制造多孔碳产品的方法转让专利

申请号 : CN201480051216.9

文献号 : CN105531241B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : C.诺伊曼M.奥特J.贝克S.皮汉

申请人 : 赫罗伊斯石英玻璃股份有限两合公司

摘要 :

对于多孔碳产品的已知制备方法,提供包含大孔的模板粒子形式的模板材料以及碳的可聚合前体物质。模板的大孔被以溶解或熔融形式的前体物质浸透。在浸透的前体物质的碳化之后,除去模板以形成多孔的碳产品。为了改进该方法,从而获得具有含高比例的孔径为2‑50纳米的介孔的分级孔隙率的碳结构,根据本发明将前体物质在根据方法步骤(c)的浸透之后和在根据方法步骤(d)的碳化之前在模板的大孔内在发泡温度下进行处理,其中使前体物质在缩聚下发泡和在此以基本上介孔的泡沫的形式填充大孔,其中所述孔隙的至少70%具有10‑150纳米的孔径。

权利要求 :

1.制造多孔碳产品的方法,其包括下列方法步骤:

(a)提供含有大孔的模板粒子形式的模板材料,

(b)提供碳的前体物质,

(c)在温度Ta下用熔融或溶解形式的前体物质浸透所述模板的大孔,(d)在温度Tc下碳化所述前体物质,和

(e)除去所述模板以形成多孔碳产品,

其特征在于在根据方法步骤(c)的浸透后和在根据方法步骤(d)的碳化前,对模板的大孔内的前体物质施以在发泡温度Tb下的处理,在此前体物质在缩聚下发泡并由此以细孔泡沫的形式填充大孔,该细孔泡沫在碳化后形成多孔碳结构,其中至少70%的孔隙具有10纳米至150纳米的孔径。

2.根据权利要求1的方法,其特征在于发泡温度Tb包括不大于100℃的温度区间,且在发泡温度Tb下的处理持续时间为至少10分钟。

3.根据权利要求1的方法,其特征在于发泡温度Tb包括不大于100℃的温度区间,且在发泡温度Tb下的处理持续时间为至少30分钟。

4.根据权利要求1的方法,其特征在于使用在发泡处理过程中以气体形式分离出其在缩聚反应前的初始质量的至少30%的前体物质。

5.根据权利要求1的方法,其特征在于使用在发泡处理过程中以气体形式分离出其在缩聚反应前的初始质量的至少50%的前体物质。

6.根据前述权利要求1至5任一项的方法,其特征在于使用碳水化合物作为碳前体物质。

7.根据前述权利要求1至5任一项的方法,其特征在于使用以结构比为至少5的小片状或小棒状形式形成并具有5微米至100微米的平均厚度的非球形模板粒子。

8.根据前述权利要求1至5任一项的方法,其特征在于使用以结构比为至少10的小片状或小棒状形式形成并具有5微米至100微米的平均厚度的非球形模板粒子。

9.根据前述权利要求1至5任一项的方法,其特征在于使用以结构比为至少5的小片状或小棒状形式形成并具有小于50微米的平均厚度的非球形模板粒子。

10.根据前述权利要求1至5任一项的方法,其特征在于所述前体物质以具有低于Ta的熔融温度的材料的前体物质粒子的形式提供,并将所述前体物质粒子与模板粒子以0.05至

1.6的质量比彼此混合。

11.根据前述权利要求1至5任一项的方法,其特征在于所述前体物质以具有低于Ta的熔融温度的材料的前体物质粒子的形式提供,并将所述前体物质粒子与模板粒子以0.1至

0.8的质量比彼此混合。

12.根据前述权利要求1至5任一项的方法,其特征在于所述模板材料是SiO2。

13.根据前述权利要求1至5任一项的方法,其特征在于模板粒子的提供包含烟灰沉积法,其中通过水解或热解将原料转化成模板材料粒子,并将这些沉积在沉积表面上以由模板材料形成烟灰体,并将所述烟灰体粉碎成模板粒子。

说明书 :

制造多孔碳产品的方法

技术领域

[0001] 本发明涉及一种制造多孔碳产品的方法,其包括下列方法步骤:
[0002] (a) 提供含有大孔的模板粒子形式的模板材料,
[0003] (b) 提供碳的前体物质,
[0004] (c) 在温度Ta下用熔融或溶解形式的前体物质浸透所述模板的大孔,[0005] (d) 在温度Tc下碳化所述前体物质,和
[0006] (e) 除去所述模板以形成多孔碳产品。
[0007] 多孔碳例如用于燃料电池、超级电容器、蓄电池(二次电池)的电极和用作液体和气体的吸附剂,用作气体储存介质,用作色谱用途或催化法中的载体材料和用作机械制造或医疗技术中的材料。现有技术
[0008] 多孔碳泡沫的组分早已为人所知。通过在惰性气体下将有机起始物质加热到1000-1500℃的温度而获得这种泡沫。DE 69934256 T2例如描述了通过在压力下在非氧化条件下加热和焦化沥青来制造开孔的、基本石墨质的碳泡沫的方法。
[0009] 碳泡沫以小于0.1克/立方厘米的极低密度和在惰性气体下高达4000℃的耐高温性为特征。但是,典型的最小孔径为大约5微米;但许多用途需要在纳米范围内的孔隙以及用这种材料无法获得的大比表面积。
[0010] DE 29 46 688 A1公开了使用多孔材料的临时预成形坯(所谓的“模板”)制备多孔碳的方法。将碳的前体物质沉积在由具有至少1平方米/克的表面积的无机模板材料构成的“模板”的孔隙中。提到SiO2凝胶、多孔玻璃、氧化铝或其它多孔耐热氧化物作为适用于该模板的模板材料。该模板材料具有至少40%的孔隙率和3纳米至2微米的平均孔径。
[0011] 推荐可聚合有机材料,如酚和六胺的混合物或甲阶酚醛树脂作为碳的前体物质。将其以液体或气体形式引入模板的孔隙中并聚合。在聚合和随后碳化后,例如通过溶解在NaOH或氢氟酸中除去该模板的无机模板材料。
[0012] 由此,获得具有含有基本反映之前的模板结构的大孔的孔隙结构的粒子状或薄片状碳产品。这种碳结构还可含有微孔,其可通过后处理(如用热解炭涂布)或通过石墨化减少或消除。该碳产品适用于气相色谱法或用作催化剂载体。
[0013] 但是,所谓的“分级孔隙结构”经证实有利于许多用途。可以由纳米级孔隙提供大表面。为了增强所述孔隙的可达性,这些理想地经由连续大孔输送系统连接。在US 2005/0169829 A1中描述了具有大孔和介孔的这种分级孔隙结构的一体碳产品。为了制备分级孔隙结构,如下制造SiO2模板:在模具中加热直径为800纳米至10微米的二氧化硅微珠和可聚合物质的分散体,以通过聚合获得多孔硅胶,在除去过量液体后将该硅胶干燥并完全聚合。
[0014] 随后用碳的前体物质浸渍由此获得的SiO2模板的孔隙,将碳前体物质碳化成碳,随后通过溶解在HF或NaOH中除去SiO2模板。由此获得的碳产品还表现出大致相当于模板的材料分布的孔隙结构。在此使用溶解在四氢呋喃(THF)中的酚类合成树脂作为碳的前体物质。
[0015] 用于浸透的常见可石墨化碳前体物质不能以高浓度溶解并具有一部分不溶成分。例如,沥青在THF中的溶解度小于10体积%,以致在溶剂蒸发后最初填充的孔隙体积的大于
90%仍未填充。随后的碳化进一步降低碳前体材料的剩余涂层的体积。
[0016] 相反,碳水化合物(如糖)形式的碳前体材料表现出在溶剂中的高溶解度,但在溶剂蒸发后留下的糖在碳化过程中损失其原始质量的高达75%,以致在这种情况下也有大量孔隙体积仍未填充。因此,这些碳前体材料基本上仅产生小厚度的沉积碳层。为了实现多孔碳结构的技术上合理的壁厚度,通常必须相继进行几个这样的浸透和碳化过程。但是,这多个过程提高制造成本并例如由于浸透通道的逐渐堵塞而造成不均匀性。
[0017] 为了缓解这一问题,WO 201211966 A1提出使用具有分级孔隙结构的多孔模板材料的多孔碳制造的一种改进。在此提供由多孔模板材料和由前体物质预先制成的粉末,将这些粉末均匀混合在一起并将该均匀粉末混合物加热到使前体物质的粒子熔融的程度,且前体物质熔体可渗入模板的孔隙中。在此还可以省略碳前体物质的溶剂。实现在待浸透的模板材料的整个孔隙体积上的均匀分布和占据,以致甚至仅用一次浸透就已实现孔隙体积的高填充度。
[0018] 在浸透模板粒子的孔隙的同时或之后进行前体物质的碳化。前体物质的同时收缩归因于碳化过程中的分解和蒸发过程。无机模板材料仅充当用于沉积和碳化该碳前体物质的机械和热稳定骨架。
[0019] 在例如通过化学溶解除去后,所得碳产品基本不含模板材料。其表现出以通道形式与许多尺寸不同的相关孔隙和空隙交错的精细分裂表面。
[0020] 技术文章“Nanocasting - A  Versatile  Strategy  for Creating Nanostructured Porous Materials”, An-Hui Lu, Ferdi Schüth著, 公开在Adv. Mater. 2006 (18)中, 1793-1805描述了一种模板法,其中用碳的前体物质浸透介孔SiO2,碳化和溶解该SiO2骨架。这产生介孔碳。
[0021] 技术目的
[0022] 本发明的目的是提供能够低廉制备含有高比例的孔径为2-50纳米的介孔的分级孔隙率碳结构的方法。
[0023] 本发明的一般描述
[0024] 由上述类型的方法出发,根据本发明如下实现这一目的:在根据方法步骤(c)的浸透后和在根据方法步骤(d)的碳化前,对模板的大孔内的前体物质施以在发泡温度Tb下的处理,在此前体物质在缩聚下发泡并由此以细孔泡沫的形式填充大孔,该细孔泡沫在碳化后形成多孔泡沫状碳结构,其中至少70%的孔隙具有10纳米至150纳米的孔径。
[0025] 类似于已知方法,使碳前体物质,如蔗糖在较低温度Ta下以熔体或溶解形式与模板接触,以使其可渗入其孔隙并至少部分填充它们。碳前体物质在浸透的孔隙壁上形成层状沉积物。
[0026] 在已知方法中,随后通过碳化将该沉积物转化成石墨碳、类石墨碳或乱层(turbostratisch)碳。通过将该沉积物加热到通常高于400℃的较高温度Tc来进行碳化。
[0027] 相反,在本发明的方法中,在碳化前在较低温度Tb下单独处理该沉积层。如果可能,这种处理使沉积的层材料在碳化前完全和均匀发泡,其因此需要一定的停留期。由于发泡,沉积物的体积增加,以使孔隙至少部分并理想地完全被泡沫填充。这一效应在其它泡沫材料 - 例如在建筑行业中使用的聚氨酯泡沫中也是已知的。该发泡基于在前体物质的聚合中的官能团分离,这些基团在Tb下形成气体组分,例如水或二氧化碳。为了使释放的气体能在前体物质中形成气泡,该前体物质在温度Tb下必须仍可塑性变形。
[0028] 这种缩聚反应可热活化,其中起始温度也取决于环境参数,如压力和气氛,并可以用外来物质催化促进或抑制。该反应本身通常在一定温度范围内进行。因此不能将具体温度归结为处理温度Tb,而是在一定温度范围内发生各自的缩聚反应。
[0029] 但是,一般而言,Ta 
[0030] 因此,沉积的前体物质在温度Tb下处理,其特征在于从该前体物质中释放气体且同时该前体物质仍可塑性变形。
[0031] 形成的泡沫具有细气泡,即其大量包含气泡直径最多大约150纳米的在介孔范围内的气泡(至少70%的气泡)。在由含细气泡的泡沫通过碳化获得的细孔碳结构中,至少70%的孔隙具有10纳米至150纳米的孔径。孔径小于2纳米的可能的微孔在此不计入考虑。由于该孔隙主要在介孔尺寸范围内(按照定义,介孔具有2纳米至50纳米的孔径),这种多孔体在下文中也应被称作“介孔碳泡沫”。为了获得这种细孔泡沫状孔隙结构,在发泡过程中需要限制气泡生长。这种限制基于两个措施。
[0032] 一方面,气泡生长已经受模板材料的大孔的尺寸和引入孔隙中的前体物质的量限制。大孔的平均孔径因此尽可能小并通常为大约400纳米至大约1000纳米。另一方面,在前体物质沉积物的整个体积内的发泡理想地以均匀方式进行,这通过尽可能小的空间温差促成。通过在Tb附近的温度范围内的停留时间和平坦升温实现小温度梯度。
[0033] 在这方面,当发泡温度Tb包括不大于100℃,优选不大于50℃的温度区间且在发泡温度Tb下的处理持续时间为至少10分钟,优选至少30分钟时,已证实有利。
[0034] 优选使用在发泡过程中以气体形式分离出其在缩聚反应前的初始质量的至少30%,特别优选至少50%的前体物质。
[0035] 释放的气体体积越大,该前体物质在碳化后的孔隙率越高。
[0036] 基本上,含有一定量的可释放缩合物的可熔有机碳化合物适合作为高孔隙率碳的前体物质。这包括沥青——如果这些可通过缩聚分解,例如石油沥青。
[0037] 但是,优选使用碳水化合物作为碳前体物质。
[0038] 碳水化合物,尤其是糖,如蔗糖、果糖或葡萄糖可熔并具有高水含量,水在聚合过程中作为反应产物生成并有助于形成气泡。它们代表以碳化后的高比表面积为特征的非石墨碳前体物质。
[0039] 当使用以结构比为至少5,优选至少10的小片状或小棒状形式形成并具有5微米至100微米,特别优选小于50微米的平均厚度的非球形模板粒子时,已证实有用。
[0040] “结构比”是指该粒子的最大结构宽度与其厚度的比率。至少5的结构比因此意味着粒子的最大结构宽度为其厚度的至少5倍。这样的粒子基本具有小片状或小棒状的形状并以基本平行延伸的两个大表面为特征,由于待填充的体积的厚度相对较低,优选小于100微米,优选为10微米至50微米,熔融液体的前体物质可相对快速地通过大表面浸透。
[0041] 厚度小于10微米的模板粒子具有低机械强度并有碍形成坚固的分级孔隙结构。在大于100微米的厚度下,越来越难确保被熔融液体的前体物质均匀浸透。
[0042] 在一个有利的方法过程中提出,该前体物质以具有低于Ta的熔融温度的材料的前体物质粒子的形式提供,并将该前体物质粒子与模板粒子以0.05至1.6的质量比,优选以0.1至0.8的质量比彼此混合。
[0043] 在此,预先混合前体物质粒子(优选为沥青形式)和模板粒子并加热该粒子混合物以使前体物质熔融并可以在熔融液体相中渗入模板孔隙。通过前体物质和模板材料的混合比设定孔隙的填充度。在0.05的混合比下,模板材料的内表面被小厚度的仅一个层覆盖,这仅产生海绵状的碳网。更小的混合比因此不优选。相反,在1.6的混合比下,根据模板材料的初始孔隙体积,获得基本填满的孔隙结构。
[0044] 氧化、氮化、碳化材料的硬模板适合作为模板材料,但其它物质如塑料的模板也可行。该模板材料优选是SiO2。
[0045] 在工业规模下可以借助使用廉价起始物质的烟灰沉积法以相对较低的成本制造合成SiO2。该SiO2模板耐受碳化过程中的高温并至少到1000℃都是化学惰性的。温度上限取决于SiO2与碳的反应(以形成SiC)的开始(在大约1000℃)。通过化学溶解进行根据方法步骤(e)的合成SiO2形式的模板材料的脱除。
[0046] 模板粒子越细,在其它方面相同的工艺条件下,浸透越快、越有效和越均匀。例如通过研磨模板材料的多孔体或通过打碎模板材料层、通过压缩模板材料的粉末或通过溶胶-凝胶法或造粒法制造模板粒子。窄的、理想上单分散的粒度分布有利于本发明的方法,这例如通过筛分实现。
[0047] 在模板粒子的提供包含烟灰沉积法(其中通过水解或热解将原料转化成模板材料粒子)时和在将这些沉积在沉积表面上以由模板材料形成烟灰体并将该烟灰体粉碎成模板粒子时,已证实特别有利。
[0048] 在本发明的方法的这种变体中,模板的制造包括烟灰沉积法。在此,对液体或气体起始物质施以化学反应(水解或热解)并作为固体组分从气相中沉积在沉积表面上。反应区是例如燃烧器火焰或电弧(等离子体)。借助例如以OVD或VAD法为名而已知的此类等离子体或CVD烟灰沉积法,以工业规模制造合成石英玻璃、氧化锡、氧化钛、氮化钛和其它合成材料。
[0049] 对沉积的模板材料用于制造模板的适用性而言必要的是,在沉积表面(其可以例如是容器、心轴、板或过滤器)上以多孔“炭黑”(本文也称为“烟灰”)的形式获得模板材料。通过使沉积表面的温度保持如此低以防止沉积的模板材料致密烧结来确保这一点。作为中间产物获得热固结但多孔的“烟灰体”。
[0050] 与使用“溶胶-凝胶途径”的生产方法相比,烟灰沉积法是低廉的方法,这能以工业规模低廉生产模板。
[0051] 对于由此获得的烟灰体,已证实特别有利的是,这些根据制造条件具有存在分级孔隙结构的各向异性质量分布。原因在于,在反应区中,气相沉积产生具有纳米级粒度的模板材料初级粒子,所述初级粒子在通往沉积表面的途中附聚并在沉积表面上以或多或少球形附聚体或聚集体的形式获得,这在下文中也被称作“次级粒子”。在初级粒子内和在次级粒子内,即在初级粒子之间,尤其存在纳米级小空隙和孔隙,即所谓的介孔,而相反地在各个次级粒子之间形成更大的空隙或孔隙。
[0052] 由其通过压碎或研磨获得的模板粒子也表现出在模板材料中提供的分级结构,具有多峰孔径分布。
[0053] 在烟灰沉积法中,模板材料也可以以烟灰粉末的形式存在,其随后通过造粒-、压缩-、制浆-或烧结法进一步加工成模板粒子。在此应提到粒料或碎片作为中间产物。
[0054] 通过烟灰沉积制成的模板材料层可以毫不费力地粉碎,以产生具有小片状或薄片状形态的模板粒子。
[0055] 以非球形形态为特征的此类模板粒子特别有利地用于本发明的方法。
[0056] 原因在于,具有球形形态的粒子,即具有球形或近球形形态的粒子相对于它们的体积表现出小表面积。相反,具有非球形形态的粒子具有更大的表面/体积比,这简化和平衡前体物质的浸透。
[0057] 实施方案
[0058] 现在参考实施方案和附图更详细解释本发明。详细地,
[0059] 图1以示意图显示用于制造SiO2烟灰体的装置;
[0060] 图2显示用于熔融前体物质、用于发泡和用于碳化的加热廓线;
[0061] 图3显示根据本发明的方法获得的具有分级孔隙结构的多孔碳产品的一个实施方案的SEM图像,和
[0062] 图4显示根据本发明的多孔碳产品的孔径分布图。
[0063] 制备具有多级孔隙结构的模板材料
[0064] 图1中所示的装置用于制备SiO2烟灰体。沿氧化铝支承管1布置多个连续布置的火焰水解燃烧器2。火焰水解燃烧器2安装在共用燃烧器炉头(burner block)3上,其如方向箭头5和6所示,平行于支承管1的纵轴4在相对于纵轴4位置固定的两个回转点之间往复运动并可在垂直于其的方向上移动。燃烧器2由石英玻璃构成;它们的相互距离为15厘米。
[0065] 火焰水解燃烧器2各自具有属于其的燃烧器火焰7,其主要延伸方向垂直于支承管1的纵轴4。借助火焰水解燃烧器2,SiO2粒子沉积在围绕其纵轴4旋转的支承管1的圆柱外表面上,以逐层累积外径400毫米的多孔SiO2坯8。各个SiO2烟灰层具有大约50微米的平均厚度。
[0066] 向各火焰水解燃烧器2供入氧气和氢气作为燃烧器气体并供入SiCl4作为用于形成SiO2粒子的原料。燃烧器炉头3在此以两个燃烧器距离的幅度(即30厘米)往复运动。在沉积过程中,在坯表面9上设定大约1200℃的平均温度。
[0067] 在沉积过程完成后,获得长度3米、外径400毫米且内径50毫米的多孔SiO2烟灰的管(烟灰管)。使烟灰体累积过程中的温度保持较低,以使该SiO2烟灰材料具有22%的低平均相对密度(基于石英玻璃的密度2.21克/立方厘米计)。
[0068] 由于低密度,该多孔烟灰材料容易粉碎。由于该烟灰体的逐层累积,彼此叠加的层在高机械力的情况下倾向于脱落,以在研磨过程中产生厚度20微米至50微米的小片状或薄片状烟灰粒子。这些烟灰粒子在进一步制造过程中用作模板材料粒子。
[0069] 根据制造条件,该烟灰粒子表现出具有分级孔隙结构的各向异性质量分布。这归因于下述事实:在气相沉积过程中,在反应区中形成具有纳米级粒度的SiO2初级粒子,所述初级粒子在通往沉积表面的途中附聚并在沉积表面上以或多或少球形附聚体或聚集体的形式获得。这些“次级粒子”由不同数量的初级粒子构成,因此基本上表现出宽粒度分布。在次级粒子内(在初级粒子之间)特别存在纳米级小空隙和孔隙,即所谓的介孔,而相反地在各个次级粒子之间形成具有大约400纳米至1,000纳米的典型净宽的大孔。
[0070] 由模板材料的粒子和能够发泡的碳前体物质构成的干混物的制备
[0071] 通过研磨蔗糖和通过筛分获得基本由粒度5微米至20微米的球形粒子构成的细粒蔗糖粉末级分。将该蔗糖和烟灰粒子以重量比25:75互相均匀混合。
[0072] 粒子混合物的熔融和浸透
[0073] 将该粒子混合物加热到大约160℃的温度(相当于温度Ta)。蔗糖此时为黏稠的并开始分解。同时,黏稠的蔗糖熔体包围小SiO2烟灰粒子并渗入孔隙。选择蔗糖和烟灰粒子质量比以使蔗糖熔体填充孔隙,以不留下显著多的空孔隙体积并几乎完全耗尽。在大约30分钟的浸透期后,孔隙的浸透基本完成。烟灰粒子的孔隙现在基本被熔融液体的蔗糖层填满。
[0074] 发泡过程
[0075] 随后,将温度缓慢提高到大约205℃(相当于温度Tb)并保持大约60分钟。在此温度下,在脱水条件下对蔗糖施以快速进行的缩聚反应,同时分离水。直到完全转化成碳时,剩余蔗糖熔体仍基本可塑性变形。因此,在缩聚反应中释放的蒸发水可导致形成气泡,这表现为蔗糖的发泡。
[0076] 在未受控条件下,这种气泡形成可能在模板粒子的大孔内造成具有大气泡的不均匀气泡形成,但这是本发明不想要的。通过蔗糖在温度Tb下的所述温和处理避免大气泡,因为由此在许多地方首先同时形成气泡核,其发生较慢的气泡生长且其生长还受模板材料的孔径限制。在这些边界条件下,实现发泡,其中气泡基本具有大约10纳米至150纳米的尺寸(至少70%的气泡)并由此因较大的气泡体积而使模板材料的大孔至少部分和理想地完全被泡沫填满。
[0077] 碳化
[0078] 在发泡过程完成后,将处理温度提高到大约650℃(相当于温度Tc)且之前发泡的蔗糖在氮气气氛中碳化成多孔乱层碳。最晚在这一方法步骤中,由于之前截留的气体逸出,该泡沫状介孔气泡结构是开孔的。
[0079] 在完全碳化后,获得在外部和内部(即在它们的孔隙内)被同样多孔的碳泡沫层覆盖的多孔SiO2烟灰粒子的复合体。该碳泡沫的孔隙率主要由孔径为10纳米至150纳米的孔隙产生(至少70%的孔隙)。
[0080] 图2的图显示上文解释的热处理步骤的加热廓线(随以分钟计的时间t绘制的以℃计的温度T)。将熔融液体的蔗糖相加热至发泡温度Tb的完全缓慢的过程对在由模板材料的大孔提供的体积内的一致和均匀发泡尤其重要。
[0081] 模板材料的脱除
[0082] 随后通过将该复合体引入氢氟酸浴而除去SiO2烟灰材料。在浸蚀掉SiO2粒子后,将该材料洗涤、干燥和粉碎,该材料解体成具有基本为原始SiO2烟灰粒子的负像的结构的多孔碳薄片。之前被SiO2占据的网络状体积现在构成在基本介孔碳泡沫周围的另外的通道状大孔空间。所得碳产品因此以分级孔隙结构为特征,其中许多互连孔隙通道(大孔)贯穿原本细孔体(主要为介孔)。
[0083] 根据图3的SEM图像显示具有许多尺寸不同的相关孔隙和空隙的所得碳结构。在与细孔交错的海绵状体31中,几乎100%的孔隙具有10纳米至150纳米的孔径。这种海绵状或泡沫状体31被较大的空隙32包围并以通道形式与所述空隙交错。根据BET法测量碳结构的比内表面积得出大约450平方米/克的测量值。
[0084] 根据基于DIN 66132的Brunauer, Emmet and Teller (BET)的方法测定“比表面积(BET)”,其基于待测量表面上的气体吸收。
[0085] 图4的图显示碳产品的孔径分布。对照以[nm]计的孔径D,在左纵坐标上以[cm3/g]绘制累积孔隙体积Vc,在右纵坐标上以[%]绘制相对孔隙体积Vr。可以察觉在介孔范围内的孔径分布的第一最大值为大约50纳米,且孔径最多为100纳米的孔隙(线段42)占大约0.53 3 3
cm/g(线段41和42之间的累积孔隙体积差),这相当于在总孔隙体积(大约2.45 cm /g)中大约20%的比例。这一孔隙体积必须主要归结于“介孔碳泡沫”。孔径分布的第二最大值为在大孔范围内的大约400纳米,这基本归因于由于除去模板材料而暴露出的空隙。
[0086] 孔隙体积是指该材料内的被空隙占据的自由体积。借助孔隙率计测量孔隙体积,其中在外压作用下抵抗反作用的表面张力将非湿性液体(汞)压入多孔材料的孔隙。这需要的力与孔径成反比,且除了总孔隙体积外,因此还可以测定样品的孔径分布。压汞法仅检测大于2纳米的孔径(介孔和大孔),但不能检测孔径小于2纳米的“微孔”。
[0087] 由此获得的碳产品相对精致和脆弱。其非常适合用作例如电池组和二次电池中的电化电池的电极材料。由于除去不参与电化学过程的模板材料,其不占据电池的重量。对于需要提高的机械稳定性的用途,可以部分或完全保留模板材料。