低数值孔径大模场面积光纤激光光束质量评价方法转让专利

申请号 : CN201510925037.X

文献号 : CN105571826B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 陶汝茂支冬马阎星冷进勇马鹏飞王小林周朴司磊许晓军陈金宝刘泽金

申请人 : 中国人民解放军国防科学技术大学

摘要 :

本发明涉及低数值孔径大模场面积光纤激光光束质量评价方法。采用本发明提出的光束质量评价方法可以消除模间相对相位对M2因子的影响,得到与模间相对相位无关、仅与模式间功率比例有关的M2因子,采用该方法修正的M2因子可准确反映低数值孔径大模场面积光纤激光的模式成分和光束质量。修正M2因子的数值越接近1,说明光束质量越好。本方法消除了模间相对相位对光束质量的影响,解决了M2因子难以评价低数值孔径大模场面积光纤激光光束质量的不足。

权利要求 :

1.低数值孔径大模场面积光纤激光光束质量评价方法,其特征在于,具体步骤如下:M2因子的计算公式为:

其中λ为波长,z为传输距离,w为光束尺寸

I(x,y,z)和I0(x,y)分别为传输距离z后光强分布和初始出射平面上的光强分布,x、y分别为发射面的横坐标、纵坐标;

低数值孔径大模场面积光纤输出的高功率激光光场可以表示为其中 和 分别为基模和第一个高阶模的电场分布,P11为输出光束中高阶模的功率比例,P01为输出光束中基模的功率比例,i位虚部,k为广播的传播常数,p、q为接收面的横坐标、纵坐标,ξ为-x,Δφ11为基模和高阶模之间的相对相位,在真空中传输距离z后电场分布为根据公式(1)和公式(2)可得光场分布分别为根据广义惠更斯-菲涅尔原理,发射面的光场和传输距离z后的光场有如下关系则根据基模和高阶模电场分布,基模电场分布是偶函数而第一个高阶模的电场分布是奇函数,假设第一个高阶模是x方向的奇函数,则有将公式(8a)代入公式(7a)、公式(8b)代入公式(7b)中可得即

根据函数奇偶性可得如下结果

利用式(11a)-(11g)结果分析式(12a)-(12b)式发现,模式间相对相位对第一项和第二项无影响,仅对第三项产生影响,导致利用式(1a)-(1b)计算的M2因子受相对相位影响,若不考虑重心坐标,则式(12a)-(12b)可以写成利用式(11a)-(11g)结果分析式(13a)-(13b)发现,模式间相对相位对式(13a)-(13b)

2 2

无影响,因此,利用式(13a)-(13b)计算的M因子不受相对相位影响,即相对相位对M因子的影响消除,M2因子只与模式比例有关,因此,修正后的M2因子,简称修正M2因子,用于评价输出光束的模式成分,即可准确评价输出光束的光束质量;

利用光电探测器探测出射面处的光强分布I(x,y,z=0),利用下式计算出射面处光束尺寸然后,利用光电探测器探测距离出射面z处的光强分布I(x,y,z),利用下式计算距离出射面z处光束尺寸wx=2σx,wy=2σy  (15a)

最后,计算修正后的M2因子,

使用该因子对低数值孔径大模场面积光纤激光光源的光束质量进行评价,该值越接近

1,说明光束质量越好,当wx和wy为远场光束尺寸时,可以用下式求修正M2因子其中λ为波长,z为传输距离,w为光束尺寸,x、y分别为发射面的横坐标、纵坐标。

说明书 :

低数值孔径大模场面积光纤激光光束质量评价方法

技术领域

[0001] 本发明涉及低数值孔径大模场面积光纤激光光束质量的评价方法,尤其是一种利用修正后的M2因子定义式来评价低数值孔径大模场面积光纤激光光束质量的方法。

背景技术

[0002] 光束质量是激光应用技术中极为重要的参数,它是从质的方面评价激光特性的性能指标,对激光器的设计、制造、检测和应用等均具有十分重要的指导意义。目前已经有很多的方法对激光的光束质量进行评价,如M2因子、桶中功率、斯特列尔比等[冯国英,周寿桓,“激光光束质量综合评价的探讨,”中国激光,2009,36,1643-1653],其中M2因子定义为实际光束的光斑半径与其远场发散角的乘积与理想高斯基模光束的相应乘积之比,桶中功率为远场平面内实际光束在某一固定半径的桶内的功率与该光源总功率的比值,斯特列尔比定义为实际光束峰值功率与理想光束峰值功率的比值。目前,对于高功率光纤激光光束质量的评价方法,科研人员和高功率光纤激光器生产厂商广泛采用A.E.Siegman提出的M2因子进行评价[A.E.Siegman“, How to(Maybe)Measure Laser Beam Quality”,Proc.of Diode Pumped Solid State Lasers,1998,17:184-199]:当M2因子越接近1,研究人员认为输出光束的模式成分越接近基模、光束质量越好。
[0003] 在低数值孔径大模场面积光纤中,光纤支持多个模式,而且第一个高阶模式(LP11模式)很难完全剥除[S.Wielandy“, Implications of higher-order mode content in large mode area fibers with good beam quality,”Optics Express 2007,15(23),15402-15409],因此,高功率光纤激光通常会出现基模与高阶模共存的情况,此时利用M2因子评价光纤激光光束质量时发现,M2因子与模式间的相对相位有关:在相同的高阶模式比例时,M2因子的具体数值随模式间的相对相位不同而变化,如图1所示。此外,即使高阶模比例高达0.35,当模式间相对相位为0时,M2因子仍不超过1.1,如图2所示。然而,理论研究表明,光束的传输特性仅与光束中高阶模的成分有关,与模式间的相对相位无关[Rumao Tao,Long Huang,Pu Zhou,Lei Si,and Zejin Liu,“Propagation of high-power fiber laser with high-order-mode content,”Photonics Research 2015,3(4),192-199]。因此,传统M2因子难以反映低数值孔径大模场面积光纤出射激光的光束质量。

发明内容

[0004] 本发明要解决的技术问题是:提供一种低数值孔径大模场面积光纤激光光束质量2
的评价方法,采用该方法可以消除模间相对相位对M因子的影响,得到与模间相对相位无关、仅与模式间功率比例有关的M2因子,采用该方法修正的M2因子可准确反映低数值孔径大模场面积光纤激光的模式成分和光束质量。
[0005] 本发明的技术方案是:
[0006] M2因子的计算公式为:
[0007]
[0008]
[0009] 其中λ为波长,z为传输距离,w为光束尺寸
[0010] wx=2σx,wy=2σy,w0x=2σ0x,w0y=2σ0y  (2a)
[0011]
[0012]
[0013]
[0014]
[0015]
[0016]
[0017]
[0018]
[0019] I(x,y,z)和I0(x,y)分别为传输距离z后光强分布和初始出射平面上的光强分布,x、y分别为发射面的横坐标、纵坐标。
[0020] 低数值孔径大模场面积光纤输出的高功率激光光场可以表示为
[0021]
[0022] 其中 和 分别为基模和第一个高阶模的电场分布,P11为输出光束中高阶模的功率比例,P01为输出光束中基模的功率比例,i位虚部,k为广播的传播常数,p、q为接收面的横坐标、纵坐标,ξ为-x,Δφ11为基模和高阶模之间的相对相位。在真空中传输距离z后电场分布为
[0023]
[0024] 根据公式(1)和公式(2)可得光场分布分别为
[0025]
[0026]
[0027] 根据广义惠更斯-菲涅尔原理,发射面的光场和传输距离z后的光场有如下关系[0028]
[0029]
[0030] 则
[0031]
[0032]
[0033] 根据基模和高阶模电场分布,基模电场分布是偶函数而第一个高阶模的电场分布是奇函数。假设第一个高阶模是x方向的奇函数,则有
[0034]
[0035]
[0036] 将公式(8a)代入公式(7a)、公式(8b)代入公式(7b)中可得
[0037]
[0038]
[0039] 即
[0040]
[0041]
[0042] 根据函数奇偶性可得如下结果
[0043]
[0044]
[0045]
[0046]
[0047]
[0048]
[0049]
[0050] 而
[0051]
[0052]
[0053] 利用式(11a)-(11g)结果分析式(12a)-(12b)式发现,模式间相对相位对第一项和第二项无影响,仅对第三项产生影响,导致利用式(1a)-(1b)计算的M2因子受相对相位影响。若不考虑重心坐标,则式(12a)-(12b)可以写成
[0054]
[0055]
[0056] 利用式(11a)-(11g)结果分析式(13a)-(13b)发现,模式间相对相位对式(13a)-(13b)无影响,因此,利用式(13a)-(13b)计算的M2因子不受相对相位影响,即相对相位对M2因子的影响消除,M2因子只与模式比例有关,因此,修正后的M2因子(简称修正M2因子)可以用于评价输出光束的模式成分,即可以准确评价输出光束的光束质量。
[0057] 具体技术方案如下:
[0058] 利用光电探测器探测出射面处的光强分布I(x,y,z=0),利用下式计算出射面处光束尺寸
[0059] w0x=2σ0x,w0y=2σ0y  (14a)
[0060]
[0061]
[0062] 然后,利用光电探测器探测距离出射面z处的光强分布I(x,y,z),利用下式计算距离出射面z处光束尺寸
[0063] wx=2σx,wy=2σy  (15a)
[0064]
[0065]
[0066] 最后,计算修正M2因子,如下式
[0067]
[0068]
[0069] 使用该因子对低数值孔径大模场面积光纤激光光源的光束质量进行评价,该值越接近1,说明光束质量越好。当wx和wy为远场光束尺寸时,可以用下式求修正M2因子[0070]
[0071]
[0072] 采用本发明可以达到以下技术效果:
[0073] 1.消除了模间相对相位对光束质量因子影响,解决了M2因子难以评价低数值孔径大模场面积光纤激光光束质量的不足。
[0074] 2.修正M2因子仅与光束中的模式成分有关,可以反映光纤激光输出光束的模式成分。
[0075] 3.修正M2因子测量方法上仅需将原有系统的软件的计算方法进行修改,无需测量方法及硬件上的改变,实际中应用方便。

附图说明

[0076] 图1为M2因子随模间相对相位的变化,
[0077] 图2为模间相对相位0时,M2因子随高阶模比例的变化,
[0078] 图3为修正M2因子随模间相对相位的变化,
[0079] 图4为修正M2因子随高阶模比例的变化,
[0080] 图5为模式非相干叠加时,M2因子和修正M2因子随高阶模比例的变化,[0081] 图6为修正M2因子测量实例一示意图。1-激光束;2-准直系统;3-激光输出平面;4-传输后平面;5-数据传输线;6-计算机;7-CCD,
[0082] 图7为修正M2因子测量实例二示意图。1-激光束;2-准直系统;73-高反镜;74-反射光束;75-透射光束;76-聚焦光学系统;7-CCD相机;5-数据传输线;6-计算机。

具体实施方式

[0083] 下面给出本发明的一个计算实例来对本发明做进一步描述:
[0084] 首先,利用式(14a)-(14b)计算初始平面光场分布的光束尺寸;然后利用角谱传输法,通过数值模拟求得传输一定距离后的光强分布,利用式(15a)-(15b)计算传输后的光束尺寸;最后利用式(16a)-(16b)计算光束不同方向的M2因子。对于纤芯直径30微米,纤芯数值孔径0.065,激光波长为1064nm时,计算的修正M2因子随相对相位的变化如图3所示。从图2 2
3中可以看出,修正M因子与相对相位无关,即修正M因子消除了相对相位对光束质量评价的影响。
[0085] 修正M2因子随高阶模功率比例的变化如图4所示。计算结果表明,随着高阶模比例减小,修正M2因子线性减小,即修正M2因子越接近1,高阶模含量约小,输出光束光束质量越好。当光场非相干叠加时,分别计算基模和高阶模光场的传输,然后将光强叠加,计算修正M2因子,结果如图5所示。计算结果表明,随着高阶模比例增加,修正M2因子线性增加,即修正M2因子越接近1,高阶模含量约小,输出光束光束质量越好。因此,本发明可以用于准确评价低数值孔径大模场面积光纤激光的光束质量。
[0086] 下面给出本发明的两个实施例:
[0087] 实施例一
[0088] 参见附图6所示,从低数值孔径大模场面积光纤输出的激光束1经准直系统2准直后继续传输。在激光输出平面3处由CCD相机7测量近场光强分布,并用计算机6记录和处理光斑数据。激光传输距离z后,在传输后平面4处利用CCD相机7探测传输后光束的光强分布,并测量传输后平面4距准直系统的距离。将CCD相机7在激光输出平面3和传输后平面4处探测到的光强分布代入式(14a)-(14b)和式(15a)-(15b),计算光束尺寸。将初始平面的光束尺寸和传输距离z后的光束尺寸代入式(16a)-(16b)即可获得修正M2因子,对输出激光的光束质量进行评价。
[0089] 实施例二
[0090] 参见附图7所示,从低数值孔径大模场面积光纤输出的激光束1经准直系统2后被高反镜73分成两部分,反射后的大部分激光即反射光束74用于测试激光功率,透射的小部分激光即透射光束75先在CCD相机7上成像,利用计算机6记录测量的近场光斑,然后透射光束75经聚焦光学系统76后聚焦到CCD相机7上测量远场光斑。CCD相机7测量的光斑利用式(14a)-(14b)和式(15a)-(15b)计算近场后远场光斑尺寸,最后将计算的光斑尺寸和聚焦系统的焦距f(z=f)代入公式(17a)-(17b)中即可获得修正M2因子,对输出激光的光束质量进行评价。