小分子器件常具有多层夹心结构,每层分别具有不同的功能,这一特征,为材料研发过程中,进行逐层改善带来了方便,但于此同时,为了获得性能优良的OLED器件,在考虑各功能层材料,自身性质的同时,还要保证层与层之间的匹配,这也给小分子器件的开发带来了挑战。
[0005] 自小分子有机电致发光器件诞生至今,空穴传输层材料便一直以三芳香胺类结构为主,如N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺(NPB)是应用最为广泛的三芳香胺类空穴传输材料之一,NPB具有空穴传输速度较快,且价格便宜等优点,但NPB的玻璃化转变温度Tg只有98℃,该材料的薄膜稳定性欠佳。

发明内容

[0006] 本发明所要解决的技术问题是提供一种有机电致发光材料及其应用,具体是指一类具有氮杂芴结构的三芳香胺类小分子有机电致发光材料,该类材料可以作为空穴传输材料,应用在有机电致发光器件中。
[0007] 本申请发明人经研究发现,氮杂芴结构具有较高的HOMO能级,并且该类衍生物具有较高的耐热性和成膜性,三芳香胺类结构单元具有较好的空穴传输能力,以氮杂芴结构为母体,在氮杂芴结构中,引入三芳香胺类结构单元,将有可能获得一类具有优良薄膜稳定性的空穴传输材料,以上是本发明所述材料的结构设计基础。
[0008] 本发明解决上述技术问题的方案如下:一种有机电致发光材料,具有符合式(Ⅰ)所示的分子结构:
[0009]
[0010] 其中,Ar1、Ar2、Ar3和Ar4分别代表芳香取代基团,Ar1、Ar2、Ar3和Ar4相同或不同,R为甲基或不含取代基的苯基。
[0011] 在上述技术方案的基础上,本发明还可以做如下改进。
[0012] 进一步,所述Ar1、Ar2、Ar3和Ar4分别代表含有取代基或不含取代基的苯基、萘基、联苯基、二苯并呋喃基、二苯并噻吩基、9,9-二甲基芴基、吩噻嗪基、吩噁嗪基中的一种,Ar1、Ar2、Ar3和Ar4相同或不同。
[0013] 本发明还提供了一种有机电致发光材料的制备方法,以化合物C01为例,其合成路线如下所示,本发明中其它化合物的合成方法,与C01的合成方法类似,具体合成方法详见后文实施例。
[0014]
[0015] 本发明通过上述方法,制备所述及的,具有氮杂芴结构的三芳香胺类小分子有机电致发光材料。
[0016] 下面所列化合物C01~C26,是符合本发明精神和原则的代表结构,应当理解,列出以下化合物结构,只是为了更好地解释本发明,并非是对本发明的限制。
[0017]
[0018]
[0019]
[0020]
[0021] 本发明提供了一类具有氮杂芴结构的三芳香胺类小分子有机电致发光材料,并提供了该类材料的合成方法,同时,本发明还将提供上述材料用于有机电致发光器件的空穴传输层的应用实例,所述实施过程与结果,只是为了更好地解释本发明,并非是对本发明的限制。
[0022] 所制备的有机电致发光器件一般包括依次叠加的ITO导电玻璃衬底101(阳极)、空穴传输层102(本发明中的材料或作为对比例的NPB)、发光层并同时作为电子传输层103的Alq3、电子注入层104(LiF)和阴极层105(Al),如图1。所有功能层均采用真空蒸镀工艺制成。该类器件中所用到的一些有机化合物的分子结构式如下所示。
[0023]
[0024] 应当理解,本发明中制作OLED器件的目的,只是为了更好地说明,本发明中所述材料所具有的空穴传输能力,而并非是对本发明所述材料应用范围的限制。
[0025] 本发明的有益效果是:
[0026] 本发明提供了一类具有氮杂芴结构的三芳香胺类小分子有机电致发光材料,并提供了该类材料的合成方法,以该材料作为空穴传输材料制作的OLED器件,展示了较好的效能,其特点在于:
[0027] 1.通过一定的化学方法,制备了一类氮杂芴类分子,并且以该类分子为母核,制备了一类三芳香胺类小分子有机电致发光材料。
[0028] 2.该类材料具有较大的分子质量和空间位阻,并展示了良好的薄膜稳定性和热稳定性。
[0029] 3.该类材料具有适合的分子能级,可以作为空穴传输材料,应用在有机电致发光领域中。
[0030] 4.以该类材料作为空穴传输层,与使用NPB作为空穴传输层制作的OLED器件相比,器件的最大亮度增加了5-25%,器件的启亮电压降低了0.1-0.7V。

附图说明

[0031] 图1为本发明所制备的有机电致发光器件的结构示意图,由下层至上层,依次为ITO导电玻璃衬底(101)、空穴传输层(102)、发光层并同时作为电子传输层(103)、电子注入层(104)和阴极层(105),其中,空穴传输层(102)涉及到本发明所述的有机电致发光材料。
[0032] 图2为实施例29中,以化合物C01作为有机电致发光器件一的空穴传输层,器件一的电压-电流密度曲线;
[0033] 图3为实施例29中,以化合物C01作为有机电致发光器件一的空穴传输层,器件一的电压-亮度曲线;
[0034] 图4为实施例29中,以化合物C01作为有机电致发光器件一的空穴传输层,器件一的电流密度-电流效率曲线;
[0035] 图5为实施例29中,以化合物C01作为有机电致发光器件一的空穴传输层,器件一在亮度为100cd/m2时的电致发光光谱图。

具体实施方式

[0036] 以下对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
[0037] 化合物制备实施例:
[0038] 实施例1中间体3的制备
[0039]
[0040] 化合物1的制备:在2L三口瓶中,加入8-喹啉硼酸(72.6g,0.42mol),邻溴苯甲酸甲酯(86.0g,0.40mol),碳酸钾(82.8g,0.6mol),Pd(PPh3)4(2.31g,2mmol),甲苯(800mL),N2保护,升温至回流,保温反应2小时,停反应,降温至25℃,水洗分液,收集有机相,脱去溶剂,得到黄色粘稠油状物化合物1粗品,不经精制直接进行下步反应(收率以100%计)。
[0041] 化合物2的制备:向2L三口瓶中,加入833mL甲基锂溶液(1.0mol),氮气保护下,低温浴降温至-78℃,将化合物1的粗产品加入四氢呋喃(400g)溶解,转移至恒压漏斗中,滴加至上述2L三口瓶中,滴加过程控制内温-70~-78℃,一小时滴加完毕,-78℃保温2小时,保温结束,转移至20~25℃机械搅拌,内温升至0~5℃,滴加200g水淬灭反应,然后加入200g乙酸乙酯搅拌0.5小时,分液,乙酸乙酯萃取水相,有机相减压脱除溶剂,得到棕黄色油状物。向油状物中加入500g无水乙醇,析出白色固体,抽滤,得到白色粉末状固体。
[0042] 将所得白色固体加至1L三口瓶中,加入对甲苯磺酸(3.74g,0.02mol),甲苯(600mL),升温至回流,保温反应1小时,停反应,降温至25℃,水洗分液,收集有机相,脱去溶剂,甲苯重结晶,得到白色固体化合物2,HPLC纯度99.92%,两步反应总收率74.5%。
[0043] 化合物3的制备:在500mL三口瓶中加入化合物2(24.5g,0.1mol),二氯甲烷(245g),氮气保护下,降温至内温0~5℃滴加溴素(35.2g,0.22mol),0.5小时滴加完毕,内温0~5℃保温反应6小时,停反应。加入无水乙醇100g,20~25℃搅拌1小时,抽滤,50mL饱和亚硫酸氢钠水溶液淋洗滤饼,甲苯为溶剂重结晶,得到化合物3,类白色固体31.4g,收率77.9%。
[0044] 高分辨质谱,ESI源,正离子模式,分子式C18H13Br2N,理论值400.9415,测试值400.9423。
[0045] 实施例2化合物C01的制备
[0046]
[0047] 在100mL三口瓶中,加入实施例1制备的化合物3(4.03g,10mmol),二苯胺(3.72g,22mmol),叔丁醇钠(2.88g,30mmol),醋酸钯(0.01g,0.04mmol),三叔丁基膦(0.016g,
0.08mmol),二甲苯(50mL),N2保护,升温至回流,保温反应8小时,停反应,降温至25℃,加入
30mL去离子水,搅拌5min,分液,收集有机相,脱去溶剂,得到目标物C01粗产品,使用硅胶柱层析纯化,洗脱剂为石油醚:二氯甲烷=3:1(V/V),脱除溶剂后使用二氯乙烷为溶剂重结晶,得到目标物C01,类白色固体4.5g,使用化学气相沉积系统进一步升华提纯,升华温度
330℃,得到3.6g化合物C01,收率62.1%。
[0048] 高分辨质谱,ESI源,正离子模式,分子式C42H33N3,理论值579.2674,测试值579.2669。元素分析(C42H33N3),理论值C:87.01,H:5.74,N:7.25,实测值C:87.08,H:5.70,N:
7.22。
[0049] 实施例3化合物C02的制备
[0050]
[0051] 参照实施例2进行,原料为实施例1制备的化合物3和N-苯基-1-萘胺,得到化合物C02,收率65.6%。高分辨质谱,ESI源,正离子模式,分子式C50H37N3,理论值679.2987,测试值679.2982。元素分析(C50H37N3),理论值C:88.33,H:5.49,N:6.18,实测值C:88.37,H:5.47,N:
6.16。
[0052] 实施例4化合物C03的制备
[0053]
[0054] 参照实施例2进行,原料为实施例1制备的化合物3和N-苯基-联苯胺,得到化合物C03,收率59.8%。高分辨质谱,ESI源,正离子模式,分子式C54H41N3,理论值731.3300,测试值731.3306。元素分析(C54H41N3),理论值C:88.61,H:5.65,N:5.74,实测值C:88.63,H:5.62,N:
5.75。
[0055] 实施例5化合物C04的制备
[0056]
[0057] 参照实施例2进行,原料为实施例1制备的化合物3和二(4-联苯基)胺,得到化合物C04,收率60.2%。高分辨质谱,ESI源,正离子模式,分子式C66H49N3,理论值883.3926,测试值883.3920。元素分析(C66H49N3),理论值C:89.66,H:5.59,N:4.75,实测值C:89.63,H:5.62,N:
4.75。
[0058] 实施例6化合物C05的制备
[0059]
[0060] 参照实施例2进行,原料为实施例1制备的化合物3和N-(4-二苯并呋喃)-苯胺,得到化合物C05,收率54.6%。高分辨质谱,ESI源,正离子模式,分子式C54H37N3O2,理论值759.2886,测试值759.2882。元素分析(C54H37N3O2),理论值C:85.35,H:4.91,N:5.53,实测值C:85.38,H:4.96,N:5.55。
[0061] 实施例7化合物C06的制备
[0062]
[0063] 参照实施例2进行,原料为实施例1制备的化合物3和N-(4-二苯并呋喃)-对异丙基苯胺,得到化合物C06,收率55.9%。高分辨质谱,ESI源,正离子模式,分子式C60H49N3O2,理论值843.3825,测试值843.3829。元素分析(C60H49N3O2),理论值C:85.38,H:5.85,N:4.98,实测值C:85.33,H:5.88,N:4.95。
[0064] 实施例8化合物C07的制备
[0065]
[0066] 参照实施例2进行,原料为实施例1制备的化合物3和N-(4-二苯并噻吩)-苯胺,得到化合物C07,收率49.4%。高分辨质谱,ESI源,正离子模式,分子式C54H37N3S2,理论值791.2429,测试值791.2425。元素分析(C54H37N3S2),理论值C:81.89,H:4.71,N:5.31,实测值C:81.87,H:4.74,N:5.34。
[0067] 实施例9化合物C08的制备
[0068]
[0069] 参照实施例2进行,原料为实施例1制备的化合物3和N-(4-二苯并噻吩)-对异丙基苯胺,得到化合物C08,收率50.9%。高分辨质谱,ESI源,正离子模式,分子式C60H49N3S2,理论值875.3368,测试值875.3366。元素分析(C60H49N3S2),理论值C:82.25,H:5.64,N:4.80,实测值C:82.22,H:5.67,N:4.77。
[0070] 实施例10化合物C09的制备
[0071]
[0072] 参照实施例2进行,原料为实施例1制备的化合物3和N-(2-(9,9-二甲基芴基)苯胺,得到化合物C09,收率62.7%。高分辨质谱,ESI源,正离子模式,分子式C60H49N3,理论值811.3926,测试值811.3923。元素分析(C60H49N3),理论值C:88.74,H:6.08,N:5.17,实测值C:
88.71,H:6.11,N:5.19。
[0073] 实施例11化合物C10的制备
[0074]
[0075] 参照实施例2进行,原料为实施例1制备的化合物3和N-(2-(9,9-二甲基芴基)对异丙基苯胺,得到化合物C10,收率63.3%。高分辨质谱,ESI源,正离子模式,分子式C66H61N3,理论值895.4865,测试值895.4861。元素分析(C66H61N3),理论值C:88.45,H:6.86,N:4.69,实测值C:88.41,H:6.83,N:4.67。
[0076] 实施例12化合物C11的制备
[0077]
[0078] 参照实施例2进行,原料为实施例1制备的化合物3和N-(4-(9,9-二甲基芴基)苯胺,得到化合物C11,收率58.8%。高分辨质谱,ESI源,正离子模式,分子式C60H49N3,理论值811.3926,测试值811.3924。元素分析(C60H49N3),理论值C:88.74,H:6.08,N:5.17,实测值C:
88.72,H:6.12,N:5.15。
[0079] 实施例13化合物C12的制备
[0080]
[0081] 参照实施例2进行,原料为实施例1制备的化合物3和N-(4-(9,9-二甲基芴基)对异丙基苯胺,得到化合物C12,收率59.3%。高分辨质谱,ESI源,正离子模式,分子式C66H61N3,理论值895.4865,测试值895.4867。元素分析(C66H61N3),理论值C:88.45,H:6.86,N:4.69,实测值C:88.47,H:6.83,N:4.66。
[0082] 实施例14化合物C13的制备
[0083]
[0084] 参照实施例2进行,原料为实施例1制备的化合物3和吩噁嗪,得到化合物C13,收率46.7%。高分辨质谱,ESI源,正离子模式,分子式C42H29N3O2,理论值607.2260,测试值
607.2263。元素分析(C42H29N3O2),理论值C:83.01,H:4.81,N:6.91,实测值C:83.04,H:4.84,N:6.88。
[0085] 实施例15化合物C14的制备
[0086]
[0087] 参照实施例2进行,原料为实施例1制备的化合物3和吩噻嗪,得到化合物C14,收率45.3%。高分辨质谱,ESI源,正离子模式,分子式C42H29N3S2,理论值639.1803,测试值
639.1805。元素分析(C42H29N3S2),理论值C:78.84,H:4.57,N:6.57,实测值C:78.82,H:4.54,N:6.60。
[0088] 实施例16中间体化合物5的制备
[0089]
[0090] 化合物4的制备:在2L三口烧瓶中加入镁片(14.4g,0.60mol),将溴苯(94.2g,0.60mol)溶解在300mL THF中,置于恒压滴液漏斗,向2L三口瓶中一次性加入50mL,开启搅拌,升温至回流,待反应引发后,滴加剩余的溴苯溶液,1h滴加完毕,回流反应2h,降温至45℃,待用。将实施例1制备的化合物1(63.2g,0.24mol),加入400mL THF溶解后,转移至恒压滴液漏斗中,然后缓慢滴入上述制备的格氏试剂中,控制滴加时的内温在45~50℃之间,1h滴毕,45~50℃保温反应2h,将反应体系降温至内温20~25℃,向上述体系中缓慢滴加300g质量分数10%的稀盐酸溶液淬灭反应,滴加完毕后,搅拌30min,静置分层,分液,水相用
300g乙酸乙酯萃取,合并有机相,减压脱去有机溶剂,得到黄色粘稠液,向油状物中加入
450g无水乙醇,析出白色固体,抽滤,得到白色粉末状固体。
[0091] 将所得白色固体加至1L三口瓶中,加入对甲苯磺酸(2.28g,0.012mol),甲苯(500mL),升温至回流,保温反应1小时,停反应,降温至25℃,水洗分液,收集有机相,脱去溶剂,甲苯重结晶,得到白色固体化合物4,HPLC纯度99.58%,两步反应总收率68.7%。
[0092] 化合物5的制备:在1L三口瓶中加入化合物4(36.9g,0.10mol),二氯甲烷(369g),氮气保护下,降温至内温0~5℃滴加溴素(35.2g,0.22mol),0.5小时滴加完毕,内温0~5℃保温反应8小时,停反应。加入无水乙醇100g,20~25℃搅拌1小时,抽滤,50mL饱和亚硫酸氢钠水溶液淋洗滤饼,二甲苯为溶剂重结晶,得到化合物5,类白色固体37.8g,收率71.7%。
[0093] 高分辨质谱,ESI源,正离子模式,分子式C28H17Br2N,理论值524.9728,测试值524.9726。
[0094] 实施例17化合物C15的制备
[0095]
[0096] 在100mL三口瓶中,加入实施例16制备的化合物5(5.27g,10mmol),二苯胺(3.72g,22mmol),叔丁醇钠(2.88g,30mmol),醋酸钯(0.01g,0.04mmol),三叔丁基膦(0.016g,
0.08mmol),二甲苯(50mL),N2保护,升温至回流,保温反应10小时,停反应,降温至25℃,加入30mL去离子水,搅拌5min,分液,收集有机相,脱去溶剂,得到目标物C15粗产品,使用硅胶柱层析纯化,洗脱剂为石油醚:二氯甲烷=3:1(V/V),脱除溶剂后使用甲苯为溶剂重结晶,得到目标物C15,类白色固体5.6g,使用化学气相沉积系统进一步升华提纯,升华温度345℃,得到4.5g化合物C15,收率63.9%。
[0097] 高分辨质谱,ESI源,正离子模式,分子式C52H37N3,理论值703.2987,测试值703.2983。元素分析(C52H37N3),理论值C:88.73,H:5.30,N:5.97,实测值C:88.75,H:5.33,N:
5.92。
[0098] 实施例18化合物C16的制备
[0099]
[0100] 参照实施例17进行,原料为实施例16制备的化合物5和N-苯基-1-萘胺,得到化合物C16,收率58.6%。高分辨质谱,ESI源,正离子模式,分子式C60H41N3,理论值803.3300,测试值803.3303。元素分析(C60H41N3),理论值C:89.63,H:5.14,N:5.23,实测值C:89.61,H:5.17,N:5.22。
[0101] 实施例19化合物C17的制备
[0102]
[0103] 参照实施例17进行,原料为实施例16制备的化合物5和N-苯基-2-萘胺,得到化合物C17,收率56.9%。高分辨质谱,ESI源,正离子模式,分子式C60H41N3,理论值803.3300,测试值803.3297。元素分析(C60H41N3),理论值C:89.63,H:5.14,N:5.23,实测值C:89.65,H:5.12,N:5.23。
[0104] 实施例20化合物C18的制备
[0105]
[0106] 参照实施例17进行,原料为实施例16制备的化合物5和N-苯基-联苯胺,得到化合物C18,收率63.2%。高分辨质谱,ESI源,正离子模式,分子式C64H45N3,理论值855.3613,测试值855.3617。元素分析(C64H45N3),理论值C:89.79,H:5.30,N:4.91,实测值C:89.74,H:5.32,N:4.94。
[0107] 实施例21化合物C19的制备
[0108]
[0109] 参照实施例17进行,原料为实施例16制备的化合物5和N-(4-二苯并呋喃)-苯胺,得到化合物C19,收率51.1%。高分辨质谱,ESI源,正离子模式,分子式C64H41N3O2,理论值883.3199,测试值883.3195。元素分析(C64H41N3O2),理论值C:86.95,H:4.67,N:4.75,实测值C:86.93,H:4.65,N:4.78。
[0110] 实施例22化合物C20的制备
[0111]
[0112] 参照实施例17进行,原料为实施例16制备的化合物5和N-(4-二苯并呋喃)-异丙基苯胺,得到化合物C20,收率50.7%。高分辨质谱,ESI源,正离子模式,分子式C70H53N3O2,理论值967.4138,测试值967.4134。元素分析(C70H53N3O2),理论值C:86.84,H:5.52,N:4.34,实测值C:86.88,H:5.54,N:4.37。
[0113] 实施例23化合物C21的制备
[0114]
[0115] 参照实施例17进行,原料为实施例16制备的化合物5和N-(4-二苯并噻吩)-苯胺,得到化合物C21,收率47.3%。高分辨质谱,ESI源,正离子模式,分子式C64H41N3S2,理论值915.2742,测试值915.2746。元素分析(C64H41N3S2),理论值C:83.90,H:4.51,N:4.59,实测值C:83.88,H:4.55,N:4.62。
[0116] 实施例24化合物C22的制备
[0117]
[0118] 参照实施例17进行,原料为实施例16制备的化合物5和N-(4-二苯并噻吩)-对异丙基苯胺,得到化合物C22,收率45.8%。高分辨质谱,ESI源,正离子模式,分子式C70H53N3S2,理论值999.3681,测试值999.3684。元素分析(C70H53N3S2),理论值C:84.05,H:5.34,N:4.20,实测值C:84.08,H:5.38,N:4.22。
[0119] 实施例25化合物C23的制备
[0120]
[0121] 参照实施例17进行,原料为实施例16制备的化合物5和N-(2-(9,9-二甲基芴基)苯胺,得到化合物C23,收率63.3%。高分辨质谱,ESI源,正离子模式,分子式C70H53N3,理论值935.4239,测试值935.4234。元素分析(C70H53N3),理论值C:89.81,H:5.71,N:4.49,实测值C:
89.84,H:5.68,N:4.48。
[0122] 实施例26化合物C24的制备
[0123]
[0124] 参照实施例17进行,原料为实施例16制备的化合物5和N-(4-(9,9-二甲基芴基)苯胺,得到化合物C24,收率60.2%。高分辨质谱,ESI源,正离子模式,分子式C70H53N3,理论值935.4239,测试值935.4242。元素分析(C70H53N3),理论值C:89.81,H:5.71,N:4.49,实测值C:
89.83,H:5.74,N:4.43。
[0125] 实施例27化合物C25的制备
[0126]
[0127] 参照实施例17进行,原料为实施例16制备的化合物5和吩噁嗪,得到化合物C25,收率42.7%。高分辨质谱,ESI源,正离子模式,分子式C52H33N3O2,理论值731.2573,测试值731.2576。元素分析(C52H33N3O2),理论值C:85.34,H:4.55,N:5.74,实测值C:85.30,H:4.59,N:5.75。
[0128] 实施例28化合物C26的制备
[0129]
[0130] 参照实施例17进行,原料为实施例16制备的化合物5和吩噻嗪,得到化合物C26,收率40.4%。高分辨质谱,ESI源,正离子模式,分子式C52H33N3S2,理论值763.2116,测试值763.2112。元素分析(C52H33N3S2),理论值C:81.75,H:4.35,N:5.50,实测值C:81.71,H:4.38,N:5.53。
[0131] 有机电致发光器件实施例:
[0132] 本发明选取实施例2制备的化合物C01、实施例3制备的化合物C02、实施例5制备的化合物C04、实施例7制备的化合物C06、实施例10制备的化合物C09、实施例14制备的化合物C13、实施例17制备的化合物C15、实施例19制备的化合物C17、实施例21制备的化合物C19、实施例26制备的化合物C24、实施例28制备的化合物C26制作有机电致发光器件,并选择商品化的空穴传输材料NPB作为对比例,应当理解,器件实施过程与结果,只是为了更好地解释本发明,并非对本发明的限制。
[0133] 实施例29化合物C01在有机电致发光器件中的应用
[0134] 本实施例按照下述方法制备有机电致发光器件一:
[0135] a)清洗ITO(氧化铟锡)玻璃:分别用去离子水、丙酮、乙醇超声清洗ITO玻璃各30分钟,然后在等离子体清洗器中处理5分钟;
[0136] b)在阳极ITO玻璃上真空蒸镀空穴传输层化合物C01,厚度为50nm;
[0137] c)在空穴传输层NPB之上,真空蒸镀同时作为发光层和电子传输层的Alq3,厚度为60nm;
[0138] d)在Alq3之上,真空蒸镀电子注入层LiF,厚度为1nm;
[0139] e)在电子注入层之上,真空蒸镀阴极Al,厚度为100nm。
[0140] 器件一的结构为ITO/化合物C01(50nm)/Alq3(60nm)/LiF(1nm)/Al(100nm),真空-3蒸镀过程中,压力<1.0X 10 Pa,以化合物C01作为器件一的空穴传输层,器件一的电压-电流密度曲线如图2所示,电压-亮度曲线如图3所示,电流密度-电流效率曲线如图4所示,器件一的启亮电压为4.0V,最大亮度10900cd/m2,最大电流效率0.99cd/A,图5为器件一在亮度为100cd/m2时的电致发光光谱图,CIE坐标位于(0.34,0.54)。
[0141] 实施例30-实施例39化合物C02-化合物C26在有机电致发光器件中的应用
[0142] 分别以化合物C02、化合物C04、化合物C06、化合物C09、化合物C13、化合物C15、化合物C17、化合物C19、化合物C24、化合物C26代替化合物C01,按照实施例29所述方法,制备有机电致发光器件二至有机电致发光器件十一,器件二至器件十一的结构为ITO/化合物C02-化合物C26(50nm)/Alq3(60nm)/LiF(1nm)/Al(100nm),器件一至器件十一的启亮电压、最大电流效率、色纯度等光电数据列于表1中。
[0143] 对比例1以NPB为空穴传输层的对比例
[0144] 以化合物NPB代替化合物C01,按照实施例29所述方法,制备有机电致发光器件十二,器件十二的结构为ITO/NPB(50nm)/Alq3(60nm)/LiF(1nm)/Al(100nm),器件一至器件十二的启亮电压、最大电流效率、色纯度等光电数据如表1所示。
[0145] 表1器件一至器件十二光电数据表
[0146]
[0147] 以上所述仅为本发明的实施例,并不是对本发明的限制。本发明旨在提供一种具有氮杂芴结构的三芳胺类小分子有机电致发光材料,以本发明所提供的材料制作的OLED器件,器件结构和性能有进一步提升的空间,如搭配其它颜色的发光层材料,制作红光器件或蓝光器件,使用其它的电子传输材料,或者在器件结构中添加其它的功能层,来进一步提升器件性能等,类似改进都应该被理解为,属于本发明的保护范畴。