混合动力车辆的起动控制装置以及起动控制方法转让专利

申请号 : CN201380079877.8

文献号 : CN105579269B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 大内大辅中里浩一折田崇一服部健二

申请人 : 日产自动车株式会社

摘要 :

在发动机与电动发电机之间插入安装通过液压供给而接合的常开型的离合器。在检测出车辆起动请求时,根据车辆温度和电池输出,从通过行驶用马达使车辆成为可行驶状态的第一车辆起动模式(M1)、将离合器接合而通过行驶用马达启动发动机来使车辆成为可行驶状态的第二车辆起动模式(M2)以及在通过起动器启动发动机之后将离合器接合来使车辆成为可行驶状态的第三车辆起动模式(M3)中选择某一个车辆起动模式。在工作油的粘度变高的低温时,选择第二车辆起动模式(M2),在车辆起动完成前将离合器接合而事先启动发动机。

权利要求 :

1.一种混合动力车辆的起动控制装置,该混合动力车辆具备:发动机;行驶用马达,其被插入安装在该发动机与驱动轮之间;强电电池,其向该行驶用马达供给电力;离合器,其被插入安装在所述发动机与行驶用马达之间,在被供给液压时接合;起动器,其通过驱动所述发动机的曲轴使该曲轴旋转来启动发动机;强电继电器,其被设置于将所述强电电池与所述行驶用马达连结的强电电路;以及弱电电池,其向所述强电继电器、所述起动器以及控制器供给电力,该混合动力车辆的起动控制装置具有:车辆温度检测部,其检测车辆温度;以及

车辆起动控制部,其在检测出车辆起动请求时,至少根据所述车辆温度从第一车辆起动模式、第二车辆起动模式以及第三车辆起动模式中选择某一个车辆起动模式,在所述第一车辆起动模式下通过所述行驶用马达使车辆成为可行驶状态,在所述第二车辆起动模式下将所述离合器接合而通过所述行驶用马达启动所述发动机来使车辆成为可行驶状态,在所述第三车辆起动模式下在通过所述起动器启动所述发动机之后将所述离合器接合来使车辆成为可行驶状态,其中,该车辆起动控制部在检测出所述车辆起动请求且所述车辆温度为第一温度判定值以下的低温时,选择所述第二车辆起动模式,在检测出所述车辆起动请求且所述车辆温度为第二温度判定值以下的极低温时,选择所述第三车辆起动模式,该第二温度判定值为比所述第一温度判定值小的值,在所述第三车辆起动模式下,在通过所述起动器启动所述发动机之后,使所述强电继电器连接。

2.根据权利要求1所述的混合动力车辆的起动控制装置,其特征在于,

所述弱电电池还向所述车辆起动控制部供给电力,

该混合动力车辆的起动控制装置还具有电池输出检测部,该电池输出检测部检测所述强电电池的输出,

所述车辆起动控制部在所述强电电池的输出为第一输出判定值以下时,选择所述第二车辆起动模式,在所述强电电池的输出为第二输出判定值以下时,选择所述第三车辆起动模式,该第二输出判定值为比所述第一输出判定值小的值。

3.一种混合动力车辆的起动控制方法,该混合动力车辆具备:发动机;行驶用马达,其被插入安装于该发动机与驱动轮之间;强电电池,其向该行驶用马达供给电力;离合器,其被插入安装在所述发动机与行驶用马达之间,在被供给液压时接合;起动器,其通过驱动所述发动机的曲轴使该曲轴旋转来启动发动机;强电继电器,其被设置于将所述强电电池与所述行驶用马达连结的强电电路;以及弱电电池,其向所述强电继电器、所述起动器以及控制器供给电力,在该混合动力车辆的起动控制方法中,检测车辆温度;

在检测出车辆起动请求时,至少根据车辆温度从第一车辆起动模式、第二车辆起动模式以及第三车辆起动模式中选择某一个车辆起动模式,在所述第一车辆起动模式下通过所述行驶用马达使车辆成为可行驶状态,在所述第二车辆起动模式下将所述离合器接合而通过所述行驶用马达启动所述发动机来使车辆成为可行驶状态,在所述第三车辆起动模式下在通过所述起动器启动所述发动机之后将所述离合器接合来使车辆成为可行驶状态;以及在选择车辆起动模式时,在检测出所述车辆起动请求且所述车辆温度为第一温度判定值以下的低温时,选择所述第二车辆起动模式,在检测出所述车辆起动请求且所述车辆温度为第二温度判定值以下的极低温时,选择所述第三车辆起动模式,该第二温度判定值为比所述第一温度判定值小的值,在所述第三车辆起动模式下,在通过所述起动器启动所述发动机之后,使所述强电继电器连接。

说明书 :

混合动力车辆的起动控制装置以及起动控制方法

技术领域

[0001] 本发明涉及一种将发动机与行驶用马达一起使用来作为车辆驱动源的混合动力车辆的车辆起动控制。

背景技术

[0002] 作为将发动机与行驶用马达一起使用于车辆驱动源的混合动力车辆,在专利文献1中公开了如下一种混合动力车辆:在发动机与驱动轮之间插入安装行驶用马达,并且在这些发动机与行驶用马达之间插入安装离合器且设置有驱动发动机的曲轴使该曲轴旋转的起动器。在这样的混合动力车辆中,作为发动机的启动方法,除了将离合器接合而通过行驶用马达启动发动机以外,还能够通过起动器直接启动发动机。因而,例如在向行驶用马达供给电力的强电电池的输出低时,也能够通过起动器可靠地启动发动机,能够实现强电电池的低容量化和小型化。
[0003] 专利文献1:日本特开2005-255158号公报

发明内容

[0004] 发明要解决的问题
[0005] 作为根据驾驶员的点火钥匙、点火开关的操作检测出车辆起动请求时的车辆起动模式,期望选择不启动发动机而通过行驶用马达使车辆成为可行驶状态的起动模式。该理由是:由于不需要启动发动机,因此从检测出车辆起动请求起直至完成车辆的起动而车辆成为可行驶状态为止的时间短。在车辆的起动完成而车辆成为可行驶状态之后,根据驾驶员的加速操作等进行发动机的启动。例如随着由驾驶员的加速操作产生的车辆请求驱动力的增加而启动发动机,从将行驶用马达作为主要驱动源的EV模式被切换为将发动机与行驶用马达一起使用的HEV模式。
[0006] 然而,在插入安装在发动机与行驶用马达之间的离合器是通过液压的供给而接合的常开型的液压离合器的情况下,在车辆温度低的低温时,由于工作油的温度低且粘性高,因此到将该离合器接合为止会花费时间。因此,当在低温时选择了通过上述行驶用马达使车辆成为可行驶状态的起动模式、例如车辆起动刚刚完成之后就根据由驾驶员的加速操作产生的请求驱动力的增加而启动发动机那样的情况下,到将离合器接合而通过行驶用马达启动发动机为止会花费时间,从而与车辆请求驱动力的增加相应的车辆驱动力的增加发生响应延迟。也考虑通过起动器启动发动机来代替通过上述行驶用马达启动发动机,但是在该情况下,在通过起动器启动发动机之后仍旧需要将离合器接合,因此花费更多的时间。
[0007] 用于解决问题的方案
[0008] 本发明是鉴于这样的情形而完成的。即,本发明所涉及的混合动力车辆具备:发动机;行驶用马达,其被插入安装在该发动机与驱动轮之间;强电电池,其向该行驶用马达供给电力;所谓的常开型的液压式的离合器,其被插入安装在所述发动机与行驶用马达之间,在被供给液压时接合;以及起动器,其通过驱动所述发动机的曲轴使该曲轴旋转来启动发动机。
[0009] 而且,在检测出车辆起动请求时,至少根据所述车辆温度从第一车辆起动模式、第二车辆起动模式以及第三车辆起动模式中选择某一个车辆起动模式,在所述第一车辆起动模式下通过所述行驶用马达使车辆成为可行驶状态,在所述第二车辆起动模式下将所述离合器接合而通过所述行驶用马达启动所述发动机来使车辆成为可行驶状态,在所述第三车辆起动模式下在通过所述起动器启动所述发动机之后将所述离合器接合来使车辆成为可行驶状态。
[0010] 特别地,在所述车辆温度为第一温度判定值以下的低温时,选择所述第二车辆起动模式。通过像这样在低温时将离合器接合而通过行驶用马达启动发动机后使车辆成为可行驶状态,由此在车辆的起动完成而成为可行驶状态之后,即使通过驾驶员的加速踏板踩踏操作而车辆请求驱动力急剧增加,也能够将发动机与行驶用马达一起使用来使车辆驱动力迅速地增加,不会导致如上述那样随着离合器的接合而车辆驱动力的响应延迟。
[0011] 发明的效果
[0012] 根据本发明,在检测出车辆起动请求时,根据车辆温度适当地选择车辆起动模式,由此能够实现车辆起动时间的缩短化,并且特别是在工作油的粘度变高的低温时选择第二车辆起动模式,来在车辆起动完成前预先将离合器接合而通过行驶用马达启动发动机,由此能够可靠地消除在车辆起动完成之后伴随离合器接合以及发动机启动产生的车辆驱动力的响应延迟。

附图说明

[0013] 图1是表示应用本发明的一个实施例的混合动力车辆的系统结构的结构说明图。
[0014] 图2是表示该混合动力车辆的模式切换的特性的特性图。
[0015] 图3的(A)是表示检测出该混合动力车辆的起动请求时的起动顺序的说明图,(B)和(C)是表示第二HEV起动模式下的车辆起动时的发动机转速、马达转速以及弱电电池的电压的变化的说明图。
[0016] 图4是表示检测出上述混合动力车辆的起动请求时的起动模式的选择处理的内容的流程图。
[0017] 图5是表示强电电池的电池输出的判定中所使用的控制对应图的一例的特性图。

具体实施方式

[0018] 以下,根据附图详细说明本发明的一个实施例。图1是表示FF(前置发动机/前端驱动器)型混合动力车辆的系统结构作为应用本发明的混合动力车辆的一例的结构说明图。此外,图中的粗的实线表示强电电路11,双划线表示弱电电路15,细的实线表示信号线,虚线的箭头线表示液压电路27。
[0019] 该混合动力车辆将发动机1与作为行驶用马达的电动发电机2一起使用作为车辆的驱动源,并且具备带式无级变速机3作为变速机构。在发动机1与电动发电机2之间的动力传递路径中插入有在进行动力传递和断开动力传递之间进行切换的第一离合器4,在电动发电机2与带式无级变速机3的动力传递路径中插入有在进行动力传递与断开动力传递之间进行切换的第二离合器(5a、5b)。
[0020] 发动机1包括例如汽油发动机,根据来自发动机控制器20的控制指令进行启动控制以及停止控制,并且控制节气门的开度且进行燃料切断控制等。
[0021] 被插入安装在上述发动机1的曲轴1a与电动发电机2的转子之间的第一离合器4根据所选择的行驶模式将发动机1与电动发电机2结合、或者将发动机1从电动发电机2断开,根据来自离合器控制器24的控制指令通过由具备液压控制阀(省略图示)的离合器液压控制部29生成的第一离合器液压来控制第一离合器4的接合和断开。在本实施例中,第一离合器4是在被供给液压的液压供给时接合、在不被供给液压的液压解除时通过膜片弹簧(diaphragm spring)的作用力始终断开的所谓的常开型的液压式的干式离合器。
[0022] 电动发电机2例如包括三相交流的同步型电动发电机,与包括强电电池12、逆变器13以及强电继电器14的强电电路11连接。在图1中,用粗的实线表示强电电路11。电动发电机2根据来自马达控制器22的控制指令进行马达动作(所谓的动力运转)以及再生动作这双方,在该马达动作中,经由逆变器13接受来自强电电池12的电力供给并输出正的扭矩,在该再生动作中,吸收扭矩来发电,并经由逆变器13进行强电电池12的充电。
[0023] 设置在电动发电机2的转子与无级变速机3的输入轴3e之间的第二离合器(5a、5b)进行包括发动机1和电动发电机2的车辆驱动源与驱动轮6(前轮)之间的动力的传递和断开该动力的传递,根据来自离合器控制器24(或者,变速机控制器21)的控制指令通过由具备液压控制阀(省略图示)的离合器液压控制部29向无级变速机3供给的第二离合器液压来控制第二离合器(5a、5b)的接合和断开。特别地,第二离合器(5a、5b)能够通过传递扭矩容量的可变控制成为伴随着滑动进行动力传递的滑动接合状态,在不具备扭矩转换器的结构中,能够平滑地起步,并且实现了蠕动行驶。
[0024] 在此,上述第二离合器实际上并非单一的摩擦元件,在无级变速机3的输入部设置的前进和后退切换机构5中的前进离合器5a或后退制动器5b被用作第二离合器。将向无级变速机3输入的输入旋转方向切换为前进行驶时的正转方向和后退行驶时的反转方向的前进和后退切换机构5包括行星齿轮机构、在前进行驶时被接合的前进离合器5a以及在后退行驶时被接合的后退制动器5b,在前进行驶时,前进离合器5a作为第二离合器发挥功能,在后退行驶时,后退制动器5b作为第二离合器发挥功能。在作为第二离合器的前进离合器5a和后退制动器5b双方被断开的状态下,不进行扭矩传递,电动发电机2的转子与无级变速机3实质上被断开。此外,在本实施例中,前进离合器5a和后退制动器5b均是在液压供给时接合、在液压解除时断开的所谓的常开型的湿式多板离合器。
[0025] 上述的行星齿轮机构是具有太阳齿轮5c、行星架5d以及环齿轮5e的单小齿轮式的机构。太阳齿轮5c与带式无级变速机3的输入轴3e连结,行星架5d经由后退制动器5b与离合器盖5f连结,环齿轮5e与电动发电机2的输出轴2a连结。
[0026] 带式无级变速机3具有输入侧的主皮带轮3a、输出侧的副皮带轮3b以及卷绕在两者之间的金属制的带3c,根据来自变速机控制器21的控制指令通过从变速机液压控制部30供给的主液压和副液压连续地控制各皮带轮3a、3b的皮带接触半径、甚至是变速比。该无级变速机3的输出轴3d经由终减速机构6a与驱动轮6连接。
[0027] 上述发动机1具备启动用的起动器18。该起动器18包括额定电压比电动发电机2低的直流马达,与包括DC/DC转换器16和弱电电池17的弱电电路15连接。起动器18根据来自发动机控制器20的控制指令而被驱动,通过设置于起动器18的输出轴的小齿轮18a与设置于发动机1的曲轴1a的环齿轮1b啮合来驱动曲轴1a使该曲轴1a旋转,由此进行发动机的动力输出轴转动(cranking)。
[0028] 这样,针对具备作为行驶用马达的电动发电机2的混合动力车辆另外设置起动器18,因此即使处于如极低温时、强电电池12极低输出时那样不能或很难通过电动发电机2启动发动机1的状况,也能够通过起动器18可靠地启动发动机1。因而,能够实现向电动发电机
2供给电力的强电电池12的小型化和低容量化。
[0029] 通过来自包括强电电池12的强电电路11的电力经由DC/DC转换器16对上述弱电电池17进行充电。此外,包括发动机控制器20等的车辆的控制系统、车辆的空调装置、音频装置、照明以及强电继电器14等接受弱电电路15的电力供给。
[0030] 在图1的虚线的箭头线所示的液压电路27设置有油泵28、离合器液压控制部29以及变速机液压控制部30。油泵28是经由链条28a与电动发电机2的输出轴2a连结、且被该输出轴2a驱动而旋转的机械式的泵,对从未图示的油底壳侧输送过来的工作油进行加压而向液压电路27排出。此外,虽未图示,但是也可以除了使用该机械式的油泵28以外,还一起使用由副马达驱动的电动式的油泵,在机械式的油泵28的工作油的排出量/液压不足时,使电动式的油泵工作。
[0031] 变速机液压控制部30如上所述那样根据来自变速机控制器21的控制指令,对向带式无级变速机3供给的主液压和副液压进行控制。离合器液压控制部29如上所述那样根据来自离合器控制器24的控制指令,对向第一离合器4供给的第一离合器液压进行控制,并且对向第二离合器(5a、5b)供给的第二离合器液压进行控制。
[0032] 上述混合动力车辆的控制系统除了具备上述的发动机控制器20、变速机控制器21、马达控制器22、离合器控制器24以外,还具备进行强电电池12的充电状态(SOC)的监视和控制的电池控制器23以及进行包含后述的车辆起动控制在内的车辆整体的综合控制的综合控制器25,这些各控制器20、21、22、23、24、25经由能够相互交换信息的CAN通信线26连接。另外,作为检测车辆驾驶状态的各种传感器,设置有检测作为强电电池12的电池输出的输出电压的电池电压传感器31、检测发动机转速的发动机转速传感器32、检测由驾驶员操作的加速踏板的加速踏板开度的加速踏板开度传感器33、检测变速机3的输出轴3d的转速的变速机输出转速传感器34、检测电动发电机2的输出轴2a的转速的马达转速传感器35、检测第二离合器输出轴(变速机输入轴3e)的转速的第二离合器输出转速传感器36等,除此之外,作为检测车辆温度的各种传感器,设置有检测工作油的油温的工作油温传感器37、检测发动机水温的发动机水温传感器38、检测强电电池12的温度的电池温度传感器39、检测前进离合器5a的温度的前进离合器温度传感器40、检测后退制动器5b的温度的后退制动器温度传感器41、检测逆变器13的温度的逆变器温度传感器42、检测电动发电机2的马达温度的马达温度传感器43等。这些传感器的检测信号各自被输入到综合控制器25等各控制器、或者经由CAN通信线26被输入到综合控制器25等各控制器。
[0033] 如上述那样构成的混合动力车辆具有电动汽车行驶模式(以下称为“EV模式”。)、混合动力行驶模式(以下称为“HEV模式”。)以及驱动扭矩控制起步模式(以下称为“WSC模式”。)等行驶模式,根据车辆的驾驶状态、驾驶员的加速操作等选择最佳的行驶模式。
[0034] “EV模式”是使第一离合器4成为断开状态并仅将电动发电机2作为驱动源来行驶的模式,具有马达行驶模式和再生行驶模式。在驾驶员的车辆请求驱动力比较低时选择该“EV模式”。
[0035] “HEV模式”是使第一离合器4成为接合状态并将发动机1和电动发电机2作为驱动源来行驶的模式,具有马达辅助行驶模式、行驶发电模式、发动机行驶模式。在驾驶员的请求驱动力比较大时以及在存在基于强电电池12的充电状态(SOC)、车辆的驾驶状态等的来自系统的请求时选择该“HEV模式”。
[0036] “WSC模式”是在车辆起步时等的车速比较低的区域被选择的模式,通过对电动发电机2控制转速并对第二离合器5a、5b的传递扭矩容量进行可变控制,来使第二离合器5a、5b成为滑动接合状态。
[0037] 图2表示基于车速VSP和加速踏板开度APO的上述的“EV模式”、“HEV模式”、“WSC模式”的基本的切换的特性。如图示那样,从“HEV模式”向“EV模式”转变的“HEV→EV切换线”与相反地从“EV模式”向“HEV模式”转变的“EV→HEV切换线”之间被设定为具有适当的迟滞。另外,在规定的车速VSP1以下的区域,为“WSC模式”。
[0038] 图3的(A)是表示在车辆起动时由综合控制器25执行的车辆的起动顺序的说明图。此外,图3的(B)和(C)表示使用了后述的起动器18的第二HEV起动模式M3被选择时的发动机转速、马达转速以及弱电电池的输出电压的变化,当根据驾驶员的点火钥匙(或点火开关)的操作检测出车辆启动请求(IGN ON)时,首先,在起动判定阶段P1,从三个车辆起动模式M1~M3中选择一个车辆起动模式。
[0039] 作为第一车辆起动模式的EV起动模式M1是能够在最短的时间(例如3秒以内)完成车辆的起动而成为车辆可行驶状态(Ready On)的起动模式,除了后述的低温时、强电电池12的低输出时,基本上选择该EV起动模式M1。在该EV起动模式M1下,省略后述的起动器控制阶段P2而进入强电连接阶段P3,使强电继电器14连接而成为能够通过强电电池12驱动电动发电机2的状态。在接下来的起动前准备阶段P4,驱动电动发电机2。伴随着该电动发电机2的驱动,油泵28被驱动而液压电路27内的液压上升,当能够确保第一离合器4(CL1)的接合所需要的液压时,完成车辆的起动,进入车辆可行驶阶段P5,成为车辆能够在EV模式下行驶的可行驶状态。
[0040] 作为第二车辆起动模式的第一HEV起动模式M2是在假定如工作油的粘性变高的低温时、强电电池12低输出时那样在车辆起动完成后从EV模式向HEV模式转变时由于第一离合器4的接合和发动机1的启动花费时间而导致车辆驱动力的响应延迟成为问题的情况下选择的起动模式。在该第一HEV起动模式M2下,与EV起动模式M1同样地,首先在强电连接阶段P3中使强电继电器14连接而成为能够由强电电池12驱动电动发电机2的状态。在接下来的起动前准备阶段P4中,驱动电动发电机2,随着驱动该电动发电机2而驱动油泵28从而液压电路27内的液压上升,当能够确保第一离合器4的接合所需要的液压时,将第一离合器4接合,进行由电动发电机2驱动发动机1的曲轴1a使该曲轴1a旋转的马达的动力输出轴转动,从而启动发动机1。当发动机1的启动完成时,完成车辆的起动而进入车辆可行驶阶段P5,成为车辆能够在HEV模式下行驶的可行驶状态。
[0041] 作为第三车辆起动模式的第二HEV起动模式M3是在假定为如极低温时、强电电池12极低输出时那样不能或很难通过电动发电机2启动发动机1的状况下选择的模式。在该第二HEV起动模式M3下,首先进入起动器控制阶段P2,进行由起动器18驱动发动机1的曲轴1a使该曲轴1a旋转的起动器的动力输出轴转动。然后,在利用该起动器的动力输出轴转动进行的发动机1的启动完成之后,进入强电连接阶段P3,使强电继电器14连接而成为能够驱动电动发电机2的状态。在接下来的起动前准备阶段P4中,驱动电动发电机2,伴随着驱动该电动发电机2而驱动油泵28从而液压电路27内的液压上升,当能够确保第一离合器4的接合所需要的液压时,将第一离合器4接合,使电动发电机2的转速与发动机转速同步。在该第一离合器4接合时,为了不产生扭矩冲击,而通过控制例如电动发电机2的转速,来使电动发电机
2的转速与发动机转速同步并使第一离合器4逐渐地接合。当第一离合器4的接合完成时,完成车辆的起动而进入车辆可行驶阶段P5,成为车辆能够在HEV模式下行驶的可行驶状态。
[0042] 图4是表示上述的车辆起动阶段P1中的车辆起动模式的选择处理的内容的流程图,例如在检测出车辆起动请求时由综合控制器25执行本例程。
[0043] 在步骤S11中,判定是否处于车辆温度为第二温度判定值以下的极低温状态。第二温度判定值是相当于如果车辆温度低于该值则不能或很难通过电动发电机2启动发动机1的车辆温度的例如-15℃左右的值,能够适当地预先设定等。作为车辆温度,能够使用一个或多个由上述的温度传感器37~43检测出的检测温度,如果例如发动机水温、电池温度以及工作油温中的任一个为上述第二温度判定值以下,则设为极低温状态而从步骤S11进入步骤S16,选择上述的第二HEV起动模式M3。
[0044] 在步骤S12中,判定由电池电压传感器31检测出的强电电池12的电池输出(电压)是否为规定的第二输出判定值以下。第二输出判定值相当于如果电池输出低于该值则不能或很难通过电动发电机2启动发动机1的电池输出的值。如果电池输出为第二输出判定值以下,则从步骤S12进入步骤S16,选择上述第二HEV起动模式M3。
[0045] 图5表示在步骤S12的判定中使用的控制对应图的一例。如该图所示,作为车辆温度的发动机水温越低,则通过电动发电机2启动发动机1(马达的动力输出轴转动)所需要的强电电池12的电池输出Pout越大,因此表示第二输出判定值的第二输出判定表Pt2的值也是发动机水温越低则为越低的值。根据发动机水温(车辆温度)和电池输出来查询图5的控制对应图,如果当前的发动机水温和电池输出在第二输出判定表Pt2左下方的NG区域,则判定为处于电池输出Pout为第二输出判定值以下的极低输出状态。
[0046] 再次参照图4,在步骤S13中,判定是否处于车辆温度为第一温度判定值以下的低温状态。第一温度判定值是至少比上述的第二温度判定值大的值,是相当于如果车辆温度低于该值则工作油的粘性变高而第一离合器4的接合所需要的时间、即通过电动发电机2启动发动机1(马达的动力输出轴转动)所需要的时间变长从而从EV模式向HEV模式切换时车辆驱动力的响应延迟成为问题的车辆温度的例如0℃附近的值。如果是处于车辆温度为第一温度判定值以下的低温状态,则从步骤S13进入步骤S17,选择上述第一HEV起动模式M2。
[0047] 在步骤S14中,判定电池输出是否为规定的第一输出判定值以下。第一输出判定值为至少比上述第二输出判定值大的值,相当于如果电池输出低于该值则通过电动发电机2启动发动机1的启动时间变长从而从EV模式向HEV模式切换时车辆驱动力的响应延迟成为问题的电池输出。如果处于电池输出为第一输出判定值以下的低输出状态,则从步骤S14进入步骤S17,选择上述第一HEV起动模式M2。
[0048] 参照图5,作为车辆温度的发动机水温越低,则通过电动发电机2启动发动机1(马达的动力输出轴转动)所花费的时间越长,因此表示第一输出判定值的第一输出判定表Pt1的值也是发动机水温越低则为越低的值。根据发动机水温(车辆温度)和电池输出来查询图5的控制对应图,如果当前的发动机水温和电池输出在第一输出判定表Pt1左下方的NG区域,则判定为处于电池输出Pout为第一输出判定值以下的低输出状态。
[0049] 再次参照图4,如果步骤S11~S14的判定全部为否定,则进入步骤S15,选择EV起动模式M1。也就是说,在车辆温度为至少超过第一温度判定值(0℃左右)的常温状态且强电电池12的电池输出有余裕的通常状态下,选择不启动发动机1的EV起动模式M1。
[0050] 如以上那样,在本实施例中,在检测出车辆起动请求时,根据车辆温度和强电电池12的电池输出,选择上述的三个车辆起动模式M1~M3中的某一个,因此能够以与车辆温度和强电电池12的输出相应的形式可靠地在短时间内进行车辆的起动。
[0051] 特别地,在车辆温度为第一温度判定值以下的低温时,选择第一HEV起动模式M2(第二车辆起动模式),通过电动发电机2启动发动机1后使车辆成为可行驶状态。该理由是:在低温时,工作油的粘度变高从而第一离合器4的接合花费时间,通过电动发电机2启动发动机花费时间。因此,假设在低温时基于EV起动模式M1起动车辆的情况下,在车辆成为可行驶状态之后根据驾驶员的加速操作等从EV模式向HEV模式转变时,随着第一离合器4的接合而进行的发动机1的启动花费时间,有可能致使车辆驱动力的增加产生响应延迟。其结果,例如在车辆在陡的上坡起步时,有可能无法迅速地获得期望的车辆驱动力,从而给予车辆后退那样的印象。
[0052] 在本实施例中,在像这样的低温时选择第一HEV起动模式M2,在车辆起动完成前预先将第一离合器4接合而通过电动发电机2启动发动机1,因此虽然与选择EV起动模式M1的情况相比车辆的起动要花费些许时间(5秒~6秒左右),但是在成为车辆可行驶状态之后,不会产生随着发动机启动的延迟产生的车辆驱动力的响应延迟,从而能够提高车辆驱动力的响应性。另外,与选择通过起动器18启动发动机1的第二HEV起动模式M3的情况相比,能够缩短车辆的起动所需要的时间。
[0053] 另外,在强电电池12的电池输出为第一输出判定值以下的低输出时,假设以EV起动模式M1使车辆起动的话,在车辆起动完成之后从EV模式向HEV模式转变时,由于强电电池12的输出不足而导致通过电动发电机2启动发动机1花费时间,与上述的低温时的情况同样地有可能导致车辆驱动力的响应延迟。因此,在像这样的强电电池12的低输出时,也选择第一HEV起动模式M2(第二车辆起动模式),通过电动发电机2启动发动机1后使车辆成为可行驶状态。由此,在成为车辆可行驶状态之后,不会产生随着发动机启动的延迟产生的车辆驱动力的响应延迟,从而能够提高车辆驱动力的响应性。
[0054] 在车辆温度为第二温度判定值以下的极低温时,工作油的粘度非常高,不能或者很难在发动机1启动前将第一离合器4接合。因此,在本实施例中,在像这样的极低温时,选择第二HEV起动模式M3(第三车辆起动模式),虽然车辆的起动花费时间(较长时为10秒以上),但是在车辆起动完成前通过起动器18可靠地启动发动机1。
[0055] 在强电电池12的电池输出为第二输出判定值以下的极低输出时,由于强电电池12的输出不足也不能或很难通过电动发电机2启动发动机1,因此选择第二HEV起动模式M3(第三车辆起动模式),在车辆起动完成前通过起动器18可靠地启动发动机1。
[0056] 在基于第二HEV起动模式M3使车辆起动的情况下,如图3的(C)所示,在通过起动器18转动发动机1的动力输出轴时,弱电电池17的电压暂时地/瞬间地大幅下降。因此,在通过该起动器18进行的发动机1的动力输出轴转动中,假设使通过来自弱电电池17的电力供给而工作的强电继电器14连接,有可能产生振荡。因此,为了避免像这样的强电继电器14的振荡的产生,而在通过起动器18进行的发动机1的启动完成之后使强电继电器14连接,成为可驱动电动发电机2的状态。
[0057] 此外,在上述实施例中,根据强电电池12的电池输出进行了起动判定,但是也可以根据强电电池12的充电状态(SOC)进行起动判定。具体地说,也可以在强电电池12的充电余量少而无法通过电动发电机2启动发动机1的情况下,选择第二HEV起动模式M3,通过起动器18可靠地启动发动机1。