用于生产包括三元合金的低辐射玻璃的涂层系统、方法和装置转让专利

申请号 : CN201480027773.7

文献号 : CN105473328B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : G·Z·张B·博伊斯J·成M·伊姆兰G·W·丁M·H·乐D·施瓦格特Y·L·许

申请人 : 分子间公司葛迪恩实业公司

摘要 :

在此公开的系统、方法,和设备用于形成低辐射板,其可包括基片和反射层,被形成在所述基片上。所述低辐射板可进一步包括顶部介质层,被形成在所述反射层上,从而所述反射层被形成在所述顶部介质层和所述基片之间。所述顶部介质层可包括三元金属氧化物,如锌锡铝氧化物。所述顶部介质层也可包括铝。所述铝浓度的原子百分比为1%‑15%,或为2%‑10%。锌对锡的原子比可为0.67‑1.5,或为0.9‑1.1。

权利要求 :

1.一种低辐射板,包括:

基片;

反射层,被形成在所述基片上;和

顶部介质层,被形成在所述反射层上,从而所述反射层被形成在所述顶部介质层和所述基片之间,所述顶部介质层包括锌锡铝氧化物,其中,所述顶部介质层中的锌对锡的原子比为

0.67-1.5,

所述顶部介质层实质上是无定形的。

2.如权利要求1所述的低辐射板,其中,所述顶部介质层中铝浓度的原子百分比为1%-

15%。

3.如权利要求1所述的低辐射板,其中,所述顶部介质层中铝浓度的原子百分比为2%-

10%。

4.如权利要求1所述的低辐射板,其中,所述顶部介质层具有3eV-6eV的带隙。

5.如权利要求1所述的低辐射板,其中,对于400nm-2500n的波长范围,所述顶部介质层的吸收系数为0。

6.如权利要求1所述的低辐射板,其中,所述顶部介质层的厚度为10nm-50nm。

7.如权利要求1所述的低辐射板,进一步包括:阻挡层,被形成在所述顶部介质层和所述反射层之间,所述阻挡层包含部分氧化的至少镍、钛、和铌的合金。

8.如权利要求7所述的低辐射板,进一步包括:顶部扩散层,被形成在所述顶部介质层上,从而所述顶部介质层被形成在所述顶部扩散层和所述阻挡层之间,所述顶部扩散层包含氮化硅。

9.如权利要求8所述的低辐射板,进一步包括:底部扩散层,被形成在所述基片和所述反射层之间;底部介质层,被形成在所述底部扩散层和所述基片的之间;和种子层,被形成在所述底部介质层和所述反射层之间。

10.一种形成低辐射板的方法,其步骤包括:提供部分装配板,所述部分装配板包括基片,反射层被形成在所述基片上,且阻挡层被形成在所述反射层上,从而所述反射层被形成在所述基片和所述阻挡层之间;且在含有氧气的环境使用反应溅射法,在所述阻挡层上形成顶部介质层,所述阻挡层包括部分氧化的三种或者多种金属的合金,所述顶部介质层包括锌锡铝氧化物,其中,所述顶部介质层中的锌对锡的原子比为

0.67-1.5,

所述顶部介质层实质上是无定形的。

11.如权利要求10所述的方法,进一步包括:热处理具有所述顶部介质层的所述部分装配板。

12.如权利要求11所述的方法,其中,在响应于热处理的应用中,所述低辐射板的透射率到可见光的变化小于3%。

13.如权利要求10所述的方法,其中,所述顶部介质层中铝浓度的原子百分比为1%-

15%。

14.如权利要求10所述的方法,其中,所述顶部介质层中铝浓度的原子百分比为2%-

10%。

15.如权利要求10所述的方法,其中,所述顶部介质层具有3eV-6eV的带隙。

16.如权利要求10所述的方法,其中,所述顶部介质层的厚度为10nm-50nm。

17.如权利要求10所述的方法,进一步包括:在所述顶部介质层上形成顶部扩散层,所述顶部扩散层包括氮化钛。

18.形成低辐射板的方法,其步骤包括:提供基片;

底部扩散层,形成在所述基片上;

底部介质层,形成在所述底部扩散层上;

种子层,形成在所述底部介质层上;

反射层,形成在所述种子层上;

阻挡层,形成在所述反射层上;及

顶部介质层,形成在所述阻挡层上,且所述阻挡层包括部分氧化的三个或多个金属的合金,所述顶部介质层包括锌锡铝氧化物,其中,所述顶部介质层中的锌对锡的原子比为

0.67-1.5,

所述顶部介质层实质上是无定形的,所述顶部介质层用反应溅射法,在含有氧气的环境被形成。

说明书 :

用于生产包括三元合金的低辐射玻璃的涂层系统、方法和

装置

[0001] 发明背景1,技术领域
[0002] 本发明公开涉及一种提供高透射率和低辐射率的薄膜,尤其是存放在透明基片上的薄膜。
[0003] 2,背景说明
[0004] 控制太阳光的材料,如处理过的玻璃片,通常用在建筑玻璃窗户和车辆窗户。这些材料通常提供高可见光透射和低辐射,从而允许更多的太阳光穿过玻璃窗户,同时阻止红外线(IR)辐射,来减少不需要的内部加热。在低辐射(low-E)材料,IR辐射主要反映在最小的吸收和发射,从而减少从低辐射表面的热传输。低辐射板通常由沉积反射层(例如,银)被形成在基片上,如玻璃。为了实现所需的性能,反射层的整体质量很重要。为了提供支持,以及保护,在反射层下和上形成多个其他层。这些层通常包括介质层,如氮化硅、氧化锡和氧化锌,从基片和环境中提供堆栈的保护。介质层还可作为光滤波器和防反射涂层的功能,来改善板的光特性。
[0005] 减少辐射的典型方法包括增加反射层(例如,银层)的厚度。然而,当反射层的厚度增加时,此层的可见光的透射性也减少。此外,高厚度减缓生产的生产量和成本增加。这可需要保留尽可能薄的反射层,同时还提供适用于低辐射应用的辐射。

发明内容

[0006] 本公开是用于形成低辐射(low-E)板的系统、方法和装置。在一些实施例,低发射板可包括基片和反射层,被形成在所述基片上。所述低辐射板还可包括顶部介质层,被形成在所述反射层上,从而所述反射层被形成在所述顶部介质层和所述基片之间。在一些实施例,所述顶部介质层可包括锌锡铝氧化物。在一些实施例,所述顶部介质层中铝浓度的原子百分比可为1%-15%。所述顶部介质层中铝浓度的原子百分比可为2%-10%。所述顶部介质层中的锌对锡的原子比可为0.67-1.5。所述顶部介质层可具有3eV-6eV的带隙。在一些实施例,所述顶部介质层是无定形的。对于400nm-2500nm的波长范围,所述顶部介质层的吸收系数可为0。所述顶部介质层的厚度可为10nm-50nm。
[0007] 在一些实施例,所述低辐射板还可包括阻挡层,被形成在所述顶部介质层和所述反射层之间。所述阻挡层可包含部分氧化的至少镍、钛、和铌的合金。在一些实施例,部分氧化的可以是两个或多个氧化混合物的合金,其中至少一个氧化物是非化学计量氧化物。在一些实施例,形成部分氧化的所有氧化物的合金是非化学计量氧化物。所述低辐射板可进一步包括顶部扩散层,被形成在所述顶部介质层上,从而所述顶部介质层被形成在所述顶部扩散层和所述阻挡层之间。所述顶部扩散层可包括氮化硅。所述低辐射板还可包括底部扩散层,被形成在所述基片和所述反射层之间。所述底部介质层可被形成在所述底部扩散层和所述基片之间。所述低辐射板还可包括种子层,被形成在所述底部介质层和所述反射层之间。
[0008] 在一些实施例,提供了形成低辐射板的方法。所述方法可包括提供部分装配板。所述部分装配板可包括基片,反射层,被形成在所述基片上,且阻挡层,被形成在所述反射层上,从而所述反射层被形成在所述基片和所述阻挡层之间。所述方法还可包括:形成在所述阻挡层上的顶部介质层。所述阻挡层可包括部分氧化的三种或者多种金属的合金。所述顶部介质层可包括锌锡铝氧化物。此外,可用反应溅射法,在含有氧气环境形成所述顶部介质层。
[0009] 所述方法可进一步包括热处理具有所述顶部介质层的所述部分装配板。在一些实施例,在热处理的应用中,所述低辐射板的透射率到可见光的变化小于3%。所述顶部介质层中铝浓度的原子百分比可为1%-15%。所述顶部介质层中铝浓度的原子百分比可为2%-10%。所述顶部介质层中的锌对锡的原子比可为0.67-1.5。所述顶部介质层时无定形的。在一些实施例,所述顶部介质层的厚度可为10nm-50nm。所述方法可进一步包括在所述顶部介质层上形成顶部扩散层。所诉顶部扩散层可包括氮化钛。
[0010] 在一些实施例,形成低辐射板的方法被提供。所述方法可包括提供基片和底部扩散层,形成在所述基片上。所述方法还可包括底部介质层,形成在所述底部扩散层,和种子层,形成在所述底部介质层上。所述方法还可包括反射层,形成在所述种子层,和阻挡层,形成在所述反射层上。所述方法还可包括顶部介质层,形成在所述阻挡层上。所述阻挡层可包括部分氧化的三元或者多元金属的合金。所述顶部介质层可包括锌锡铝氧化物。可用反应溅射法,在含有氧气环境形成所述顶部介质层。
[0011] 参考以下图进一步地说明这些和其他实施例。
[0012] 附图简要说明
[0013] 为了便于理解,在可能的情况下,使用相同的参考数字来指定图中组件。在图中没有比例和各种元素的相对尺寸来描绘示意图,且不一定成比例。各种元素可通过考虑以下的详细描述,结合附图容易地被理解,其中:
[0014] 图1是示出根据一些实施例,制品包括基片,且堆栈包括一个反射层,被形成在所述基片上的示意图。
[0015] 图2是示出根据一些实施例,另一个制品包括基片,且堆栈包括两个反射层,被形成在所述基片上的示意图。
[0016] 图3是示出根据一些实施例,另一个制品包括基片,且堆栈包括三个反射层,被形成在所述基片上的示意图。
[0017] 图4是示出根据一些实施例,对应于用于形成制品的方法,包括反射层和阻挡层,用于从氧化中保护在此反射层材料的处理流程。
[0018] 图5是示出根据一些实施例,图解一个或多个介质层的结构分析的结果。
[0019] 图6是示出根据一些实施例,图解一个或多个介质层传输特性,包括锌锡铝氧化物前和后热处理的应用。
[0020] 图7是示出根据一些实施例,记分卡识别介质层的一个或多个光特性的示例。
[0021] 具体说明
[0022] 在下面的说明中,本发明的概念在以下的说明中设置了许多具体地细节,以便提供深入了解。本发明的概念可在没有一些或所有这些具体细节被实践。在其他情况下,众所周知的处理操作没有被详细地说明,以免使说明的概念模糊不清。当一些概念与具体地实施例结合在一起时,将被理解为这些实施例不限于此。
[0023] 介绍
[0024] 传统的低辐射(low-E)涂层可包括一个或多个堆栈可作为涂层产品,或钢化产品。在钢化产品中,玻璃包括在可被涂层、8分钟可被加热至650摄氏度的低辐射板。在钢化的玻璃/堆栈上可发生颜色变化,从而在外观制作不同的涂层产品和热处理(回火的)产品。因此,传统的介质层用在低辐射板可受到热处理后出现的不良结果的影响,如结晶化、减少在蓝色波长的光的吸收,及在低辐射玻璃的颜色变化。
[0025] 提供的低辐射板具有顶部介质层,由锌锡铝氧化物形成。也提供制造这些板的方法。与氧化锡或者二元金属氧化物制作的传统低辐射板不同,在此公开的板包括当受到热处理时,三金属氧化物显示较少的颜色变化。此外,在此公开的板的透射和反射特性比传统的板更稳定。实验结果表明,当此处公开的板受到热处理时,透射比增加小于1%。此外,添加铝锌和锡增加产生的层的带隙。在一些实施例,顶部介质层中铝浓度的原子百分比为1%-15%,或者,更具体地,为2%-10%。顶部介质层中的锌对锡的原子比可为0.67-1.5,或者,更具体地,为0.9-1.1,比如1。
[0026] 低辐射涂层的示例
[0027] 为了上下文和更好地理解各种特点与阻挡层和银反射层的关系,低辐射涂层的简要说明被提供。技术人员可知道,这些阻挡层和银反射层还可用于其他应用,如发光二极管(LED,light emitting diodes)、反射镜,及其他类似的应用。低发射涂层的一些特征是适用于这些及其他应用。为了本公开的目的,低辐射是表面放射低水平辐射热能的质量。辐射率是基于热辐射比较黑体的材料的值,其比例在0(用于完美的反射)到1(用于黑体)。抛光银表面的辐射率是0.02。反射率与辐射率是相反的。当反射率和辐射率的值夹在一起,其总和等于1。
[0028] 图1是示出根据一些实施例,制品100包括基片102和层104-116的堆栈120的示意图。特别地,堆栈120包括一个反射层110,被形成在基片102上,且被阻挡层112保护。在堆栈120的其他层可包括底部扩散层104、顶部扩散层116、底部介质层106、顶部介质层114,及种子层108。这些组件的每一个将被更详细地说明。技术人员可理解,堆栈可包括较少的层或较多的层,例如,参考以下图2至图3进行说明。
[0029] 基片102可由任意适用材料制作。基片102可以是不透明的、半透明的,或透明的可见光。例如,用于低辐射应用,基片可以是透明的。特别地,透明的玻璃基片可被用于这个和其他应用。为了本公开的目的,“透明”这个用语被定义成基片特性,涉及可见光透射率穿过基片。“半透明”这个用语被定义成通过基板的穿过可见光的性能,且在基板内散发这种能量,从而位于基板一侧的物体,在基板的其他侧面不可看见。“不透明”用语被定义成可见光透射率是0%。用于基板102的适当材料的一些示例包括,但不限于,塑料基板,如丙烯酸酯类聚合物(例如,聚丙烯酸酯、聚甲基丙烯酸高级酯,包括聚甲基丙烯酸甲酯、聚乙基甲基丙烯酸酯、聚丙基甲基丙烯酸酯,等等)、聚氨酯、聚碳酸酯、烷基聚对苯二甲酸乙二醇酯(例如,聚对苯二甲酸乙二醇酯(PET,polyethylene terephthalate)、聚丙烯对苯二酸酯、聚对苯二甲酸丁二醇酯,等等),聚硅氧烷包含聚合物,用于准备这些任何单体的共聚物,或其任何混合物。基片102还可由一个或多个金属制作,如镀锌钢、不锈钢,和铝。基片材料的其他示例包括陶瓷、玻璃,和各种混合物或者上述的任何组合。
[0030] 底部扩散层104和顶部扩散层116可以是堆栈120的两个层,其从环境中保护整个堆栈120,且提高堆栈120的化学和/或机械耐久性。扩散层104和116可由相同或者不同的材料制作,且可具有相同或着不同的厚度。在一些实施例,一个或两个扩散层104和116由氮化硅形成。掺杂物的浓度可能是重量的0-20%。在一些实施例,氮化硅可部分地被氧化。氮化硅扩散层可能是硅富,从而他们的组合物可由下面的表达式表现,SiXNY,其中,X到Y的比在0.8-1.0。一个或两个扩散层104和116的折射率可在2.0-2.5,或更具体地在2.15-2.25。一个或两个扩散层104和116的厚度可在50埃-300埃,或更具体地,在100埃-200埃。
[0031] 除了从环境中保护堆栈120外,底部扩散层104可帮助粘附底部介质层106到基片102。应该理解为,介质层106的沉积和特别是随后的该层的热处理导致介质层106的界面处加热导致的机械应力,且不被任何特定的理论限制。这些应力可导致从其他层和涂层脱落的介质层106的分层。具体的例子是钛氧化层直接地沉积在玻璃基片上。然而,当氮化硅扩散层104被底部介质层106和基片102保护时,在此三层堆栈的粘附力仍然很强,特别是热处理之后,由提高的耐久性证明。
[0032] 通常情况下,堆栈所提供的每个反射层由两个介质层包围,例如,如图1所示的底部介质层106和顶部介质层114。在一些实施例,介质层106和114用来控制发射层110的反射特性,以及堆栈120的整个透明度和颜色,和制品100。介质层106和114可由相同或者不同的材料制作,且可具有相同或者不同的厚度。
[0033] 在一些实施例,介质层可由介质材料制作,其包括铝和锌。例如,介质层,如介质层106和/或介质层114可由锌锡铝氧化物制作。与传统的低辐射板由氧化锡或二元金属氧化物制造不同,此处公开的一些实施例,利用三元金属氧化物表现,当热处理时的较低颜色变化。此外,包括三元金属氧化物,如锌锡铝氧化物的板的透明和反射特性,比那些传统的板更稳定,更详细的细节参考图5、图6、图7。因此,单堆栈配置可用于经过多个生产过程的低辐射板,因为,单材料包括在低辐射板的介质层,可用于涂层板,但是,还可经过不受影响的热处理,如改变颜色或透射率。
[0034] 根据一些实施例,介质层可包括铝,其浓度在1%-15%。更具体地,铝的浓度可在2%-10%。此外,如上所述,包括在介质层的三元氧化物还可包括锌。在顶部介质层中,锌对锡的原子比为0.67-1.5。更具体地,锌对锡的比可为0.9-1.1,比如为1。在一些实施例,介质层,如介质层106和/或介质层114还可包括Li、Be、Na、Mg、K、Ca或Cd,其可增加制品100的一个或多个性能特征。
[0035] 在一些实施例,添加铝到锌和锡增加了产生的层的带隙。因此,介质层,如介质层106和/或介质层114包括锌锡铝氧化物,可具有至少3eV的带隙。在一些实施例,介质层可具有3eV-6eV的带隙。
[0036] 介质层106和114的材料可能是无定形相、结晶相,或者两个或更多的组合相。在一些实施例,介质层可至少一部分是无定形的。此外,介质层包括锌锡铝氧化物,如在此公开可仍然大体上无定形的,甚至将热处理后应用在制品100。为了本公开的目的,材料可能是大体上无定形的材料,如果结晶的通过体积组成小于5%的材料。因此,介质层106和介质层114每个可大体上无定形的。
[0037] 在一些实施例,介质层106和介质层114可具有厚度,基于制品100的一个或多个期望的光和/或性能特性被决定。例如,由锌锡铝氧化物制作的介质层可具有厚度,其足够薄,维持高透射率。在一些实施例,介质层可具有10nm-50nm的厚度。
[0038] 在一些实施例,一个或两个介质层106和114可包括渗染剂,如Al、Ga、In、Mg、Ca、Sr、Sb、Bi、Ti、V、Y、Zr、Nb、Hf,或Ta。介质层106和114每个可包括具有相似折射率的不同介质材料,或具有不同折射率的不同材料。介质薄膜的折射厚度能变化优化热管理性能、美感,和/或制品100的耐久性。
[0039] 在一些实施例,堆栈120包括种子层108。种子层108可由ZnO、SnO2、Sc2O3、Y2O3、TiO2、ZrO2、HfO2、V2O5、Nb2O5、Ta2O5、CrO2、WO3、MoO3各种组合被形成,或者其他金属氧化物。种子层108的材料可在结晶相(例如,通过X-ray衍射决定的大于30%的晶体)。种子层108可作用于上覆层的成核模板,例如,反射层110。在一些实施例,种子层108的厚度为30埃-200埃,如为100埃。
[0040] 堆栈120包括由银形成的反射层110。这层的厚度可在50埃-200埃,或者,更详细地,在100埃
[0041] 如上所述,堆栈120还包括阻挡层112,从氧化作用和其他损伤中保护反射层110。在一些实施例,阻挡层112可由至少镍、钛,和铌的部分氧化合金被形成。阻挡层112可由包括镍、铬、钛、铝的四元合金形成。在此合金的每个金属的浓度被选择为提供适当的透明性和氧来扩散阻挡性能。在一些实施例,在阻挡层的镍和铬的结合浓度为重量的20%-50%,或者,更具体地,为重量的30%-40%。在合金的镍对铬的重量比可为3-5,或者,更详细地,为4。钛对铝的重量比为0.5-2,或者,更详细地,为1。在一些实施例,在阻挡层的镍的浓度为重量的5%-10%,铬的浓度为重量的25%-30%,钛和铝的浓度为每重量的30%-35%。该阻挡层112的组合可通过使用一个或多个溅射目标含有镍、铬、钛和铝被获得,控制这些金属在溅射目标的浓度,且控制应用在灭个溅射目标的功率等级。例如,两个溅射目标可被使用。第一目标可包括镍对铬,然而第二目标可包括钛和铝。在第一目标的镍对铬的重量比可为4,然而在第二目标的钛到铝的重量比可为1。这些重量比可通过使用用于整个目标的相应合金被获得,目标插入由不同材料制作,或者其他功能允许在相同目标的两个或多个材料的组合。两个目标可被显露在不同的功率等级。在上述示例中,第一目标可被显露在第二目标的尽可能多的功率的一半,来获得所需的成分。在惰性气体环境中(例如,氩气环境),阻挡层可被沉积为基本上不含氧(例如,主要为金属)。另外,一些氧化剂(例如,在氩气中氧的容量占15%)可被用于氧化四个金属。在产生的阻挡层的氧的浓度可在重量的0%-5%。
[0042] 在一些实施例,镍、铬、钛和铝都均匀地分布在整个阻挡层,例如,它的整个厚度和覆盖面积。作为一种选择,组建的分配可能是非均匀的。例如,镍和铬比起沿着另一个界面,可更集中在一个界面上。在一些实施例,为了更好地粘附在反射层,与反射层界面附近的阻挡层的一部分包括更多的镍。在一些实施例,除了镍、铬、钛和铝之外,基本没有其他组件在阻挡层112。
[0043] 如上所述,阻挡层112可包括一些金属的合金材料。例如,阻挡层112可能是材料的层,如可配有厚度为1.5nm-5nm的NiTiNb。在一个示例中,阻挡层112具有2.4nm的厚度。阻挡层112可被形成使用沉积技术,如喷溅涂覆法。形成过程期间,少量的氧可被氩气混合,产生具有氧气含量为原子重量的10%-30%的NiTiNb氧化层。在一些实施例,阻挡层112可具有1埃-100埃的厚度,或者,更详细地,在5埃-30埃,且甚至在10埃-20埃。
[0044] 没有被限定在任何特定的理论上,值得相信的是,当阻挡层暴露在氧气(例如,顶部介质的沉积过程)时,阻挡层的一些金属(例如,Cr、Ti,和Al)将容易地被氧化从而消耗氧气,且阻止氧气穿过阻挡层,到达反射层。因此,阻挡层可以被视为一个清除层。
[0045] 顶部扩散层116可相似上述说明的底部扩散层104。在一些实施例,顶部扩散层116(例如,由氮化硅形成)可更化学计算于底部扩散层104,来提供更好地机械耐久性,并提供平滑的表面。底部扩散层104(例如,由氮化硅形成)可以是硅富,为了更好地扩散效果形成密集的薄膜。
[0046] 当银反射层具有80-90埃厚度时,整个堆栈120可具有6欧姆/平方-8欧姆/平方的薄层电阻。堆栈120的薄层电阻可能是2-4欧姆/平方用于100埃-140埃银反射层的厚度。
[0047] 在一些实施例,为了达到特定的性能,堆栈可包括多个反射层。例如,堆栈可包括两个、三个,或更多的反射层。多个反射层可具有相同或者不同的组成和/或厚度。每个新的反射层可具有相应的介质层(例如,形成在两个反射层之间的至少一个层)、种子层,和阻挡层。图1说明了可重复的堆栈120的部分118。堆栈部分包括介质层106(或介质层114)、种子层108、反射层110,和阻挡层112。在一些实施例,部分118可不包括种子层108。
[0048] 图2是示出根据一些实施例,另一个制品200包括基片201和包括两个反射层206和216的堆栈。反射层206和216的每一个是包括其他层的分离堆栈部分的一个部分,例如,反射层206是第一堆栈部分210的一个部分,然而反射层216是第二堆栈部分220的一个部分。
在第一堆栈部分210的其他层包括介质层204、种子层205,和阻挡层207。同样地,除了反射层216,第二堆栈部分220包括介质层214、种子层215,和阻挡层217。应该指出反射层206和
216只由一个介质层214被分离。整个制品200也包括底部扩散层202、顶部介质层224,和顶部扩散层226。正如上述说明的参考图1,反射层,如反射层206可包括银。此外,种子层可包括金属氧化物,如氧化锌、氧化钛,或者氧化锡,如之前所述的参考图1的种子层108。阻挡层可包括至少镍、钛,和铌的部分氧化合金。此外,介质层可包括锌锡铝氧化物。
[0049] 图3说明了另一个制品300包括基片301和三个反射层,每个是分离堆栈部分的一个部分。具体地,制品300包括具有反射层312的第一堆栈部分310、具有反射层322的第二堆栈部分320,和具有反射层332的第三堆栈部分330。制品300的其他层也是底部扩散层302、顶部介质层334,和顶部扩散层336。正如上述说明的参考图1和图2,反射层,如反射层312可包括银。此外,种子层可包括金属氧化物,如氧化锌、氧化钛,或者氧化锡,如之前所述的参考图1的种子层108。阻挡层可包括至少镍、钛,和铌的部分氧化合金。此外,介质层可包括锌锡铝氧化物。
[0050] 示例过程
[0051] 图4是示出根据一些实施例,对应于形成制品的方法400,包括银反射层和阻挡层,用于从氧化中保护此反射层的处理流程。在操作步骤402期间,方法400可开始提供基片。在一些实施例,提供的基片是玻璃基片。基片可包括一个或多个之前所述的层。例如,基片可包括底部扩散层、底部介质层,和种子层。在一些实施例,这些层的多个中的一个,可不存在于基板上。参考上述的图1,说明这些层和基片的各种例子。
[0052] 在操作步骤404期间,方法400可形成反射层在基片上,或者,更具体地,在提供的基板上事先形成一个或多个层。此操作可包括在非反应性环境的溅射银。银层可被沉积在压力位2毫乇的氩气环境中,使用90W功率应用到45cm2的溅射面积,导致2000W/m2的功率密度。目标到基片的间距可以是240毫米。反射层的厚度可为50埃-200埃。
[0053] 在操作步骤406期间,方法400可形成阻挡层在反射层上。如上所述,反射层可由包括一个或多个镍、铬、钛、铌,和铝的合金形成,该合金由在非反应性环境的这些金属的共溅射形成。在一些实施例,阻挡层沉积在相同的处理室,作为反射层不破坏室的真空。总言之,阻挡层沉积之前,反射层需要从氧气被保护。在一些实施例,部分地装配的制品可被保持在形成反射层之后和形成阻挡层之前的无氧环境。
[0054] 在操作步骤408期间,方法400可形成介质层在阻挡层上。这个操作可包括锌、锡,和铝使用物理气相沉积(PVD,physical vapor deposition)工具的溅射。不同的功率和/或距离组合和比例可被用于不同的浓度和介质层的组成。如上所述参考图1,在顶部介质层的铝的浓度可为1%-15%,或者,更具体地,为2%-10%。在顶部介质层的锌对锡的比例可为0.67-1.5,或者,更详细地,为0.9-1.1,如为1。锌、锡,和铝可形成化学计算的氧化物,其中,锌、锡,和铝具有其最高的氧化状态。
[0055] 如上所述,根据一些实施例,相同类型的界面层,和用于形成界面层相同过程,可被用于无论任何类型的制造过程来形成制品,其可以是部分或低辐射板的部分。例如,相同沉积技术和相同界面层可用于低辐射板按照涂层过程被制造,或低辐射板按照热处理过程被制造。
[0056] 如果,另一个反射层需要沉积在基片上,操作步骤404-408可通过决定块410被重复的表示。
[0057] 试验结果
[0058] 图5是示出根据一些实施例,图解一个或多个介质层的结构分析的结果。如图5所示,X-ray衍射(XRD,X-ray diffraction)光谱被用于分析包括在此公开材料的介质层的结构性能,如同,锌锡铝氧化物。XRD光谱分析在热处理的应用程序前和后被执行堆栈,其包括至少一个锌锡铝氧化物介质层。例如,绘图502说明用于没有接受热处理的低辐射窗户的数据,且是涂层(AC,as-coated)。此外,绘图504说明用于承受热处理(HT,heart treatment)的低发射板。如图5所示,在绘图502和绘图504的20-70度中,没有峰值,因此,热处理的应用前和后,表明在介质层包括的材料是无定形的。
[0059] 图6是示出根据一些实施例,图解一个或多个介质层透射性能,包括锌锡铝氧化前和后热处理的应用。如图6所示,实线代表低辐射板性能,包括锌锡铝氧化物涂层(AC)的一个或多个介质层,且没有热处理应用。例如,线602代表低辐射板的透射率、线604代表低辐射板的薄膜侧反射,且线606代表低辐射板涂层(且热处理之前)的玻璃侧反射。虚线代表低辐射板的性能,包括锌锡铝氧化物的一个或多个介质层,其已接受热处理(HT)。例如,线608代表低辐射板的透射率、线610代表低辐射板的薄膜侧反射,且线612代表低辐射板热处理后的玻璃侧反射。如图6所示,实线和虚线之间有些不同,因此,表明热处理的低辐射板的应用,在低辐射板的一个或多个光学特性没有实质性的效果,且低辐射板的可见光的透射率或透光度可改变为小于3%。
[0060] 图7是示出根据一些实施例,记分卡识别介质层的一个或多个光性能的示例。除其他特性之外,此处公开的图7说明了低辐射窗户的颜色性能,包括介质层堆栈。颜色特性用CIE LAB a*,b*坐标和比例被测量和报告。在CIE LAB颜色系统,“L*”值表明颜色的光度,“a*”值表明红色和绿色之间的位置(更负的值表明更深的绿色,且更正的值表明更深的红色),且“b*”值表明黄色和蓝色之间的位置(更负的值表明更深的蓝色,且更正的值表明更深的黄色)。
[0061] 此处公开的在列“B-60-05 AC”和“B-60-05 HT”显示的数据用于涂层堆栈和热处理堆栈,包括由锌锡铝氧化物制作的介质层。从图7可知,在此说明的低辐射堆栈显示85-90%的高可见透射率(TY%)。此外,图7表明a*和b*值用于每个涂层窗户和热处理窗户非常相似,且一旦热处理被应用,在实质上没有变化。因此,涂层板和热处理板的玻璃侧反射和薄膜侧反射的颜色之间,有非常小的不同。图7进一步说明了在此所述的低辐射堆栈如何显示低RgΔE和RfΔE值,在此还涉及到Delta E值,其可能是低辐射窗户的在玻璃侧和薄膜侧颜色特性变化的整个权值,其可基于L*、a*,和b*值变化被计算。低RgΔE和RfΔE值基于计算涂层和热处理的L*、a*,和b*值的比较表明,在此公开的低辐射板在玻璃侧反射和薄膜侧反射相应于热处理的应用的低辐射板低变化,从而使它们适合于任何一个制造过程。
[0062] 结论
[0063] 虽然为了便于理解的目的,在前说明了一些具体的概念,但是,很显然,在附加的权利要求范围内实施一些变化和修改。应该注意的是,有许多实施过程、系统,和设备的可供选择方式。因此,本发明的实施例被认为是说明性的,且不是限制性的。