在包装中使用的聚烯烃膜转让专利

申请号 : CN201480031350.2

文献号 : CN105518066B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : V·A·托波尔卡雷夫R·J·麦克尼尼M·M·姆莱茨瓦B·M·汤普森

申请人 : 金伯利-克拉克环球有限公司

摘要 :

本发明提供了一种聚烯烃包装膜。提供的聚烯烃膜由包含连续相和纳米包含物添加剂的热塑性组合物形成,所述连续相包括聚烯烃基质聚合物。纳米包合添加剂在连续相内分散为离散的纳米级区域。拉伸时,纳米级相区域能够以独特的方式与基质相互作用,以产生纳米孔的网络。

权利要求 :

1.一种包含热塑性组合物的膜,其中所述组合物包含连续相以及以离散区域的形式分散在所述连续相内的聚合物纳米包含物添加剂和聚合物微米包含物添加剂,该连续相包含聚烯烃基质聚合物,其中多孔网络被限定在所述组合物中,所述多孔网络包括多个平均横截面尺寸为800纳米或更小的纳米孔,其中基于所述热塑性组合物的重量,所述聚合物纳米包含物添加剂的量为0.01wt.%至15wt.%,并且基于所述热塑性组合物的重量,所述聚合物微米包含物添加剂的量为1wt.%至20wt.%。

2.根据权利要求1所述的膜,其中,所述纳米孔的平均横截面尺寸为5至700纳米。

3.根据权利要求1所述的膜,其中,所述纳米孔的平均横截面尺寸为10至500纳米。

4.根据权利要求1至3中任一项所述的膜,其中,所述纳米孔的平均轴向尺寸为100至

5000纳米。

5.根据权利要求1至3中任一项所述的膜,其中,所述纳米孔的平均轴向尺寸为50至

2000纳米。

6.根据权利要求1至3中任一项所述的膜,其中,所述纳米孔的平均轴向尺寸为100至

1000纳米。

7.根据权利要求1至3中任一项所述的膜,其中,根据ASTM D1238在2160克的负载以及

230℃下测定时,所述聚烯烃基质聚合物的熔体流动速率为0.5至80克每10分钟。

8.根据权利要求1至3中任一项所述的膜,其中,根据ASTM D1238在2160克的负载以及

230℃下测定时,所述聚烯烃基质聚合物的熔体流动速率为1至40克每10分钟。

9.根据权利要求1至3中任一项所述的膜,其中,根据ASTM D1238在2160克的负载以及

230℃下测定时,所述聚烯烃基质聚合物的熔体流动速率为5至20克每10分钟。

10.根据权利要求1至3中任一项所述的膜,其中,所述聚烯烃基质聚合物是丙烯均聚物,丙烯/α-烯烃共聚物,乙烯/α-烯烃共聚物,或其组合。

11.根据权利要求1至3中任一项所述的膜,其中,所述聚烯烃基质聚合物是全同立构的聚丙烯均聚物或者含有按重量计至少90%丙烯的共聚物。

12.根据权利要求1至3中任一项所述的膜,其中,所述连续相占所述热塑性组合物的

60wt.%至99wt.%。

13.根据权利要求1至3中任一项所述的膜,其中,所述聚合物纳米包含物添加剂在室温下是液体或半固体。

14.根据权利要求1至3中任一项所述的膜,其中,所述聚合物纳米包含物添加剂是具有非极性组分的聚合物。

15.根据权利要求14所述的膜,其中,所述聚合物是微晶聚烯烃蜡。

16.根据权利要求14所述的膜,其中,所述聚合物进一步包含极性组分。

17.根据权利要求16所述的膜,其中,所述聚合物是官能化的聚烯烃。

18.根据权利要求17所述的膜,其中,所述官能化的聚烯烃是聚环氧化物。

19.根据权利要求1至3中任一项所述的膜,其中,根据ASTM D1238在2160克的负载以及熔融温度以上至少40℃的温度下测定时,所述聚合物纳米包含物添加剂的熔体流动速率为

0.1至100克每10分钟。

20.根据权利要求1至3中任一项所述的膜,其中,根据ASTM D1238在2160克的负载以及熔融温度以上至少40℃的温度下测定时,所述聚合物纳米包含物添加剂的熔体流动速率为

0.5至50克每10分钟。

21.根据权利要求1至3中任一项所述的膜,其中,根据ASTM D1238在2160克的负载以及熔融温度以上至少40℃的温度下测定时,所述聚合物纳米包含物添加剂的熔体流动速率为

5至15克每10分钟。

22.根据权利要求1至3中任一项所述的膜,其中,所述聚烯烃基质聚合物的熔体流动速率与所述聚合物纳米包含物添加剂的熔体流动速率的比值为0.2至8。

23.根据权利要求1至3中任一项所述的膜,其中,所述聚烯烃基质聚合物的熔体流动速率与所述聚合物纳米包含物添加剂的熔体流动速率的比值为0.5至6。

24.根据权利要求1至3中任一项所述的膜,其中,所述聚烯烃基质聚合物的熔体流动速率与所述聚合物纳米包含物添加剂的熔体流动速率的比值为1至5。

25.根据权利要求1至3中任一项所述的膜,其中,所述聚合物纳米包含物添加剂是纳米级区域的形式,其中所述纳米级区域的平均横截面尺寸为1纳米至1000纳米。

26.根据权利要求1至3中任一项所述的膜,其中,基于所述连续相的重量,所述聚合物纳米包含物添加剂占所述组合物的0.1wt.%至10wt.%。

27.根据权利要求1至3中任一项所述的膜,其中,所述组合物进一步包括以离散区域的形式分散在所述连续相内的微米包含物添加剂。

28.根据权利要求27所述的膜,其中,所述微米包含物添加剂是聚合物。

29.根据权利要求28所述的膜,其中,所述微米包含物添加剂的聚合物是苯乙烯共聚物,含氟聚合物,聚乙烯醇,聚醋酸乙烯酯,或聚酯。

30.根据权利要求28所述的膜,其中,所述微米包含物添加剂的聚合物是聚乳酸。

31.根据权利要求28所述的膜,其中,所述微米包含物添加剂的聚合物的玻璃化转变温度为0℃或更高。

32.根据权利要求28所述的膜,其中,所述微米包含物添加剂的聚合物的玻璃化转变温度为5℃至100℃。

33.根据权利要求28所述的膜,其中,所述微米包含物添加剂的聚合物的玻璃化转变温度为30℃至80℃。

34.根据权利要求28所述的膜,其中,所述微米包含物添加剂的聚合物的玻璃化转变温度为50℃至75℃。

35.根据权利要求28所述的膜,其中,在2160克的负载以及210℃的温度下测定时,所述微米包含物添加剂的熔体流动速率为5至200克每10分钟。

36.根据权利要求28所述的膜,其中,在2160克的负载以及210℃的温度下测定时,所述微米包含物添加剂的熔体流动速率为20至150克每10分钟。

37.根据权利要求28所述的膜,其中,在2160克的负载以及210℃的温度下测定时,所述微米包含物添加剂的熔体流动速率为40至100克每10分钟。

38.根据权利要求28所述的膜,其中,所述微米包含物添加剂的熔体流动速率与所述聚烯烃基质聚合物的熔体流动速率的比值为0.5至10。

39.根据权利要求28所述的膜,其中,所述微米包含物添加剂的熔体流动速率与所述聚烯烃基质聚合物的熔体流动速率的比值为1至8。

40.根据权利要求28所述的膜,其中,所述微米包含物添加剂的熔体流动速率与所述聚烯烃基质聚合物的熔体流动速率的比值为2至6。

41.根据权利要求27所述的膜,其中,所述聚烯烃基质聚合物的杨氏弹性模量与所述微米包含物添加剂的杨氏弹性模量的比值为1至250。

42.根据权利要求27所述的膜,其中,所述聚烯烃基质聚合物的杨氏弹性模量与所述微米包含物添加剂的杨氏弹性模量的比值为2至100。

43.根据权利要求27所述的膜,其中,所述聚烯烃基质聚合物的杨氏弹性模量与所述微米包含物添加剂的杨氏弹性模量的比值为2至50。

44.根据权利要求27所述的膜,其中,所述微米包含物添加剂是平均轴向尺寸为1微米至400微米的微米级区域的形式。

45.根据权利要求27所述的膜,其中,基于所述连续相的重量,所述微米包含物添加剂占所述组合物的5wt.%至20wt.%。

46.根据权利要求1至3中任一项所述的膜,其中,所述热塑性组合物进一步包括界面改性剂。

47.根据权利要求1至3中任一项所述的膜,其中,所述多孔网络进一步包括微米孔。

48.根据权利要求1至3中任一项所述的膜,其中,所述多孔网络以均匀的方式遍及所述组合物分布。

49.根据权利要求1至3中任一项所述的膜,其中,所述纳米孔以平行的列分布。

50.根据权利要求1至3中任一项所述的膜,其中,所述组合物的总孔体积为每立方厘米

15%至80%。

51.根据权利要求1至3中任一项所述的膜,其中,所述纳米孔占所述组合物的总孔体积的20vol.%或更多。

52.根据权利要求1至3中任一项所述的膜,其中,所述热塑性组合物的密度为0.90g/cm3或更低。

53.根据权利要求1至3中任一项所述的膜,其中,所述热塑性组合物的密度为0.85g/cm3或更低。

54.根据权利要求1至3中任一项所述的膜,其中,所述热塑性组合物的密度为0.80g/cm3或更低。

55.根据权利要求1至3中任一项所述的膜,其中,所述热塑性组合物的密度为0.10g/cm3至0.75g/cm3。

56.根据权利要求1至3中任一项所述的膜,其中,所述热塑性组合物的密度为0.20g/cm3至0.70g/cm3。

57.根据权利要求1至3中任一项所述的膜,其中,所述膜的水蒸气透过率为300g/m2·24小时或更高。

58.根据权利要求1至3中任一项所述的膜,其中,所述膜的水蒸气透过率为500g/m2·24小时或更高。

59.根据权利要求1至3中任一项所述的膜,其中,所述膜的水蒸气透过率为1,000g/m2·

24小时或更高。

60.根据权利要求1至3中任一项所述的膜,其中,所述膜的水蒸气透过率为3,000至15,

000g/m2·24小时。

61.根据权利要求1至3中任一项所述的膜,其中,所述膜是包含芯层和至少一个外层的多层膜,其中所述芯层,所述外层,或两者包含所述热塑性组合物。

62.根据权利要求1至3中任一项所述的膜,其中,所述膜是吹塑膜。

63.根据权利要求1至3中任一项所述的膜,其中,所述膜是流延膜。

64.根据权利要求1至3中任一项所述的膜,其中,基于所述热塑性组合物的重量,所述聚合物纳米包含物添加剂的量为0.05wt.%至10wt.%,并且基于所述热塑性组合物的重量,所述聚合物微米包含物添加剂的量为1wt.%至20wt.%。

说明书 :

在包装中使用的聚烯烃膜

[0001] 相关申请
[0002] 本申请要求申请号为61/833,980(2013年6月12日提交)和61/907,572(2013年11月22日提交)的美国临时申请的优选权,将它们通过引用并入本文。
[0003] 发明背景
[0004] 包装膜通常由聚烯烃材料,例如线性低密度聚乙烯(“LLDPE”)、低密度聚乙烯(“LDPE”)、或高密度聚乙烯(“HDPE”)形成。但是,近年来,石油资源已经变得更加昂贵,并且制造商和消费者同样更加意识到对碳足迹更小的膜的可持续性需求,这就意味着在整个产品生命周期期间的减少的碳排放。尽管已经进行尝试添加各种添加剂,以减少源自石油的烯烃聚合物的含量,但这常常导致膜的某些机械性能(例如延展性或拉伸强度等)的相应降低,这是很不希望的。因此,当前存在对可以具有减少的对基于石油的聚合物的消耗,但仍然还可以显示出优良的性质的包装膜的需求。
[0005] 发明概述
[0006] 根据本发明的一个实施方案,公开一种包含热塑性组合物的膜。该组合物包含连续相以及以离散的区域的形式分散在所述连续相中的纳米包含物添加剂,该连续相包含聚烯烃基质聚合物。多孔网络被限定在组合物中,所述多孔网络包括多个平均横截面尺寸为约800纳米或更小的纳米孔。
[0007] 以下将更详细地讨论本发明的其它特征和方面。

附图说明

[0008] 对本领域技术人员而言,包括最佳方式在内的完整且能够实现的本发明的公开内容在本说明书的剩余部分作了更具体的阐述,并参考了附图,其中:
[0009] 图1是用于形成本发明的膜的方法的一个实施方案的示意图;
[0010] 图2是以14,243X放大倍数拍摄的实施例4的膜的表面的SEM显微照片;以及[0011] 图3是以5,382X放大倍数拍摄的实施例4的膜(在机器方向平面切割)的SEM显微照片。
[0012] 代表性实施方案的详细说明
[0013] 现在详细地参考本发明的各种实施方案,在下文阐明本发明的各种实施方案的一个或多个实施例。各个实施例以解释本发明而非限制本发明的方式提供。实际上,在不脱离本发明的范围或精神的情况下,可以做出各种变型和变化,这对于本领域技术人员来说是显而易见的。例如,作为一种实施方案的部分而举例说明或描述的特征可以用于另一实施方案,从而产生又一实施方案。因此,本发明意在将这样的变型和变化涵盖在所附权利要求及其等同方案的范围内。
[0014] 一般而言,本发明涉及含有热塑性组合物的包装膜。该热塑性组合物包含连续相,所述连续相包括聚烯烃基质聚合物,以及所述热塑性组合物还包含与所述聚烯烃基质聚合物至少部分不相容的纳米内含物添加剂,使得其作为离散的纳米级区域分散在所述连续相内。在拉伸期间,当组合物经受变形和伸长应变时,本发明人已发现这些纳米级区域能够以独特的方式相互作用以产生多孔网络。即,据信伸长应变可以因为由材料的不相容性引起的应力集中而在离散的区域附近引发密集的局部剪切区和/或应力强化区(例如法向应力)。这些剪切和/或应力强化区引起紧邻这些区域的聚烯烃基质中一定的初始剥离。一旦形成初始孔,位于区域之间的基质可以塑性地形变以产生局部变窄(或颈缩)且应变硬化的内部延伸区。这一过程使得穿过组合物主体形成孔,所述孔在延伸方向上生长,从而导致多孔网络的形成,而分子取向导致提高机械强度的应变硬化。
[0015] 通过上述技术,可以在聚烯烃膜中形成独特的多孔网络,使得在给定的单位体积材料内由孔占据的平均体积百分比可以为约15%至约80%每立方厘米,在一些实施方案中为约20%至约70%,以及在一些实施方案中为约30%至约60%每立方厘米材料。以这样的孔体积,组合物可以具有相对低的密度,例如约0.90克每立方厘米(“g/cm3”)或更低,在一些实施方案中为约0.85g/cm3或更低,在一些实施方案中为约0.80g/cm3或更低,在一些实施3 3 3
方案中为约0.10g/cm 至约0.75g/cm ,以及在一些实施方案中为约0.20g/cm 至约0.70g/cm3。在多孔网络中大部分的孔也是“纳米级”尺寸的(“纳米孔”),例如平均横截面尺寸为约
800纳米或更小,在一些实施方案中为约5至约700纳米,以及在一些实施方案中为约10至约
500纳米的那些。术语“横截面尺寸”一般指孔的特征尺寸(例如,宽度或直径),其基本上垂直于其主轴(例如,长度)并且还通常基本上垂直于拉伸期间应力施加的方向。纳米孔的平均轴向尺寸还可以为约100至约5000纳米,在一些实施方案中为约50至约2000纳米,以及在一些实施方案中为约100至约1000纳米。“轴向尺寸”是在主轴(例如,长度)方向上的尺寸,其通常在拉伸方向上。例如,这样的纳米孔可以占聚烯烃膜中的总孔体积的约15vol.%或更多,在一些实施方案中为约20vol.%或更多,在一些实施方案中为约30vol.%至
100vol.%,以及在一些实施方案中为约40vol.%至约90vol.%。
[0016] 除了降低的密度,纳米多孔结构也可以为所得的聚烯烃膜提供各种额外不同的益处。例如,这样的结构可以帮助限制流体流动通过膜并且一般可以是不透流体(例如液态水)的,从而使膜表面隔绝水渗透。就这一点而言,如根据ATTCC 127-2008测定的,聚烯烃膜可以具有约50厘米(“cm”)或更大的相对高的静水压值,在一些实施方案中为约100cm或更大,在一些实施方案中为约150cm或更大,以及在一些实施方案中为约200cm至约1000cm。也可以实现其它有益性质。例如,所得聚烯烃膜一般可以是透水蒸气的。膜对水蒸气的渗透性可以通过其相对高的水蒸气透过率(“WVTR”)来表征,水蒸气透过率是以克每平方米每24小时(g/m2·24小时)的单位测量的、渗透通过膜的水蒸气的速率。例如,如根据ASTM E96/96M-12,程序B或INDA测试程序IST-70.4(01)测定的,聚烯烃膜可以显示出约300g/m2·24小时或更大的WVTR,在一些实施方案中为约500g/m2·24小时或更大,在一些实施方案中为约1,000g/m2·24小时或更大,以及在一些实施方案中为约3,000至约15,000g/m2·24小时。
[0017] 现在将更加详细地描述本发明的各种实施方案。
[0018] I.热塑性组合物
[0019] A.聚烯烃基质
[0020] 聚烯烃通常占热塑性聚合物的60wt.%至约99wt.%,在一些实施方案中为约60wt.%至约98wt.%,以及在一些实施方案中为约80wt.%至约95wt.%。聚烯烃的熔融温度可以为约100℃至约220℃,在一些实施方案中为约120℃至约200℃,以及在一些实施方案中为约140℃至约180℃。可以根据ASTM D-3417使用示差扫描量热法(“DSC”)测定熔融温度。例如,适合的聚乙烯可以包括乙烯聚合物(例如低密度聚乙烯(“LDPE”)、高密度聚乙烯(“HDPE”)、线性低密度聚乙烯(“LLDPE”)等)、丙烯均聚物(例如间同立构、无规立构、全同立构等)、丙烯共聚物等。在一个具体的实施方案中,聚合物是丙烯聚合物,如均聚丙烯或丙烯的共聚物。例如,丙烯聚合物可以由基本上全同立构的聚丙烯均聚物或者含有等于或低于约10wt.%的其它单体,即按重量计至少约90%的丙烯的共聚物形成。这样的均聚物的熔点可以为约140℃至约170℃。
[0021] 当然,其他聚烯烃也可以用在本发明的组合物中。例如,在一个实施方案中,聚烯烃可以是乙烯或丙烯与诸如C3-C20α-烯烃或者C3-C12α-烯烃的另一种α-烯烃的共聚物。适合的α-烯烃的具体实例包括1-丁烯;3-甲基-1-丁烯;3,3-二甲基-1-丁烯;1-戊烯;具有一个或多个甲基、乙基或丙基取代基的1-戊烯;具有一个或多个甲基、乙基或丙基取代基的1-己烯;具有一个或多个甲基、乙基或丙基取代基的1-庚烯;具有一个或多个甲基、乙基或丙基取代基的1-辛烯;具有一个或多个甲基、乙基或丙基取代基的1-壬烯;乙基、甲基或二甲基取代的1-癸烯;1-十二烯;和苯乙烯。特别期望的α-烯烃共聚单体是1-丁烯、1-己烯和1-辛烯。这样的共聚物的乙烯或丙烯含量可以为约60摩尔%至约99摩尔%,在一些实施方案中为约80摩尔%至约98.5摩尔%,以及在一些实施方案中为约87摩尔%至约97.5摩尔%。α-烯烃含量同样地可以为约1摩尔%至约40摩尔%,在一些实施方案中为约1.5摩尔%至约15摩尔%,以及在一些实施方案中为约2.5摩尔%至约13摩尔%。
[0022] 用于在本发明中的示例性烯烃共聚物包括可购自德克萨斯州休斯敦的ExxonMobil Chemical Company的、名称为EXACTTM的基于乙烯的共聚物。其它适合的乙烯共聚物可购自密歇根州米德兰(Midland)的Dow Chemical Company,名称为ENGAGETM、AFFINITYTM、DOWLEXTM(LLDPE)和ATTANETM(ULDPE)。其它适合的乙烯聚合物描述于Ewen等人的第4,937,299号美国专利、Tsutsui等人的第5,218,071号美国专利、Lai等人的第5,272,236号美国专利和Lai等人的第5,278,272号美国专利。适合的丙烯共聚物也可以商购自德克萨斯州休斯敦的ExxonMobil Chemical Co.,名称为VISTAMAXXTM;购自比利时的费鲁(Feluy)的Atofina Chemicals,名称为FINATM(例如,8573);购自三井石化工业(Mitsui Petrochemical Industries),名称为TAFMERTM;以及购自密歇根州米德兰的Dow Chemical Co.的VERSIFYTM。适合的聚丙烯均聚物可以包括Exxon Mobil 3155聚丙烯、Exxon Mobil AchieveTM树脂和Total M3661PP树脂。适合的丙烯聚合物的其它实例描述于Datta等人的第
6,500,563号美国专利、Yang等人的第5,539,056号美国专利和Resconi等人的第5,596,052号美国专利。
[0023] 一般可以利用各种已知技术中的任一种来形成烯烃共聚物。例如,可以采用自由基或者配位催化剂(例如,Ziegler-Natta)形成烯烃聚合物。优选地,烯烃聚合物由诸如金属茂催化剂的单中心配位催化剂来形成。这样的催化剂体系生成乙烯共聚物,在该乙烯共聚物中共聚单体无规分布在分子链中并跨不同的分子量组分均匀分布。金属茂催化的聚烯烃描述在例如McAlpin等人的第5,571,619号美国专利、Davis等人的第5,322,728号美国专利、Obijeski等人的第5,472,775号美国专利、Lai等人的第5,272,236号美国专利和Wheat等人的第6,090,325号美国专利中。金属茂催化剂的实例包括双(正丁基环戊二烯基)二氯化钛、双(正丁基环戊二烯基)二氯化锆、双(环戊二烯基)氯化钪、双(茚基)二氯化锆、双(甲基环戊二烯基)二氯化钛、双(甲基环戊二烯基)二氯化锆、二茂钴、环戊二烯基三氯化钛、二茂铁、二氯二茂铪、异丙基(环戊二烯基-1-芴基)二氯化锆、二氯二茂钼、二茂镍、二氯二茂铌、二茂钌、二氯二茂钛、氢氯二茂锆、二氯二茂锆等。用金属茂催化剂制得的聚合物通常具有窄的分子量范围。例如,金属茂催化的聚合物可以具有4以下的多分散指数(Mw/Mn)、受控的短链支化分布以及受控的全同立构规整度。
[0024] B.纳米包含物添加剂
[0025] 如本文所使用的,术语“纳米包含物添加剂”一般指能够以纳米级尺寸的离散区域的形式被分散在聚合物基质内的材料。例如,在拉伸之前,区域的平均横截面尺寸为约1至约1000纳米,在一些实施方案中为约5至约800纳米,在一些实施方案中为约10至约500纳米,以及在一些实施方案中为约20至约200纳米。区域可以具有各种不同的形状,如椭圆形的、球形的、圆柱形的、盘状的、管状的等等。例如,在一个实施方案中,区域具有基本上椭圆形的形状。基于连续相聚烯烃基质的重量,纳米包含物添加剂使用的量通常为热塑性组合物的约0.05wt.%至约20wt.%,在一些实施方案中为约0.1wt.%至约10wt.%,以及在一些实施方案中为约0.5wt.%至约5wt.%。在整个热塑性组合物中的纳米包含物添加剂的浓度可以同样地为约0.01wt.%至约15wt.%,在一些实施方案中为约0.05wt.%至约10wt.%,以及在一些实施方案中为约0.3wt.%至约6wt.%。
[0026] 纳米包含物添加剂与聚烯烃部分不相容的含义是其可以基本上均匀地,但以离散区域的形式分布在聚烯烃基质内。这样的部分不相容性可以以各种方式实现。在某些实施方案中,例如,纳米包含物添加剂可具有与聚烯烃基质相容且使其均匀分布在聚烯烃基质中的非极性组分(例如,烯烃)。尽管如此,添加剂还可以包括与聚烯烃基质不相容的极性组分,从而使其合并或隔离成离散的区域。这样的组分可以包括低分子量或高分子量的极性分子段或嵌段,离子基团,带电或不带电的极性区域,和/或极性分子基团。供选择地,该添加剂在性质上可以是完全非极性的,但具有仍然允许离散区域形成的某些物理性质。例如,在某些实施方案中,纳米包含物添加剂可以在某个温度以上与聚烯烃相容或溶混,但在低于临界溶解温度的温度下发生相分离。以这种方式,纳米包含物添加剂可以与熔融相中的聚烯烃形成稳定的共混物,但是随着温度降低,连续相结晶并隔离,使得纳米包含物添加剂可以发生相分离,合并,并形成分开的纳米级区域。
[0027] 只要可以形成期望的区域,纳米包含物添加剂的具体状态或形式不是关键的。例如,在一些实施方案中,纳米包含物添加剂在室温(例如,25℃)下可以是液体或者半固体的形式。这样的液体可以容易地分散在基质中以形成亚稳态的分散体,以及然后通过降低共混物的温度来淬火,从而保持区域尺寸。在40℃测定时,这样的液体或半固体材料的运动粘度通常为约0.7至约200厘沲(“cs”),在一些实施方案中为约1至约100cs,以及在一些实施方案中为约1.5至约80cs。合适的液体或半固体可以包括,例如硅氧烷、硅氧烷-聚醚共聚物、脂肪族聚酯、芳香族聚酯、亚烷基二醇(例如乙二醇、二甘醇、三甘醇、四甘醇、丙二醇、聚乙二醇、聚丙二醇、聚丁二醇等),烷二醇(例如1,3-丙二醇、2,2-二甲基-1,3-丙二醇、1,3-丁二醇、1,4-丁二醇、1,5-戊二醇、1,6-己二醇、2,2,4-三甲基-1,6-己二醇、1,3-环己烷二甲醇、1,4-环己烷二甲醇、2,2,4,4-四甲基-1,3-环丁烷二醇等),胺氧化物(例如辛基二甲基胺氧化物)、脂肪酸酯、脂肪酸酰胺(例如油酸酰胺、芥酸酰胺、硬脂酰胺、亚乙基双硬脂酰胺等),矿物油和植物油,等等。一种特别适合的液体或半固体是聚醚多元醇,如商购自BASF公司,商标名为 WI。
[0028] 在又一个实施方案中,纳米包含物添加剂是固体的形式,其可以是无定形的、结晶的或半结晶的。例如,纳米包含物添加剂在性质上可以是聚合的并具有相对高的分子量以帮助改善热塑性组合物的熔体强度和稳定性。如上文指出的,纳米包含物添加剂与聚烯烃基质部分不相容。这样的添加剂的一个实例是微晶聚烯烃蜡,其通常衍生自乙烯和/或C3-C10-烷基(alk)-1-烯,例如衍生自丙烯,1-丁烯、1-戊烯、1-己烯、1-庚烯、1-辛烯、1-壬烯以及1-癸烯。微晶蜡通常具有相对低的熔融温度,例如约30℃至约150℃,在一些实施方案中为约50℃至约140℃,以及在一些实施方案中为约80℃至约130℃。在这样低的熔融温度下,当在熔融相中时,蜡可以与聚烯烃形成混溶共混物,但是随着温度降低以及聚合物结晶或凝固,蜡将隔离并合并形成分开的纳米级区域。
[0029] 聚合物纳米包含物添加剂的另一个实例是含有极性和非极性组分的官能化聚烯烃。例如,极性组分可以由一个或多个官能团提供,而非极性组分可以由烯烃提供。纳米包含物添加剂的烯烃组分一般可以由任意的线性的或支化的α-烯烃单体、衍生自烯烃单体的低聚物或聚合物(包括共聚物)形成,例如以上所描述的。纳米包含物添加剂的官能团可以是向分子提供极性组分并且与聚烯烃基质聚合物不相容的任意基团、分子段和/或嵌段。与聚烯烃不相容的分子段和/或嵌段的实例可以包括丙烯酸酯、苯乙烯、聚酯、聚酰胺等。官能团可以具有离子性质并包括带电金属离子。特别适合的官能团是马来酸酐、马来酸、富马酸、马来酰亚胺、马来酸酰肼、马来酸酐与二元胺的反应产物、甲基纳迪克酸酐、二氯马来酸酐、马来酸酰胺等。马来酸酐改性的聚烯烃特别适合用于本发明。这样的改性的聚烯烃通常是通过将马来酸酐接枝到聚合物主链材料形成的。这样的马来酸化的聚烯烃可获自E.I.du Pont de Nemours and Company,名称为 例如,P系列(化学改性的聚丙烯)、E系列(化学改性的聚乙烯)、C系列(化学改性的乙烯醋酸乙烯酯)、A系列(化学改性的乙烯丙烯酸酯共聚物或三元共聚物)或者N系列(化学改性的乙烯-丙烯、乙烯-丙烯二烯单体(“EPDM”)或者乙烯-辛烯)。供选择地,马来酸化的聚烯烃也可获自Chemtura Corp,名称为可获自Eastman化学品公司,名称为Eastman G系列,以及获自Arkema,名称为[0030] 在某些实施方案中,聚合物纳米包含物添加剂也可以是反应性的。这样的反应性纳米包含物添加剂的一个实例是含有平均每个分子至少两个环氧乙烷环的聚环氧化物。不希望受理论的限制,据信,这样的聚环氧化物分子能够与组合物的某些组分发生反应(例如扩链、侧链支化、接枝、共聚物形成等)以改善熔体强度而不显著降低玻璃化转变温度。反应性添加剂也可以提供聚烯烃与其他更多极性的添加剂例如微米包含物添加剂之间的相容性,并且可以改善分散的均一性以及减小微米包含物添加剂的尺寸。例如,如将在下文更加详细描述的,本发明的某些实施方案可以将聚酯用作微米包含物添加剂。在这样的实施方案中,反应性纳米包含物添加剂可经由聚酯的羧基端基(酯化)或者经由羟基基团(醚化)实现亲核开环反应。可以同样地发生噁唑啉副反应,从而形成酯酰胺部分。经过这样的反应,可以增加聚酯微米包含物添加剂的分子量,以抵消在熔融加工过程中通常观察到的降解。本发明人已发现,过多的反应可以导致聚合物主链之间的交联。如果允许这样的交联进行至很大的程度,那么所得聚合物共混物可变脆并且难以加工成具有所期望的强度和伸长性能的材料。
[0031] 就这一点而言,本发明人已发现,具有相对低的环氧官能度的聚环氧化物可能是特别有效的,其可以用它的“环氧当量”量化。环氧当量反映了含有一分子的环氧基团的树脂的量,并且它可以通过用改性剂的数均分子量除以分子中的环氧基团的数量来计算。本发明的聚环氧化物的数均分子量通常为约7,500至约250,000克每摩尔,在一些实施方案中为约15,000至约150,000克每摩尔,以及在一些实施方案中为约20,000至100,000克每摩尔,而多分散性指数通常为2.5至7。聚环氧化物可含有少于50个,在一些实施方案中为5至45个,以及在一些实施方案中为15至40个环氧基团。进而,环氧当量可以小于约15,000克每摩尔,在一些实施方案中为约200至约10,000克每摩尔,以及在一些实施方案中为约500至约7,000克每摩尔。
[0032] 聚环氧化物可以是线性的或者支化的均聚物或者共聚物(例如,无规的、接枝的、嵌段的等等),其含有末端环氧基、骨架环氧乙烷单元和/或侧环氧基团(pendent epoxy groups)。用来形成这样的聚环氧化物的单体可以变化。在一个具体的实施方案中,例如,聚环氧化物含有至少一个环氧官能的(甲基)丙烯酸的单体组分。如本文中使用的,术语“(甲基)丙烯酸”包括丙烯酸和甲基丙烯酸单体及其盐或酯,例如,丙烯酸酯和甲基丙烯酸酯单体。例如,适合的环氧官能的(甲基)丙烯酸单体可以包括但不限于,含有1,2-环氧基的那些,例如,丙烯酸缩水甘油酯和甲基丙烯酸缩水甘油酯。其它适合的环氧官能的单体包括烯丙基缩水甘油醚、乙基丙烯酸缩水甘油酯(glycidyl ethacrylate)和衣康酸缩水甘油酯(glycidyl itoconate)。
[0033] 聚环氧化物通常具有相对高的分子量,如上文所指出的,使得它不仅可以产生扩链,而且也可以帮助实现所期望的共混物形貌。在2160克的负载下和在190℃的温度下测定时,所得到的该聚合物的熔体流动速率因此通常为约10至约200克每10分钟,在一些实施方案中为约40至约150克每10分钟,以及在一些实施方案中为约60至约120克每10分钟。
[0034] 聚环氧化物通常还包括至少一种线性的或者支化的α-烯烃单体,例如,具有2至20个碳原子以及优选为2至8个碳原子的那些。具体的实例包括乙烯、丙烯、1-丁烯;3-甲基-1-丁烯;3,3-二甲基-1-丁烯;1-戊烯;具有一个或多个甲基、乙基或丙基取代基的1-戊烯;具有一个或多个甲基、乙基或丙基取代基的1-己烯;具有一个或多个甲基、乙基或丙基取代基的1-庚烯;具有一个或多个甲基、乙基或丙基取代基的1-辛烯;具有一个或多个甲基、乙基或丙基取代基的1-壬烯;乙基、甲基或者二甲基取代的1-癸烯;1-十二烯;和苯乙烯。特别期望的α-烯烃共聚单体是乙烯和丙烯。另外的适合单体可以包括非环氧官能的(甲基)丙烯酸单体。这样的(甲基)丙烯酸单体的实例可以包括丙烯酸甲酯、丙烯酸乙酯、丙烯酸正丙酯、丙烯酸异丙酯、丙烯酸正丁酯、丙烯酸仲丁酯、丙烯酸异丁酯、丙烯酸叔丁酯、丙烯酸正戊酯、丙烯酸异戊酯、丙烯酸异冰片酯、丙烯酸正己酯、丙烯酸2-乙基丁酯、丙烯酸2-乙基己酯、丙烯酸正辛酯、丙烯酸正癸酯、丙烯酸甲基环己酯、丙烯酸环戊酯、丙烯酸环己酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸2-羟基乙酯、甲基丙烯酸正丙酯、甲基丙烯酸正丁酯、甲基丙烯酸异丙酯、甲基丙烯酸异丁酯、甲基丙烯酸正戊酯、甲基丙烯酸正己酯、甲基丙烯酸异戊酯、甲基丙烯酸仲丁酯、甲基丙烯酸叔丁酯、甲基丙烯酸2-乙基丁酯、甲基丙烯酸甲基环己酯、甲基丙烯酸肉桂酯、甲基丙烯酸巴豆酯、甲基丙烯酸环己酯、甲基丙烯酸环戊酯、甲基丙烯酸2-乙氧基乙酯、甲基丙烯酸异冰片酯等,及它们的组合。
[0035] 在本发明的一个特别期望的实施方案中,聚环氧化物是由环氧官能的(甲基)丙烯酸的单体组分、α-烯烃单体组分和非环氧官能的(甲基)丙烯酸单体组分形成的三元共聚物。例如,聚环氧化物可以是乙烯-丙烯酸甲酯-甲基丙烯酸缩水甘油酯共聚物,其具有以下结构:
[0036]
[0037] 其中,x、y和z为1或更大。
[0038] 可以使用各种已知技术使环氧官能的单体形成聚合物。例如,可以将含有极性官能团的单体接枝至聚合物主链上,从而形成接枝共聚物。这样的接枝技术是本领域中公知的,并且描述在,例如,第5,179,164号美国专利中。在其它实施方案中,可以采用已知的自由基聚合技术,例如,高压反应、Ziegler-Natta催化剂反应体系、单中心催化剂(例如金属茂)反应体系等将含有环氧官能团的单体与单体共聚,从而形成嵌段或无规共聚物。
[0039] 可以选择单体组分(或多种单体组分)的相对配比以实现在环氧反应性和熔体流动速率之间的平衡。更具体地,高的环氧单体含量可以导致好的反应性,但是含量太高可以使熔体流动速率降低至使得聚环氧化物不利地影响聚合物共混物的熔体强度的程度。因此,在大多数实施方案中,环氧官能的(甲基)丙烯酸单体(或多种环氧官能的(甲基)丙烯酸单体)占共聚物的约1wt.%至约25wt.%,在一些实施方案中为约2wt.%至约20wt.%,以及在一些实施方案中为约4wt.%至约15wt.%。α-烯烃单体(或多种α-烯烃单体)可以同样地占共聚物的约55wt.%至约95wt.%,在一些实施方案中占约60wt.%至约90wt.%,以及在一些实施方案中占约65wt.%至约85wt.%。使用时,其它单体组分(例如,非环氧官能的(甲基)丙烯酸单体)可以占共聚物的约5wt.%至约35wt.%,在一些实施方案中占约8wt.%至约30wt.%,以及在一些实施方案中占约10wt.%至约25wt.%。可以在本发明中使用的适合的聚环氧化物的一个具体实例可商购自Arkema,名称为 AX8950或AX8900。例如, AX8950具有70至100g/10min的熔体流动速率并具有7wt.%至11wt.%的甲基丙烯酸缩水甘油酯单体含量、13wt.%至17wt.%的丙烯酸甲酯单体含量和72wt.%至
80wt.%的乙烯单体含量。另一种适合的聚环氧化物可商购自DuPont,名称为PTW,是乙烯、丙烯酸丁酯和甲基丙烯酸缩水甘油酯的三元共聚物并且具有12g/10min的熔体流动速率。
[0040] 除了控制用于形成聚环氧化物的单体的类型和相对含量以外,也可以控制总的重量百分率以实现所期望的益处。例如,如果改性水平太低,则可能不能实现所期望的熔体强度和机械性能的提高。然而,本发明人也已发现,如果改性水平太高,加工可能受到限制,这是由于强的分子相互作用(例如,交联)和由环氧官能团形成的物理网络。因此,基于组合物中使用的聚烯烃的重量,所使用的聚环氧化物的量通常为约0.05wt.%至约10wt.%,在一些实施方案中为约0.1wt.%至约8wt.%,在一些实施方案中为约0.5wt.%至约5wt.%,以及在一些实施方案中为约1wt.%至约3wt.%。基于组合物总重量,聚环氧化物也可以占约0.05wt.%至约10wt.%,在一些实施方案中占约0.05wt.%至约8wt.%,在一些实施方案中占约0.1wt.%至约5wt.%,以及在一些实施方案中占约0.5wt.%至约3wt.%。
[0041] 在本发明中也可以使用其它反应性纳米包含物添加剂,如噁唑啉官能化的聚合物、氰化物官能化的聚合物等。使用时,这样的反应性的纳米包含物添加剂可以在以上针对聚环氧化物说明的浓度内使用。在一个具体的实施方案中,可以使用噁唑啉接枝的聚烯烃,即,接枝有含噁唑啉环的单体的聚烯烃。噁唑啉可以包括2-噁唑啉,例如2-乙烯基-2-噁唑啉(例如2-异丙烯基-2-噁唑啉)、2-脂肪烷基-2-噁唑啉(例如可得自油酸、亚油酸、棕榈油酸(palmitoleic acid)、鳕油酸(gadoleic acid)、芥酸和/或花生四烯酸的乙醇酰胺)以及它们的组合。在另一个实施方案中,例如,噁唑啉可以选自蓖麻醇噁唑啉马来酸酯(ricinoloxazoline maleinate)、十一烷基-2-噁唑啉、大豆-2-噁唑啉、蓖麻-2-噁唑啉以及它们的组合。在又一实施方案中,噁唑啉选自2-异丙烯基-2-噁唑啉、2-异丙烯基-4,4-二甲基-2-噁唑啉以及其组合。
[0042] 在本发明的某些实施方案中,多种纳米包含物添加剂可以组合使用。例如,第一纳米包含物添加剂(例如,聚环氧乙烷)可以以平均横截面尺寸为约50至约500纳米,在一些实施方案中为约60至约400纳米,以及在一些实施方案中为约80至约300纳米的区域的形式分散。第二纳米包含物添加剂还可以以小于第一纳米包含物添加剂的区域的形式分散,如平均横截面尺寸为约1至约50纳米,在一些实施方案中为约2至约45纳米,以及在一些实施方案中为约5至约40纳米的那些。使用时,基于连续相(基质聚合物(多种基质聚合物))的重量,第一和/或第二纳米包含物添加剂通常占热塑性组合物约0.05wt.%至约20wt.%,在一些实施方案中占约0.1wt.%至约10wt.%,以及在一些实施方案中占约0.5wt.%至约5wt.%。在整个热塑性组合物中的第一和/或第二纳米包含物添加剂的浓度可以同样地为热塑性组合物的约0.01wt.%至约15wt.%,在一些实施方案中为约0.05wt.%至约
10wt.%,以及在一些实施方案中为约0.1wt.%至约8wt.%。
[0043] 纳米填料可以任选地用于第二纳米包含物添加剂,其实例可以包括炭黑、碳纳米管、碳纳米纤维、纳米粘土、金属纳米颗粒、纳米二氧化硅、纳米氧化铝等。纳米粘土是特别适合的。术语“纳米粘土”一般是指粘土材料(天然存在的矿物、有机改性的矿物或合成的纳米材料)的纳米颗粒,其通常具有薄板结构。纳米粘土的实例包括例如蒙脱土(2:1分层的蒙脱石粘土结构)、膨润土(主要由蒙脱土形成的页硅酸铝)、高岭石(具有板状结构和经验式Al2Si2O5(OH)4的1:1铝硅酸盐)、埃洛石(具有管状结构和经验式Al2Si2O5(OH)4的1:1铝硅酸盐)等。适合的纳米粘土的实例为 是蒙脱土粘土并且可商购自Southern Clay Products,Inc。合成的纳米粘土的其它实例包括但不限于混合的金属氢氧化物纳米粘土、分层双氢氧化物纳米粘土(例如,海泡石)、锂皂石、水辉石、皂石、indonite等。
[0044] 如果期望,纳米粘土可以包含表面处理以帮助改善与基质聚合物(例如,聚酯)的相容性。所述表面处理可以是有机的或无机的。在一个实施方案中,采用通过有机阳离子与粘土反应得到的有机表面处理。适合的有机阳离子可以包括但不限于,例如,能够与粘土交换阳离子的有机季铵化合物,例如,二甲基双[氢化牛脂基]氯化铵(2M2HT)、甲基苯甲基双[氢化牛脂基]氯化铵(MB2HT)、甲基三[氢化牛脂基烷基]氯化物(methyl  tris[hydrogenated tallow alkyl]chloride)(M3HT)等。可商购的有机纳米粘土的实例可以包括,例如, 43B(意大利的Livorno的Laviosa Chimica),其为用二甲基苯甲基氢化牛脂基铵盐改性的蒙脱土粘土。其它的实例包括 25A和 0B(Southern Clay Products)和Nanofil 919 如果期望,纳米填料可以与载体树脂共混
以形成提高该添加剂与组合物中其它聚合物的相容性的母粒。特别适合的载体树脂包括,例如,如以上详细描述的,聚酯(例如,聚乳酸、聚对苯二甲酸乙二醇酯等)、聚烯烃(例如,乙烯聚合物、丙烯聚合物等)等等。
[0045] 无论使用何种材料,通常选择具有一定粘度(或熔体流动速率)的纳米包含物添加剂,以确保离散区域以及所得孔可以被充分地保持。例如,如果纳米包含物添加剂的粘度太低(或者熔体流动速率太高),则其趋向于不可控地通过连续相流动和分散。这样会产生难以保持且还可能过早地断裂的层状,盘状的区域或共连续相结构。相反地,如果粘度过高(或熔体流动速率过低),则其倾向于聚集在一起并形成非常大的椭圆形区域,该椭圆形区域在共混期间是难以分散的。这可能导致纳米包含物添加剂在整个连续相中的不均匀分布。例如,聚烯烃熔体流动速率与聚合物纳米包含物添加剂熔体流动速率的比值,例如,可以为约0.2至约8,在一些实施方案中为约0.5至约6,以及在一些实施方案中为约1至约5。根据ASTM D1238在2160克的负载和在熔融温度(例如在190℃)以上至少40℃的温度下测定时,纳米包含物添加剂可以,例如,具有(以干基计)约0.1至约100克每10分钟的熔体流动速率,在一些实施方案中为约0.5至约50克每10分钟,以及在一些实施方案中为约5至约15克每10分钟。根据ASTM D1238在2160克的负载以及在熔融温度(例如在230℃)以上至少40℃的温度下测定时,聚烯烃的熔体流动速率(以干基计)可以同样地为约0.5至约80克每10分钟,在一些实施方案中为约1至约40克每10分钟,以及在一些实施方案中为约5至约20克每10分钟。
[0046] C.微米包含物添加剂
[0047] 虽然不要求,本发明的组合物还可以使用微米包含物添加剂。如本文所使用的,术语“微米包含物添加剂”一般指能够以微米级尺寸的离散区域的形式分散在聚合物基质内的任何材料。例如,在拉伸前,区域的平均横截面尺寸可以为约0.1μm至约25μm,在一些实施方案中为约0.5μm至约20μm,以及在一些实施方案中为约1μm至约10μm。本发明人已经发现,使用时,微米级和纳米级区域在经受形变和伸长变应(例如拉伸)时能够以独特的方式相互作用以产生孔的网络。即,据信由于材料的不相容性引起的应力集中,伸长应变可以在微米级的离散区域附近引发加强的局部剪切区和/或应力强化区(例如,法向应力)。这些剪切和/或应力强化区引起紧邻微米级区域的聚烯烃基质的某些初始剥离。但是,值得注意地,在纳米级离散区域附近产生的局部剪切和/或应力强化区可以与微米级区重叠,以引起在聚合物基质内更进一步的剥离,从而产生紧邻纳米级区域和/或微米级区域的可观数量的纳米孔。
[0048] 微米包含物添加剂的具体性质不是关键的,并且可以包括液体,半固体或固体(例如,无定形的、结晶的或半结晶的)。在某些实施方案中,微米包含物添加剂在性质上是聚合的并具有相对高的分子量以帮助改善热塑性组合物的熔体强度和稳定性。通常地,微米包含物添加剂聚合物可以与基质聚合物一般不相容。以这种方式,添加剂可以在基质聚合物的连续相中更好地分散成离散区域。离散区域能够吸收由外力产生的能量,这样提高了所得材料的总韧性和强度。所述区域可以具有各种不同的形状,如椭圆形的、球形的、圆柱形的、盘状的、管状的,等等。例如,在一个实施方案中,区域具有基本上椭圆形的形状。单个区域的物理尺寸通常小到足以使当施加外部应力时穿过聚合物材料的裂纹传播最小化,但大到足以引发微观的塑性变形并且获得在颗粒包合物处和周围的剪切区。
[0049] 微米包合添加剂可具有一定的熔体流动速率(或粘度)以确保离散区域以及产生的孔能够被充分地保持。例如,如果添加剂的熔体流动速率过高,则其倾向于不可控制地通过连续相流动和分散。这产生难以保持并且还可能过早地断裂的层状或盘状的区域或共同连续相。相反地,如果添加剂的熔体流动速率过低,则其倾向于聚集在一起并形成非常大的椭圆形区域,该椭圆形区域在共混期间是难以分散的。这可能导致添加剂在整个连续相中的不均匀分布。就这一点而言,本发明人已经发现,微米包含物添加剂的熔体流动速率与基质聚合物的熔体流动速率的比值通常为约0.5至约10,在一些实施方案中为约1至约8,以及在一些实施方案中为约2至约6。在2160克的负载以及在其熔融温度(例如210℃)以上至少40℃的温度下测定时,微米包含物添加剂的熔体流动速率可以为,例如,约5至约200克每10分钟,在一些实施方案中为约20至约150克每10分钟,以及在一些实施方案中为约40至约
100克每10分钟。
[0050] 除了以上所说明的性能之外,也可选择纳米包含物添加剂的机械特性以实现所期望的多孔网络。例如,采用外力,由于添加剂和基质聚合物的弹性模量的差异引起的应力集中,可以在离散区域处及周围引发应力集中(例如,包括法向应力或剪切应力)以及剪切和/或塑性屈服区。较大的应力集中促进了在区域处的更集中的局部塑性流动,这使它们在给予应力时被显著地伸长。这些伸长的区域可以使组合物显示出更加柔韧和柔软的行为。为了增强应力集中,选择具有与聚烯烃基质相比相对高的杨氏弹性模量的微米包含物添加剂。例如,添加剂与聚烯烃基质的弹性模量的比值通常为约1至约250,在一些实施方案中为约2至约100,以及在一些实施方案中为约2至约50。例如,微米包含物添加剂的弹性模量的范围可以为约200至约3,500兆帕(MPa),在一些实施方案中为约300至约2,000MPa,以及在一些实施方案中为约400至约1,500MPa。相反地,例如,聚烯烃的弹性模量的范围可以为约100至约1,500MPa,以及在一些实施方案中为约200至约1000MPa。供选择地,微米包含物添加剂的弹性模量可以低于聚烯烃基质的弹性模量。例如,弹性模量的范围可以为约10MPa至约100MPa,以及任选为约20MPA至约80MPa。
[0051] 虽然可以采用具有以上所示性质的多种微米包含物添加剂,但是这样的添加剂的特别适合的实例可以包括苯乙烯共聚物(例如,苯乙烯-丁二烯-苯乙烯、苯乙烯-异戊二烯-苯乙烯、苯乙烯-乙烯-丙烯-苯乙烯、苯乙烯-乙烯-丁二烯-苯乙烯等);含氟聚合物,如聚氯乙烯(PVC)、聚四氟乙烯(PTFE)、聚三氟氯乙烯(PCTFE)等;聚乙烯醇;聚醋酸乙烯酯;聚酯,例如,脂肪族聚酯,如聚己内酯、聚酯酰胺、聚乳酸(PLA)及其共聚物、聚乙醇酸、聚碳酸亚烷基酯(例如,聚碳酸亚乙酯)、聚-3-羟基丁酸酯(PHB)、聚-3-羟基戊酸酯(PHV)、3-羟基丁酸酯与4-羟基丁酸酯的共聚物、3-羟基丁酸酯与-3-羟基戊酸酯的共聚物(PHBV)、3-羟基丁酸酯与3-羟基己酸酯的共聚物、3-羟基丁酸酯与3-羟基辛酸酯的共聚物、3-羟基丁酸酯与3-羟基癸酸酯的共聚物、3-羟基丁酸酯与3-羟基十八烷酸酯共聚物和基于丁二酸酯的脂肪族聚合物(例如,聚丁二酸丁二醇酯、聚丁二酸己二酸丁二醇酯、聚丁二酸乙二醇酯等),脂肪族-芳香族共聚酯(例如,聚己二酸对苯二甲酸丁二醇酯、聚己二酸对苯二甲酸乙二醇酯、聚己二酸间苯二甲酸乙二醇酯、聚己二酸间苯二甲酸丁二醇酯等);芳香族聚酯(例如,聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯等),等等。
[0052] 特别适合的是性质上一般为刚性的直至它们具有相对高的玻璃化转变温度的程度的微米包含物添加剂。例如,玻璃化转变温度(“Tg”)可以为约0℃或更高,在一些实施方案中为约5℃至约100℃,在一些实施方案中为约30℃至约80℃,以及在一些实施方案中为约50℃至约75℃。可以根据ASTM E1640-09通过动态力学分析测定玻璃化转变温度。
[0053] 一种特别适合的刚性聚酯为聚乳酸,聚乳酸通常可以衍生自乳酸的任何异构体的单体单元,如左旋乳酸(“L-乳酸”)、右旋乳酸(“D-乳酸”)、内消旋乳酸或其混合物。单体单元也可以由乳酸的任何异构体的酸酐形成,包括L-丙交酯、D-丙交酯、内消旋丙交酯或其混合物。也可以使用这样的乳酸和/或丙交酯的环状二聚体。可以使用任何已知的聚合方法如缩聚或开环聚合来聚合乳酸。也可以使用少量的扩链剂(如,二异氰酸酯化合物、环氧化合物或酸酐)。聚乳酸可以为均聚物或者共聚物,例如,含有衍生自L-乳酸的单体单元和衍生自D-乳酸的单体单元的均聚物或者共聚物。虽然不要求,但是衍生自L-乳酸的单体单元和衍生自D-乳酸的单体单元之一的含量比率优选为约85摩尔%或更高,在一些实施方案中为约90摩尔%或更高,以及在一些实施方案中为约95摩尔%或更高。可以将多种聚乳酸以任意百分比混合,每种聚乳酸具有不同的衍生自L-乳酸的单体单元与衍生自D-乳酸的单体单元的比例。当然,也可以将聚乳酸与其它种类的聚合物(如聚烯烃、聚酯等)共混。
[0054] 在一个具体实施方案中,聚乳酸具有以下的通式结构:
[0055]
[0056] 可以用于本发明的适合的聚乳酸聚合物的一个具体实例可以商购自Krailling的Biomer,Inc.(德国),名称为BIOMERTM L9000。其它适合的聚乳酸聚合物可商购自明尼苏达州明尼阿波里斯市的Natureworks LLC 或三井化学(LACEATM)。还有其它适合的聚乳酸可以描述在第4,797,468号、第5,470,944号、第5,770,682号、第5,
821,327号、第5,880,254号和第6,326,458号美国专利中,为了所有目的通过引用于此将它们全部并入本文。
[0057] 聚乳酸的数均分子量(“Mn”)通常为约40,000至约180,000克每摩尔,在一些实施方案中为约50,000至约160,000克每摩尔,以及在一些实施方案中为约80,000至约120,000克每摩尔。同样地,聚合物的重均分子量(“Mw”)也通常为约80,000至约250,000克每摩尔,在一些实施方案中为约100,000至约200,000克每摩尔,以及在一些实施方案中为约110,000至约160,000克每摩尔。重均分子量与数均分子量的比值(“Mw/Mn”),即“多分散指数”也相对低。例如,多分散指数通常为约1.0至约3.0,在一些实施方案中为约1.1至约2.0,以及在一些实施方案中为约1.2至约1.8。可以通过本领域技术人员已知的方法来测定重均分子量和数均分子量。
[0058] 一些类型的净聚酯(例如,聚乳酸)可以从周围环境中吸收水,使得它具有基于起始聚乳酸干重的约百万分之500至600(“ppm”),或甚至更高的含水量。可以以本领域已知的各种方式测定含水量,例如,如以下所描述的,根据ASTM D 7191-05。由于在熔融加工过程中水的存在可以水解降解聚酯并降低其分子量,有时期望在共混前将聚酯干燥。例如,在大多数实施方案中,期望的是,在与微米包含物添加剂共混之前,可再生聚酯具有约百万分之300(“ppm”)或更低的含水量,在一些实施方案中为约200ppm或更低,在一些实施方案中为约1至约100ppm。例如,聚酯的干燥可以在约50℃至约100℃,以及在一些实施方案中为约70℃至约80℃的温度下进行。
[0059] 无论使用的材料如何,选择热塑性组合物中的微米包含物添加剂相对百分比以获得期望的性质,而不显著影响所得组合物。例如,基于组合物中所使用的聚烯烃基质的重量,所使用的微米包含物添加剂的量通常为热塑性组合物的约1wt.%至约30wt.%,在一些实施方案中为约2wt.%至约25wt.%,以及在一些实施方案中为约5wt.%至约20wt.%。在整个热塑性组合物中的微米包含物添加剂的浓度可以同样地占约0.1wt.%至约30wt.%,在一些实施方案中占约0.5wt.%至约25wt.%,以及在一些实施方案中占约1wt.%至约20wt.%。
[0060] D.其它组分
[0061] 出于各种不同理由,可以在组合物中采用多种成分。例如,在一个具体实施方案中,可以在热塑性组合物中采用界面改性剂来帮助降低纳米包含物添加剂和/或微米包含物添加剂与聚烯烃基质之间的摩擦和连通的程度,以及由此提高剥离的程度和均一性。以这种方式,孔可以以更均匀的方式遍及组合物分布。改性剂在室温下(例如,25℃)可以是液体或半固体的形式,使得它具有相对低的粘度,允许它更易于被纳入热塑性组合物并更容易地迁移到聚合物表面。通过降低聚烯烃基质和添加剂之间的界面处的物理力,据信,改性剂的低粘度、疏水的性质可以帮助促进剥离。如本文中所使用的,术语“疏水的”通常是指材料具有约40°或者更高的水在空气中的接触角,以及在一些情况下约60°或者更高。与此相反,术语“亲水的”通常是指材料具有小于约40°的水在空气中的接触角。一种用于测量接触角的适合的测试为ASTM D5725-99(2008)。
[0062] 虽然不要求,在使用微米包含物添加剂且纳米包含物添加剂为固体(例如聚合物材料)的实施方案中,界面改性剂是特别适合的。适合的疏水的、低粘度的界面改性剂可以包括,例如如上所述的液体和/或半固体。一种特别适合的界面改性剂是聚醚多元醇,例如,可商购自BASF Corp,商品名称为 WI。另一种适合的改性剂是部分可再生的酯,例如,可商购自Hallstar,商品名称为 IM。
[0063] 使用时,基于连续相聚烯烃基质的重量,界面改性剂可以占热塑性组合物的约0.1wt.%至约20wt.%,在一些实施方案中占约0.5wt.%至约15wt.%,以及在一些实施方案中占约1wt.%至约10wt.%。界面改性剂在整个热塑性组合物中的浓度可以同样地占约
0.05wt.%至约20wt.%,在一些实施方案中占约0.1wt.%至约15wt.%,以及在一些实施方案中占约0.5wt.%至约10wt.%。在以上所述的量时,界面改性剂具有这样的特性,即:使其能够容易地迁移到聚合物的界面表面并促进剥离而不破坏热塑性组合物的总的熔体性能。
例如,热塑性组合物的熔体流动速率也可以与聚烯烃基质的熔体流动速率类似。例如,根据ASTM D1238,在2160克的负载以及190℃下测定时,组合物(以干基计)的熔体流动速率可以为约0.1至约250克每10分钟,在一些实施方案中为约0.5至约200克每10分钟,以及在一些实施方案中约5至约150克每10分钟。
[0064] 也可以使用增容剂,增容剂改善界面粘附并降低区域和基质之间的界面张力,由此在混合过程中实现更小的区域的形成。适合的增容剂的实例可以包括,例如,使用环氧或马来酸酐化学部分官能化的共聚物。马来酸酐增容剂的实例为马来酸酐接枝的聚丙烯,其可商购自Arkema,商品名为OrevacTM 18750和OrevacTM CA 100。使用时,基于连续相聚烯烃基质的重量,增容剂可以占热塑性组合物的约0.05wt.%至约10wt.%,在一些实施方案中为约0.1wt.%至约8wt.%,以及在一些实施方案中为约0.5wt.%至约5wt.%。
[0065] 在热塑性组合物中也可以使用其它的适合的材料,例如,催化剂、抗氧化剂、稳定剂、表面活性剂、蜡、固体溶剂、成核剂、颗粒、纳米粘土,以及为提高热塑性组合物的加工性和机械性质而添加的其他材料。然而,本发明的一个有益方面在于可以提供好的性质,而不需要各种常规的添加剂,例如,发泡剂(例如,氯氟烃、氢氟氯烃、烃、二氧化碳、超临界二氧化碳、氮等)和引发孔的无机氧化物填料(例如,碳酸钙)。实际上,热塑性组合物一般可以不含通常需要形成微孔膜的发泡剂和/或引发孔的无机氧化物填料。这样可以提供多种益处,包括潜在的成本和生产复杂性的降低。实际上,热塑性组合物和/或膜的一层或多层(例如,基层)一般可以不含这样的发泡剂和/或填料(例如,碳酸钙),其可以以不多于约1wt.%,在一些实施方案中为不多于约0.5wt.%,以及在一些实施方案中为约0.001wt.%至约0.2wt.%的热塑性组合物的量而存在。尽管如此,在某些实施方案中,如果这样期望,在热塑性组合物中可以使用更高量的发泡剂和/或填料。进一步地,由于其应力致白性质,如以下更详细描述的,所得组合物可以实现不透明颜色(例如,白色),而不需要常规的颜料如二氧化钛。例如,在某些实施方案中,颜料可以以不多于约1wt.%,在一些实施方案中不多于约0.5wt.%,以及在一些实施方案中为约0.001wt.%至约0.2wt.%的热塑性组合物的量存在。
[0066] II.共混
[0067] 为了形成热塑性组合物,可以通常采用各种已知技术中的任一种将组分一起共混。在一个实施方案中,例如,组分可以分别或者组合地供应。例如,可以将组分首先一起干混以形成基本上均匀的干混合物,以及同样地它们可以同时地或者依次地供应至熔融加工装置,所述熔融加工装置将材料分散地共混。可以使用分批和/或连续的熔融加工技术。例如,可以利用混合器/捏合机、密炼机(Banbury mixer)、Farrel连续混合器、单螺杆挤出机、双螺杆挤出机、辊碎机(roll mill)等来共混和熔融加工材料。特别适合的熔融加工装置可以是同向双螺杆挤出机(例如,可购自新泽西州拉姆齐(Ramsey)的Werner&Pfleiderer公司的ZSK-30挤出机或者可购自英格兰Stone的Thermo Electron公司的Thermo PrismTM USALAB 16挤出机)。这样的挤出机可以包括进料口和排气口并且提供高强度的分布和分散混合。例如,可以将组分供入双螺杆挤出机的相同或不同的进料口并且熔融共混以形成基本上均匀的熔融混合物。如果期望,也可以将其它添加剂注入聚合物熔体和/或分别地在沿着挤出机长度的不同位点来供入挤出机。
[0068] 不管所选择的具体加工技术如何,所得熔融共混的组合物通常包含纳米包含物添加剂的纳米级区域以及任选的微米包含物添加剂的微米级区域。可以控制剪切/压力和加热的程度以确保充分分散,但是不至于高到不利地降低区域的尺寸,使得它们不能实现所期望的性质。例如,共混通常发生在约180℃至约300℃的温度下,在一些实施方案中为约185℃至约250℃,以及在一些实施方案中为约190℃至约240℃。同样地,在熔融加工过程中的表观剪切速率的范围可以为约10秒-1至约3000秒-1,在一些实施方案中为约50秒-1至约-1 -1 -1
2000秒 ,以及在一些实施方案中为约100秒 至约1200秒 。表观剪切速率可以等于4Q/πR3,其中Q为聚合物熔体的体积流动速率(“m3/s”),R为熔融聚合物流过的毛细管(例如,挤出机模具)的半径(“m”)。当然,也可以控制其它变量,例如,与通过速率成反比的在熔融加工过程中的停留时间,从而实现所期望的均匀度。
[0069] 为了实现所期望的剪切条件(例如,速率、停留时间、剪切速率、熔融加工温度等),可以在某一范围内选择挤出机螺杆(或多个挤出机螺杆)的速度。一般而言,由于输入体系中的额外的机械能量,随着螺杆速度的增加,观察到了产品温度的升高。例如,螺杆速度范围可以为约50至约600转每分钟(“rpm”),在一些实施方案中为约70至约500rpm,以及在一些实施方案中为约100至约300rpm。其可能导致这样的温度,该温度足够高以分散纳米包含物添加剂,而不会不利地影响产生的区域的尺寸。也可以通过在挤出机的混合段内使用一种或多种分布和/或分散混合元件提高熔体剪切速率以及进而提高添加剂分散的程度。用于单螺杆挤出机的适合的分布混合器可以包括,例如,Saxon、Dulmage、Cavity Transfer混合器等。同样地,适合的分散混合器可以包括Blister环、Leroy/Maddock、CRD混合器等。如本领域中所熟知的,可以通过使用使聚合物熔体产生折叠或再取向的桶中的销(pin)来进一步改善混合,例如,在Buss  Kneader挤出机、Cavity Transfer混合器和Vortex Intermeshing Pin(VIP)混合器中使用的那些。
[0070] III.膜构建
[0071] 可以使用任何已知的技术由所述组合物形成膜,包括吹塑、流延、平模挤出等。在一个具体的实施方案中,膜可以通过吹塑法来形成,在吹塑法中,气体(例如空气)用于使通过环形模挤出的聚合物物共混物的气泡膨胀。然后,气泡破裂并以平膜的形式收集。用于生产吹塑膜的方法描述在,例如,第Raley的3,354,506号、Schippers的第3,650,649号和Schrenk等人的第3,801,429的美国专利,以及McCormack等人的第2005/0245162号和Boggs等人的第2003/0068951号美国公开专利申请中。但是,在又一个实施方案中,膜采用流延技术形成。
[0072] 例如,参照图1,示出用于形成流延膜的方法的一个实施方案。在该实施方案中,将原料(未示出)从进料斗40供入挤出机80,然后浇铸到铸辊90上以形成单层前体膜10a。如果要生产多层膜,则多层膜被共挤出到铸辊90上。铸辊90可以任选地具有压花元件,以将图案赋予膜。通常地,铸辊90保持在随着对片10a形成足以固化并对片10a进行淬火的温度下,如约10至60℃。如果期望,真空箱可以紧邻铸辊90放置,以帮助保持前体膜10a靠近铸辊90的表面。此外,气刀或静电销可以有助于迫使前体膜10a在围绕纺纱辊移动时贴在铸辊90的表面。气刀是本领域已知的设备,其以非常高的流速聚焦气流以压住膜的边缘。
[0073] 一旦流延,然后膜10a可以任选地在一个或多个方向上进行取向,以提高膜均一性。膜可以立即被再次加热至低于膜中的一种或多种聚合物的熔点的温度,但足够高到能够使组合物被拉伸或被伸展。在连续取向的情形下,“软化的”膜通过在不同旋转速度下旋转的辊拉伸,使得片在纵向(机器方向)上伸展至期望的拉伸比。然后,这种“单轴向”取向的膜可以任选地被层压为纤维纤网。此外,单轴向取向的膜还可以在机器横向上取向,以形成“双轴取向”膜。例如,可以用链夹将膜的侧边缘夹住并传送入拉幅炉(tenter oven)内。在拉幅炉内,可以将膜再次加热并通过在前进行程中分开的链夹在机器横向上拉伸至期望的拉伸比。
[0074] 再次参照图1,例如,示出一种用于形成单轴取向的膜的方法。如所示的,前体膜10a被引至例如可商购自罗德岛州普罗维登斯的Marshall and Willams公司的膜取向装置
100或机器方向取向器(MDO)。MDO具有在机器方向上逐步使膜伸展并变薄的多个延伸辊(例如5-8个),机器方向是通过如图1所示的该方法的膜的行进方向。虽然MDO 100显示有八个辊,但是应当理解的是,根据期望的伸展水平和每个辊之间的伸展程度,辊的数目可以更多或更少。膜可以在单一的或多个分开的伸展操作进行伸展。应当注明的是,在MDO设备中的一些辊可以不按逐步升高的速度来运行。如果期望,MDO100的一些辊可充当预热辊。如果存在,这些最先的少数的辊将膜10a加热至室温以上(例如,加热至125°F)。在MDO中的相邻辊逐步提高的速度将膜10a伸展。延伸辊的旋转的速率决定膜的伸展量和最终的膜重量。
[0075] 然后,所得膜10b可以缠绕并存储在卷绕辊60上。虽然在此未示出,但是在不背离本发明精神和范围的情况下,可以实施本领域中已知的各种附加的潜在加工和/或整理步骤,例如开槽(slitting)、处理、开孔、印刷图形,或膜与其他层(如非织造纤网材料)的层压。
[0076] 本发明的膜可以是单层的或多层的(例如,2至20层,以及在一些实施方案中,3至10层)。例如,多层膜可以包含邻近至少一个外层设置的至少一个芯层。外层通常用于热封或印刷。例如,在一个实施方案中,使用夹住芯层的第一外层和第二外层可能是有利的。芯层(多个芯层)通常占膜重量的大部分,如占膜的约50wt.%至约99wt.%,在一些实施方案中为约55wt.%至约90wt.%,以及在一些实施方案中为约60wt.%至约85wt.%。外层(多个外层)可以同样地占膜的约1wt.%至约50wt.%,在一些实施方案中为约10wt.%至约
45wt.%,以及在一些实施方案中为约15wt.%至约40wt.%。
[0077] 本发明的热塑性组合物可以用在膜的任意层中,包括芯层和/或外层。例如,在一个实施方案中,芯层由本发明的组合物形成以及外层(多个外层)由所述组合物或另外的聚合物材料形成。同样地,在其他可行的实施方案中,外层中的一个或多个由本发明的组合物形成并且芯层由另外的聚合物材料形成。使用时,另外的材料可以包括任何类型的聚合物,如聚烯烃(例如,聚乙烯,聚丙烯等),聚酯,聚酰胺,苯乙烯共聚物,聚氨酯,聚醋酸乙烯酯,聚乙烯醇等。
[0078] 如果期望,膜还可以层压为一个或多个非织造纤网饰面以降低摩擦系数并提高复合材料表面的布样感。用于形成非织造纤网饰面的示例性聚合物可以包括,例如,聚烯烃,如聚乙烯、聚丙烯、聚丁烯等;聚四氟乙烯;聚酯,例如,聚对苯二甲酸乙二醇酯等;聚醋酸乙烯酯;聚氯乙烯醋酸酯;聚乙烯缩丁醛;丙烯酸树脂,例如,聚丙烯酸酯、聚丙烯酸甲酯、聚甲基丙烯酸甲酯等;聚酰胺,例如尼龙;聚氯乙烯;聚偏二氯乙烯;聚苯乙烯;聚乙烯醇;聚氨酯;聚乳酸;其共聚物;等等。如果期望,还可以使用可再生聚合物,如上文所述的那些。还可以使用合成的或天然的纤维素聚合物,包括但不限于,纤维素酯;纤维素醚;纤维素硝酸酯、纤维素醋酸酯;纤维素醋酸丁酸酯;乙基纤维素;再生的纤维素,如粘胶纤维、人造纤维等等。应当指出的是,聚合物(多种聚合物)还可以包含其他添加剂,如赋予纤维期望性质的加工助剂或处理组合物、残留量的溶剂、颜料或着色剂等等。
[0079] 单组分和/或多组分纤维可用于形成非织造纤网饰面。单组分纤维一般由从单螺杆挤出机挤出的聚合物或聚合物的共混物形成。多组分纤维一般由从分开的挤出机挤出的两种或更多种聚合物(例如,双组分纤维)形成。聚合物可以沿纤维的横截面布置在基本上固定设置的不同区内。各组分可以以任意期望的结构布置,如皮-芯结构、并行结构、饼式结构、海中岛结构、三岛结构、结构,或本领域已知的各种其他布置。还可以形成具有不规则形状的多组分纤维。
[0080] 可以采用任意期望长度的纤维,如短纤维、连续纤维等。例如,在一个具体实施例中,可以使用纤维长度为约1至约150毫米,在一些实施方案中为约5至约50毫米,在一些实施方案中为约10至约40毫米,以及在一些实施方案中为约10至约25毫米的短纤维。虽然不要求,可以使用本领域熟知的梳理技术来形成具有短纤维的纤维层。例如,通过将数捆纤维放入分离纤维的分拣器(picker),可以形成梳理纤网。接着,将纤维输送通过梳整或梳理装置进一步分开,然后将纤维在机器方向上对齐,以形成机器方向取向的纤维非织造纤网。然后,可以采用已知的技术粘合梳理纤网,以形成粘合梳理非织造网。
[0081] 如果期望,用于形成非织造复合材料的非织造纤网饰面可具有多层结构。合适的多层材料可以包括,例如,纺粘/熔喷/纺粘(SMS)层压材料和纺粘/熔喷(SM)层压材料。多层结构的另一个实例是在多纺机组机器(multiple spin bank machine)上生产的纺粘纤网,在多纺机组机器中,纺纱机组将纤维沉积在由上一个纺纱机组沉积的一层纤维上。这样的单独的纺粘非织造纤网还可以被认为是多层结构。在这情形下,在非织造纤网中的沉积纤维的各层可以是相同的,或者它们在基重和/或组成、种类、尺寸、卷曲水平,和/或生产出的纤维的形状上可以是不同的。作为另外一个实例,单独的非织造纤网可以提供为纺粘纤网、梳理纤网等的两个或更多个单独生产的层,这些层已粘合在一起来形成非织造纤网。如上文所讨论的,这些单独生产的层在生产方法、基重、组成和纤维上可以不同。非织造纤网饰面还可以包含另外的纤维组分,使其被认为是复合材料。例如,可以采用本领域已知的各种缠结技术的任一种(例如,水力的、空气的、机械的等)将非织造纤网与另一种纤维组分缠结。在一个实施方案中,采用水力缠结法将非织造纤网整体与纤维素纤维缠结。典型的水力缠结方法利用高压水射流将纤维缠结,以形成高度缠结的、合并的纤维结构,例如,非织造纤网。复合材料的纤维组分可以包含期望量的所得的基底。
[0082] 无论其采用何方式形成,可以拉伸膜以形成期望的多孔网络。如果期望,膜可以随着其形成在线拉伸。供选择地,可以在形成之后,在层压到任意其它可选饰面材料之前和/或之后,在固态下拉伸材料。“固态”拉伸一般意味着组合物被保持在聚烯烃基质聚合物的熔融温度以下的温度下。除了其它方面,这帮助确保聚合物链不被改变到使多孔网络变得不稳定的程度。例如,膜可以在约-50℃至约150℃,在一些实施方案中为约-40℃至约140℃,在一些实施方案中为约-20℃至约100℃,以及在一些实施方案中为约0℃至约50℃的温度下拉伸。在某些情形下,拉伸温度任选地为在具有最高玻璃化转变温度的组分(例如,微米包含物添加剂)的玻璃化转变温度以下至少约10℃,在一些实施方案中为至少约20℃,以及在一些实施方案中为至少约30℃。在这样的实施方案中,膜可以在0℃至约50℃的温度下拉伸,在一些实施方案中为约15℃至约40℃,以及在一些实施方案中为约20℃至约30℃。
[0083] 拉伸可以在一个或多个阶段并采用各种不同技术的任意一种进行。在一个实施方案中,例如,膜可以采用机器方向取向器(“MDO”)拉伸,如使用如图1所示的装置100。为了以上述的方式拉伸膜,通常期望的是MDO的辊是不被加热的。然而,如果期望,只要所述组合物的温度保持在上述的范围以下,一个或者多个辊可以被轻微程度地加热,以便促进拉伸过程。膜通常被拉伸(例如,在机器方向上)至约1.1至约3.5的拉伸比(draw ratio),在一些实施方案中为约1.2至约3.0,以及在一些实施方案中为约1.3至约2.5。拉伸比可以通过将拉伸的膜的长度除以其在拉伸前的长度来确定。拉伸速率(draw rate)也可以变化以帮助实现所期望的性质,例如,在约5%至约1500%变形每分钟,在一些实施方案中为约20%至约1000%变形每分钟,以及在一些实施方案中为约25%至约850%变形每分钟的范围内变化。
虽然通常在不施加外部热(例如加热的辊)的情况下拉伸膜,但是这样的热可以任选地用来改善加工性,减小拉伸力,提高拉伸速率并改善均一性。
[0084] 按如上所述的方式拉伸可以导致具有“纳米级”横截面尺寸的孔(“纳米孔”)的形成,如约800纳米或更小,在一些实施方案中为约5至约700纳米,以及在一些实施方案中为约10至约500纳米。所述纳米孔的平均轴向尺寸(例如,长度)还可以为约100至约5000纳米,在一些实施方案中为约50至约2000纳米,以及在一些实施方案中为约100至约1000纳米。在拉伸期间,还可以形成平均横截面尺寸为约0.2微米或更大,在一些实施方案中为约0.5微米或更大,以及在一些实施方案中为约0.5微米至约5微米的微米孔。在某些情形下,微米孔和/或纳米孔的轴向尺寸可以大于横截面尺寸,使得纵横比(轴向尺寸与横截面尺寸的比值)为约1至约30,在一些实施方案中为约1.1至约15,以及在一些实施方案中约1.2至约5。例如,微米孔的轴向尺寸可以为1微米或更大,在一些实施方案中为约1.5微米或更大,以及在一些实施方案中为约2至约30微米。
[0085] 本发明人已经发现,无论它们的具体尺寸如何,孔(例如纳米孔、微米孔、或者两者)可以以基本上均匀的方式遍及材料分布。例如,孔可以在这样的列中分布,这些列一般在垂直于应力施加方向的方向上进行取向。这些列一般可以跨材料的宽度彼此平行。不希望受理论限制,据信这样的均匀分布的多孔网络的存在可以产生高热阻以及良好的机械性质(例如,负载下的能量耗散和冲击强度)。这与生成孔的常规技术形成鲜明对比,所述常规技术包括发泡剂的使用,其往往产生不受控的孔分布和差的机械性质。
[0086] 除了形成多孔网络,拉伸还可以增加某些离散区域的轴向尺寸,使得它们一般具有线性、伸长的形状。例如,伸长的微米级区域的平均轴向尺寸可以比拉伸前的区域的轴向尺寸大大约10%更多,在一些实施方案中为约20%至约500%,以及在一些实施方案中为约50%至约250%。例如,拉伸后的轴向尺寸(例如,长度)可以为约1μm至约400μm,在一些实施方案中约5μm至约200μm,以及在一些实施方案中约10μm至约150μm。微米级区域还可以是相对薄的并因此具有小的横截面尺寸,如约0.02至约20微米,在一些实施方案中为约0.1至约
10微米,以及在一些实施方案中为0.4至约5微米。这可以导致区域的纵横比(轴向尺寸与垂直于轴向尺寸的尺寸的比值)为约2至约150,在一些实施方案中为约3至约100,以及在一些实施方案中为约4至约50。由于它们小的尺寸,纳米级区域通常不以相同于微米级区域的方式被伸长。因此,纳米级区域的平均轴向尺寸(例如,长度)可以保持为约1至约1000纳米,在一些实施方案中为约5至约800纳米,在一些实施方案中为约10至约500纳米,以及在一些实施方案中为约20至约200纳米。
[0087] 甚至在本发明实现的非常低的密度下,所得膜是不易碎且相对可延展的。显示良好延展性的一个参数是膜在机器方向(“MD”)和/或机器横向(“CD”)上的峰值伸长率。例如,膜通常显示出约50%或更大的在机器方向上的峰值伸长率,在一些实施方案中为约60%或更大,在一些实施方案中为约70%或更大,以及在一些实施方案中为约80%至约200%。膜可以同样地显示出约750%或更大的在机器横向上的峰值伸长率,在一些实施方案中为约800%或更大,在一些实施方案中为约800%或更大,以及在一些实施方案中为约850%至约
2500%。尽管具有这样良好的延展性,但是本发明的膜却能够保持良好的机械强度。例如,本发明的膜可以显示出约20至约150兆帕(MPa)的机器方向和/或机器横向上的最终拉伸强度,在一些实施方案中为约25至约120MPa,以及在一些实施方案中为约30至约100MPa。膜的杨氏弹性模量也可以良好的,其等于拉伸应力与拉伸应变的比值并且由应力-应变曲线的斜率确定。例如,膜通常显示出约250至约10,00MPa的机器方向和/或机器横向上的杨氏模量,在一些实施方案中为约500至约8,000MPa,以及在一些实施方案中为约1,000至约5,
000MPa。令人惊讶的是,即使膜的厚度很小,也可以实现良好的延展性和其他机械性质。例如,拉伸后,膜的厚度一般可以为约5微米至约1,000微米,在一些实施方案中为约10至约
800微米,以及在一些实施方案中为约15至约600微米。当然,根据预期的包装类型,实际厚度可能变化很大。例如,薄尺寸包装膜的厚度可以为约5至约100微米,在一些实施方案中为约10至约80微米,以及在一些实施方案中为约15至约40微米。另一方面,厚尺寸包装膜的厚度可为约100至约1,000微米,在一些实施方案中约150至约800微米,以及在一些实施方案中约200至约600微米。
[0088] IV.应用
[0089] 由于其独特性质,本发明的膜特别适合用作包装膜,如单独的包装,包装袋,捆扎膜,或者用于各种制品如食品、纸制产品(例如薄纸、揩巾、纸毛巾等)、吸收性制品等的袋。用于吸收性制品的各种合适的小袋、包装、或袋的结构公开在例如Sorebo等人的第6,716,
203号以及Moder等人第6,380,445号美国专利,以及Sorebo等人的第2003/0116462号美国公开专利申请中。
[0090] 参考以下实施例,可以更好地理解本发明。
[0091] 测试方法
[0092] 熔体流动速率:
[0093] 熔体流动速率(“MFR”)为通常在190℃、210℃或230℃下、在10分钟内给予2160克的负载时,挤压穿过挤出流变仪孔(0.0825-英寸直径)的聚合物的重量(以克计)。除非另外说明,熔体流动速率是根据ASTM测试方法D1238,利用Tinius Olsen挤出塑性计测量的。
[0094] 热性质:
[0095] 可以根据ASTM E1640-09,通过动态力学分析(DMA)测定玻璃化转变温度(Tg)。可以使用来自TA Instruments的Q800仪器。可以在3℃/min的加热速率下,在-120℃至150℃范围内的温度扫描模式下,以拉力/拉力几何图形来实施实验运转。应变幅度频率在测试过程中可以保持恒定(2Hz)。可以测试三(3)个独立的样品,以获得用tanδ曲线的峰值来定义的平均玻璃化转变温度,其中tanδ被定义为损耗模量与储能模量的比值(tanδ=E”/E')。
[0096] 通过差示扫描量热法(DSC)测定熔融温度。差示扫描量热仪可以为DSC Q100差示扫描量热仪,其配备有液氮冷却配件并具有UNIVERSAL ANALYSIS 2000(4.6.6版)分析软件程序,二者均可购自特拉华州纽卡斯尔(New Castle)的T.A.Instruments公司。为了避免直接触摸样品,使用镊子或其它工具。将样品放置于铝盘中,并在分析天平上称重至0.01毫克的精确度。将盖子在材料样品上卷到盘上。通常地,树脂颗粒直接放置于称重盘中。
[0097] 如差示扫描量热仪的操作手册中所描述的,利用铟金属标准来校准差示扫描量热仪并且进行基线校正。将材料样品放置在差示扫描量热计的测试室中用于测试,并且使用空盘作为参比物。所有测试以每分钟55立方厘米的氮(工业级)吹扫测试室进行。对于树脂颗粒样品,加热和冷却程序是2-循环测试,该测试以将室平衡至-30℃开始,随后为以每分钟10℃的加热速率加热到200℃的温度的第一加热周期,随后将样品在200℃下平衡3分钟,随后为以每分钟10℃的冷却速率冷却到-30℃的温度的第一冷却期,随后将样品在-30℃下平衡3分钟,并随后为以每分钟10℃的加热速率加热到200℃的温度的第二加热期。所有测试以每分钟55立方厘米的氮(工业级)吹扫测试室进行。
[0098] 利用UNIVERSAL ANALYSIS 2000分析软件程序来评价结果,该软件程序识别并量化拐点(inflection)的玻璃化转变温度(Tg)、吸热峰和放热峰,以及DSC图的峰下面积。玻璃化转变温度被确定为图线上斜率发生明显变化的区域,而使用自动拐点计算来确定熔融温度。
[0099] 膜拉伸性质:
[0100] 可以在MTS Synergie 200拉伸架上测试膜的拉伸性质(峰值应力、模量、断裂应变、和断裂时单位体积能)。所述测试根据ASTM D638-10(在约23℃下)进行。在测试前,将膜样品切割成中间宽度为3.0mm的狗骨形状。可以采用夹具将狗骨形状膜样品固定在标距长度为18.0mm的MTS Synergie 200装置上。可以以5.0英寸/分钟的十字头速度伸展所述膜样品,直到发生断裂。对每种膜,在机器方向(MD)和机器横向(CD)上均测试5个样品。可以使用计算机程序(例如,TestWorks 4)来收集测试期间的数据并且生成应力-应变曲线,由该曲线可以确定多种性质,包括模量、峰值应力、伸长率和断裂能。
[0101] 密度和空隙体积百分比:
[0102] 为测定密度和空隙体积百分比,可以首先在拉伸前测量样本的宽度(Wi)和厚度(Ti)。拉伸前的长度(Li)也可以通过测量样本表面上的两个标记之间的距离来测定。然后,可以将样本拉伸,以引发孔形成。然后,可以利用Digimatic Caliper(Mitutoyo公司)测量样本的宽度(Wf)、厚度(Tf)和长度(Lf)至精确到0.01mm。拉伸前的体积(Vi)可以通过Wi×Ti×Li=Vi来计算。拉伸后的体积(Vf)也可以通过Wf×Tf×Lf=Vf来计算。密度(Pf)可以通过Pf=Pi/Φ来计算,其中Pi为前体材料的密度以及空隙体积百分比(%Vv)通过%VV=(1-1/Φ)×100来计算。
[0103] 静水压力测试(“静水压”):
[0104] 静水压力测试是材料在静压力下抗液体水渗透的量度,并且是根据AATCC试验方法127-2008进行的。可以取每个样本的结果的平均值,并以厘米(cm)记录。更高的值表示更大的抗水渗透性。
[0105] 水蒸气透过率(“WVTR”)
[0106] 用来测定材料的WVTR的测试可以基于材料的性质来变化。一种测量WVTR值的技术是ASTM E96/96M-12,方法B。另一方法涉及使用INDA测试方法IST-70.4(01)。INDA测试方法概括如下。用永久防护膜和待测试样品材料将干燥室与已知温度和湿度的潮湿室隔开。防护膜的用途是限定一个有限的空气隙,并在表征该空气隙的同时使该空气隙中的空气不动或静止。干燥室、防护膜和潮湿室形成了该供试膜密封在其中的扩散腔。样品夹持器是明尼苏达州明尼阿波里斯市(Minneapolis)的Mocon/Modem ControlsInc制造的Permatran-W Model 100K。第一个测试是由在产生100%相对湿度的蒸发器组件之间的防护膜和空气隙的WVTR组成的。水蒸气扩散通过空气隙和防护膜,然后与正比于水蒸气浓度的干燥气流相混合。将电信号传输至用于处理的计算机。计算机计算出空气隙和防护膜的透过率,并存储该值以备进一步使用。
[0107] 防护膜和空气隙的透过率作为CalC存储于计算机中。然后将样品材料密封于测试腔中。再次地,水蒸气扩散通过空气隙至防护膜和测试材料,然后与吹扫测试材料的干燥气流相混合。同样,再次将该混合物携带至蒸气传感器。随后,计算机计算出空气隙、防护膜和测试材料的组合的透过率。随后,使用该信息根据以下公式来计算透过测试材料的水分的透过率:
[0108] TR-1测试材料=TR-1测试材料、防护膜、空气隙-TR-1防护膜、空气隙[0109] 然后,水蒸气透过率(“WVTR蒸)是如下计算的:
[0110]
[0111] 其中,
[0112] F=水蒸气流量,以cm3/分钟计;
[0113] ρsat(T)=温度T下饱和空气中水的密度;
[0114] RH=所述腔中特定位置处的相对湿度;
[0115] A=所述腔的横截面积;和
[0116] Psat(T)=温度T下的水蒸气的饱和蒸汽压。
[0117] 实施例1
[0118] 形成材料的共混物,该共混物含有91.5wt.%的聚丙烯(Total Petrochemicals M-3661),7.5wt.%的聚乳酸(Natureworks Ingeo 6251D),以及1.0wt.%的聚环氧化物改性剂(Arkema Lotader AX8900)。然后,将该混合物经由双螺杆挤出机在220℃下熔融共混,以形成均匀的聚合物共混物。熔融的聚合物共混物被挤出通过复丝模,经由水冷却,然后由水下造粒系统例如购自弗吉尼亚州Eagle Rock的Gala Industries的那些切割颗粒。然后,将复混颗粒大批地供入具有流延膜模具的单螺杆挤出机(长径比为24:1)。在220℃的温度下使材料熔融并通过膜模具挤出到温度为25℃的铸辊上。向熔融的膜施加熔融拉伸力,以将厚度减小至约177至203微米。
[0119] 实施例2
[0120] 如实施例1所述的形成膜,但是厚度为254至279微米。
[0121] 实施例3
[0122] 在拉伸架(例如获自MTS System的Sintech 1/S框架)内、在50毫米每分钟的速率下,将实施例1的膜固态拉伸至300%的应变。伸展后,经测定,膜的长度在机器方向上增加5.2倍,而膜的宽度减少了20%。
[0123] 实施例4
[0124] 在拉伸架(例如获自MTS System的Sintech 1/S框架)内、在50毫米每分钟的速度下,将实施例2的膜固态拉伸至300%的应变。伸展后,经测定,膜的长度在机器方向上增加5.6倍,而膜的宽度减少了20%。膜的SEM显微照片显示在图2-图3中。
[0125] 对实施例3和实施例4拉伸的膜的各种机械性质进行测试。结果在下表中列出。
[0126]
[0127] 实施例5
[0128] 如实施例1所述的形成膜,除了厚度为48至55微米。
[0129] 实施例6
[0130] 形成材料的共混物,该共混物含有78wt.%的聚丙烯(Total Petrochemicals M-3661),15wt.%的聚乳酸(Natureworks Ingeo 6251D),以及7.0wt.%的聚环氧化物改性剂(Arkema Lotader AX8900)。然后,将该混合物经由双螺杆挤出机在220℃下熔融共混,以形成均匀的聚合物共混物。熔融的聚合物共混物被挤出通过复丝模,经由水冷却,然后由水下造粒系统如购自弗吉尼亚州Eagle Rock的Gala Industries的那些切割颗粒。然后,将复混颗粒大批地供入具有流延膜模具的单螺杆挤出机(长径比为24:1)。在220℃的温度下使材料熔融并通过膜模具挤出到温度为25℃的铸辊上。向熔融的膜施加熔融拉伸力,以将厚度减小至大约48至55微米。
[0131] 实施例7
[0132] 如实施例6所述的形成膜,除了厚度为70至80微米。
[0133] 实施例8
[0134] 如实施例6所述的形成膜,除了厚度为120至132微米。
[0135] 虽然已经依据其具体实施方案对本发明进行了详细描述,但是将领会的是,本领域技术人员一旦获得对前述内容的理解,就可以容易地想到这些实施方案的替代、变型和等同方案。因此,本发明的范围应被认定为所附权利要求及其任意等同方案的范围。