晶片保持台及其制法转让专利

申请号 : CN201580001957.0

文献号 : CN105580129B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 矢纳拓弥大场教磨川尻哲也鹤田英芳

申请人 : 日本碍子株式会社

摘要 :

本发明提供晶片保持台(10),其在陶瓷制的静电卡盘(12)与金属制的冷却板(14)之间具备树脂制的粘接层(16)。粘接层(16)包含与静电卡盘(12)接触的第一层(16a)、与冷却板(14)接触的第二层(16b)、以及位于第一层(16a)和第二层(16b)之间的中间层(16c)。第一层(16a)和中间层(16c)的耐热性比第二层(16b)的耐热性高,第二层(16b)的柔软性比第一层(16a)和中间层(16c)的柔软性高,各层气密地接触。

权利要求 :

1.一种晶片保持台,是在陶瓷制的静电卡盘与金属制的冷却板之间具备树脂制的粘接层的晶片保持台,所述粘接层包含与所述静电卡盘接触的第一层、与所述冷却板接触的第二层、以及位于所述第一层和所述第二层之间的中间层,所述第一层和所述中间层的耐热性比所述第二层的耐热性高,所述第二层的柔软性比所述第一层和所述中间层的柔软性高,各层气密地接触。

2.如权利要求1所述的晶片保持台,在室温下,所述第二层的弹性模量比所述第一层和所述中间层小。

3.如权利要求1或2所述的晶片保持台,所述第二层为环氧-丙烯酸酯混合树脂层,在室温下,剪切的弹性模量Z(MPa)为0.048≦Z≦2.350。

4.如权利要求1或2所述的晶片保持台,

所述第一层和所述中间层分别为在200℃显示出耐热的聚酰亚胺系树脂层、环氧系树脂层或PEEK树脂层之一,所述第二层为环氧-丙烯酸酯混合树脂层。

5.如权利要求4所述的晶片保持台,

所述第一层和所述中间层分别为在250℃显示出耐热的聚酰亚胺系树脂层、环氧系树脂层或PEEK树脂层之一。

6.如权利要求1或2所述的晶片保持台,

所述第二层的厚度为150~400μm,比所述第一层和所述中间层的厚度之和薄。

7.如权利要求3所述的晶片保持台,

所述第一层和所述中间层分别为在250℃显示出耐热的聚酰亚胺系树脂层、环氧系树脂层或PEEK树脂层之一,所述第二层的厚度为150~400μm,比所述第一层和所述中间层的厚度之和薄。

8.一种晶片保持台的制法,是制造权利要求1或2所述的晶片保持台的方法,在所述静电卡盘的一面设置所述第一层进行热固化之前的第一层前驱体的层,并且在所述冷却板的一面设置所述第二层进行热固化之前的第二层前驱体的层,向所述静电卡盘的所述第一层前驱体的层与所述冷却板的所述第二层前驱体的层之间夹入相当于所述中间层的经热固化的平坦的树脂片,从而形成层叠体,将该层叠体装入袋内,对该袋内进行减压后,一边从该袋的外部加压一边加热,从而使所述第一层前驱体的层和所述第二层前驱体的层热固化。

9.如权利要求8所述的晶片保持台的制法,

所述第二层前驱体的层是粘接材料的层,所述粘接材料包含(A)能够进行氢转移型加聚的环氧树脂、(B)丙烯酸酯或甲基丙烯酸酯的聚合物和(C)固化剂。

说明书 :

晶片保持台及其制法

技术领域

[0001] 本发明涉及晶片保持台及其制法。

背景技术

[0002] 在将陶瓷制的静电卡盘(静电卡盘加热器、基座)和金属制的冷却板粘接的晶片保持台中,对静电卡盘与冷却板的粘接,一般使用树脂性粘接胶带、粘接材料(例如专利文献1等)。这样的晶片保持台,其使用温度由于树脂的耐热性而受到限制(一般为100℃以下,即使能够在高温下使用,最高也只是150℃以下)。若要使用具有耐热性的树脂,则树脂的弹性模量高,无法吸收陶瓷与冷却板的热膨胀差,会产生变形、裂纹,从而难以作为晶片保持台来使用。在用金属焊料等接合的情况下,若能接合,则在高温下也能够使用,但若不使陶瓷与冷却板(金属)的热膨胀一致,则在接合时会产生变形、裂纹。
[0003] 另一方面,专利文献2中,公开了在陶瓷基体和具有水路的基板之间设置有耐热层、粘接层和隔热层的装置。耐热层是以聚酰亚胺等绝缘性树脂、低熔点玻璃、氧化铝、二氧化硅等无机系材料为基础的无机粘接材料等。粘接层和隔热层为有机硅等的绝缘性树脂。为了制造这样的装置,首先在基板上形成隔热层。具体地,将含有填料的有机硅等的绝缘性树脂层压在基板上,对该树脂一边根据需要进行按压,一边加热至固化温度以上使其固化。
接着,在陶瓷基体的一面形成耐热层。为了形成耐热层,可将薄膜上的材料层压并使其固化,也可涂布液状或糊状的材料并使其固化。接着,在隔热层上形成粘接层,在使粘接层固化之前,在粘接层上搭载陶瓷基体,以使陶瓷基体的耐热层侧与粘接层接触。然后,将粘接层加热至固化温度以上,使其固化。用这样的装置,能够使使用温度比以往高。此外,由于设置有具有柔软性的粘接层,因此在加热时产生应力的情况下,也能够用粘接层来缓和所产生的应力。
[0004] 现有技术文献
[0005] 专利文献
[0006] 专利文献1:日本特开2009-71023号公报
[0007] 专利文献2:日本特开2013-120835号公报

发明内容

[0008] 发明所要解决的课题
[0009] 然而,专利文献2的装置中,粘接层比耐热层富有柔软性(弹性模量低),因此在粘接层与隔热层之间、粘接层与耐热层之间有可能会产生剥离。作为其原因之一,可认为如下:在制造该装置的过程中,在耐热层与隔热层之间夹入固化之前的粘接层,在该状态下进行加热,使粘接层固化,但由于固化之前的粘接层易变形,因此无法维持平坦,气泡容易进入层间。
[0010] 本发明为了解决上述课题而完成,主要目的在于,提供一种即使在高温下也能够良好地维持静电卡盘与冷却板的粘接状态的晶片保持台。
[0011] 用于解决课题的方法
[0012] 本发明的晶片保持台如下:
[0013] 是在陶瓷制的静电卡盘与金属制的冷却板之间具备树脂制的粘接层的晶片保持台,
[0014] 所述粘接层包含与所述静电卡盘接触的第一层、与所述冷却板接触的第二层、以及位于所述第一层和所述第二层之间的中间层,所述第一层和所述中间层的耐热性比所述第二层的耐热性高,所述第二层的柔软性比所述第一层和所述中间层的柔软性高,各层气密地接触。
[0015] 本发明的晶片保持台中,粘接层中的与静电卡盘接触的第一层负责耐热性,粘接层中的与冷却板接触的第二层负责柔软性即应力缓和。一般而言,耐热性高的树脂材料的弹性模量高,因此将它用于陶瓷与金属的粘接层的材料时,难以吸收两者的热膨胀差,容易产生变形、裂纹。另一方面,一般而言,柔软性高的树脂材料的耐热性低,因此将它用于陶瓷与金属的粘接层的材料时,会因热而脆化,容易产生剥离。据此,本发明中,通过使第一层负责耐热性、冷却板侧的第二层负责柔软性,由此取得耐热性和应力缓和双方的平衡。此外,将第一层和第二层之间的中间层设为耐热性高的树脂材料,即弹性模量高且难以变形的树脂材料,从而在通过热固化来形成粘接层的阶段,空气不会进入各层之间,而在热固化后成为各层之间气密地接触的状态。因此,即使在高温状态下,各层之间也不会产生剥离。从而,根据本发明的晶片保持台,即使在高温(例如150℃以上)下也能够良好地维持静电卡盘与冷却板的粘接状态。
[0016] 制造本发明的晶片保持台的方法如下:
[0017] 在所述静电卡盘的一面设置所述第一层进行热固化之间前的第一层前驱体的层,并且在所述冷却板的一面设置所述第二层进行热固化之前的第二层前驱体的层,向所述静电卡盘上的所述第一层前驱体的层与所述冷却板上的所述第二层前驱体的层之间夹入相当于所述中间层的经热固化的平坦的树脂片,从而形成层叠体,将该层叠体装入袋内,对该袋内进行减压后,一边从该袋的外部加压一边加热,从而使所述第一层前驱体的层和所述第二层前驱体的层热固化。
[0018] 该制法中,向静电卡盘的第一层前驱体的层与冷却板的第二层前驱体的层之间夹入相当于中间层的经热固化的平坦的树脂片而得到层叠体,将所述层叠体装入袋内进行减压后,在加压下,连同袋一起加热,使第一层前驱体的层和第二层前驱体的层热固化。因此,在制作层叠体的阶段,空气不会进入各层之间,其结果是,在热固化后成为各层之间气密地接触的状态。从而,所得到的晶片保持台,即使在高温状态下也不会在各层之间产生剥离。这样的制法,可谓是适合于获得本发明的晶片保持台的方法。

附图说明

[0019] 图1为晶片保持台10的截面图。
[0020] 图2为晶片保持台10的制造工序图。
[0021] 图3为剪切试验装置的说明图。

具体实施方式

[0022] 图1中示出本发明的晶片保持台的一个实施方式。图1为晶片保持台10的截面图。
[0023] 晶片保持台10在陶瓷制的静电卡盘12与金属制的冷却板14之间具备树脂制的粘接层16。
[0024] 作为静电卡盘12,可使用例如在氧化铝制、氮化铝制的陶瓷基材中内置有静电电极12a和加热器电极12b的公知的静电卡盘。通过贯通粘接层16和冷却板14的供电部件13a,从外部对静电电极12a供给电力。此外,通过贯通粘接层16和冷却板14的供电部件13b,从外部对加热器电极12b供给电力。另外,各供电部件13a、13b与冷却板14电绝缘。静电卡盘12的上表面是载置晶片的面,对所载置的晶片,用静电电极12a的静电力吸附保持于该面上,并通过加热器电极12b进行加热。
[0025] 关于冷却板14,可使用内置有能够使冷却液等制冷剂循环的制冷剂通路14a的公知的冷却板。冷却板14由导热性良好的材料,例如铝、铝合金等金属材料制作。由于冷却板14中内置有制冷剂通路14a,因此即使在使静电卡盘12成为高温时,冷却板14也会通过制冷剂(例如冷却液)而被设为低的温度。
[0026] 粘接层16包含与静电卡盘12接触的第一层16a、与冷却板14接触的第二层16b、以及位于第一层16a和第二层16b之间的中间层16c。由于粘接层16夹在高温的静电卡盘12和低温的冷却板14之间,因此能在粘接层16的内部形成温度分布。因此,对构成粘接层16的各层,使用可耐受与其温度分布对应的温度的材料。第一层16a和中间层16c邻近发热的静电卡盘12,与第二层16b相比容易成为高温,因此使用耐热性比第二层16b高的材料。第二层16b邻近冷却板14,与第一层16a和中间层16c相比容易成为低温,因此使用柔软性比第一层
16a和中间层16c高的材料,缓和因静电卡盘12与冷却板14的热膨胀差而产生的应力。此外,第一层16a与中间层16c、中间层16c与第二层16b分别气密地接触。在此,气密地接触是指在层间没有φ1mm以上的气泡,且小于φ1mm的气泡在每706.5cm2中为20个以下。例如,在从静电卡盘12的上表面可透过看到粘接层16或从冷却板14的下表面可透过看到粘接层16的情况下,也可通过目视来判断气泡的有无。或者,将晶片保持台10放入纯水中,利用超声波探伤装置来调查气泡的有无。无论静电卡盘12、冷却板14是否透明,都能够实施利用超声波探伤装置来判断有无气泡。
[0027] 第一层16a和中间层16c优选为在200℃(优选为在250℃)显示出耐热的聚酰亚胺系树脂层、环氧系树脂层或PEEK(聚醚醚酮)树脂层。聚酰亚胺系树脂层是含有至少具有酰亚胺键的高分子材料的树脂层。环氧系树脂层是含有通过具有反应性环氧基的预聚物与固化剂的反应而生成的三维固化物的树脂层。作为预聚物,可举出例如能够进行氢转移型加聚的物质等。这是因为,由于来自静电卡盘12的传热,第一层16a和中间层16c有可能会上升至这样的温度。此外,还因为聚酰亚胺系树脂、环氧系树脂或PEEK树脂的耐热性均为优异。中间层16c优选为平坦的树脂片。这是因为,这样容易形成各层之间气密地接触的状态。
[0028] 第二层16b优选为环氧-丙烯酸酯混合树脂层(エポキシ-アクリル混合樹脂層),在室温下剪切的弹性模量Z(MPa)优选为0.048≦Z≦2.350。这是因为,若第二层的剪切的弹性模量Z为上述范围内,则即使在高温时因静电卡盘12与冷却板14的热膨胀差而对粘接层16产生剪切应力,也能够缓和该应力。另外,这样的环氧-丙烯酸酯混合树脂层在例如日本特开2014-183077号公报中公开。第一层16a和中间层16c的弹性模量Z大于第二层16b,因此,与第二层16b相比缺乏柔软性且硬。第二层16b的厚度优选比第一层16a和中间层16c的厚度之和薄,优选为例如100~500μm,更优选为150~400μm。与第二层16b的厚度为100~500μm时相比,其厚度为150~400μm时更能够耐受高温。
[0029] 第二层16b优选为将环氧-丙烯酸酯混合树脂的粘接剂固化的层。这样的粘接剂可包含(A)能够进行氢转移型加聚的环氧树脂(预聚物)、(B)丙烯酸酯或甲基丙烯酸酯的聚合物(预聚物)、(C)固化剂。以下,对该粘接剂的成分和组成进行说明。
[0030] 作为成分(A)即能够进行氢转移型加聚的环氧树脂,可举出双酚A型环氧树脂、双酚F型环氧树脂、双酚AD型环氧树脂、苯酚酚醛清漆型环氧树脂、甲酚酚醛清漆型环氧树脂等。这样的环氧树脂在固化反应时不产生或几乎不产生低分子物质。
[0031] 作为成分(B)即丙烯酸酯或甲基丙烯酸酯的聚合物,可举出以丙烯酸烷基酯或甲基丙烯酸烷基酯为主成分的含环氧基丙烯酸类橡胶、以丙烯酸烷基酯或甲基丙烯酸烷基酯为主成分的含羧基丙烯酸类橡胶等。这样的聚合物在固化反应时也不产生或几乎不产生低分子物质。
[0032] 作为成分(C)即固化剂,可举出DICY(双氰胺)固化剂、咪唑系固化剂、胺系固化剂等。
[0033] 粘接剂的组成可设为如下:例如,含有成分(A)5~80质量%、成分(B)15~90质量%、成分(C)0.1~5质量%。特别是,在冷却板14上开有孔的情况下,若想抑制粘接剂从该孔溢出,则优选使成分(A)的质量%小于成分(B)的质量%,更优选设成含有成分(A)19~36质量%、成分(B)60~80质量%、成分(C)1~4质量%。另外,也可以作为其他成分,添加小于1质量%的端羧基-丁二烯-丙烯腈共聚液态橡胶(CTBN)。
[0034] 在以下的(1)~(5)中例示第二层16b用的粘接剂薄片即第二层前驱体的层26b。另外,这样的粘接剂薄片通过下述方法得到:将各成分用挥发性溶剂(丙酮、己烷等)稀释而得到粘接剂,使挥发性溶剂从该粘接剂中挥发,制成片形状。测定了将它们热固化后的剪切的弹性模量Z,结果均为0.23左右。
[0035] (1)含有双酚F型环氧树脂19质量%、以丙烯酸丁酯为主成分的含环氧基的丙烯酸类橡胶80质量%、DICY(双氰胺)固化剂1质量%的粘接剂薄片;
[0036] (2)含有甲酚酚醛清漆型环氧树脂29质量%、以丙烯酸乙酯为主成分的含环氧基的丙烯酸类橡胶70质量%、咪唑系固化剂1质量%的粘接剂薄片;
[0037] (3)含有双酚A型环氧树脂36质量%、以丙烯酸丁酯为主成分的含羧基的丙烯酸类橡胶60质量%、胺系固化剂4质量%的粘接剂薄片;
[0038] (4)含有双酚F型环氧树脂57质量%、以丙烯酸丁酯为主成分的含环氧基的丙烯酸类橡胶40质量%、DICY固化剂3质量%的粘接剂薄片;
[0039] (5)含有双酚F型环氧树脂76质量%、以丙烯酸丁酯为主成分的含环氧基的丙烯酸类橡胶20质量%、DICY固化剂4质量%的粘接剂薄片。
[0040] 接着,对上述晶片保持台10的制法的一个例子进行说明。在此,方便起见,省略对供电部件13a、13b的说明。图2为晶片保持台10的制造工序图。
[0041] 首先,在静电卡盘12的一面设置第一层16a进行热固化之前的第一层前驱体的层26a。并且,在冷却板14的一面设置第二层16b进行热固化之前的第二层前驱体的层26b。此外,准备相当于中间层16c的经热固化的平坦的树脂片26c。由于该树脂片26c经过热固化,因此没有粘接性。然后,在静电卡盘12的第一层前驱体的层26a与冷却板14的第二层前驱体的层26b之间夹入平坦的树脂片26c,从而形成层叠体。将该层叠体装入袋内,对袋内进行减压,将该袋放入高压釜,一边加压一边加热。通过这样操作,第一层前驱体的层26a和第二层前驱体的层26b进行热固化并分别成为第一层16a和第二层16b。第一层前驱体的层26a在被加热而软化或熔融后被冷却而进行固化时,将静电卡盘12与平坦的树脂片26c即中间层16c粘接。此外,第二层前驱体的层26b在被加热而软化或熔融后被冷却而进行固化时,将冷却板14与平坦的树脂片26c即中间层16c粘接。此时,由于经热固化的平坦的树脂片26c介于第一层前驱体的层26a和第二层前驱体的层26b之间,因此能够防止热固化后在各层之间产生气泡。
[0042] 以上所说明的晶片保持台10中,静电卡盘12侧的第一层16a负责耐热性,冷却板14侧的第二层16b负责柔软性。此外,第一层16a和第二层16b之间的中间层16c为耐热性高的树脂材料,即弹性模量高且不易变形的树脂材料,因此,在通过热固化来形成粘接层16的阶段,空气不进入各层之间,热固化后成为各层之间气密地接触的状态。因此,即使在高温状态下,在各层之间也不会产生剥离。据此,根据晶片保持台10,即使在高温(例如150℃以上)下也能够良好地维持静电卡盘12与冷却板14的粘接状态。
[0043] 另外,不言而喻,本发明不受上述实施方式的任何限定,只要属于本发明的技术范围内,就能够以各种方式实施。
[0044] 例如,上述实施方式中,在静电卡盘12的表面温度为200℃、冷却板14的温度为100℃、粘接层16的厚度为0.4mm的情况下(使导热率统一),粘接层16在厚度方向观察时的中间位置达到150℃。该情况下,优选第一层16a在200℃(优选为250℃)显示出耐热,第二层16b在150℃显示出耐热。这样,各层的耐热温度优选根据实际的静电卡盘12和冷却板14的温度而适宜地设定。
[0045] 上述晶片保持台10中,在第一层16a和第二层16b之间设置了一层中间层16c,但也可以例如从温度、设计等上考虑而设置两个以上的中间层16c。
[0046] 实施例
[0047] 1.晶片保持台样品的制作
[0048] [实验例1~13]
[0049] 实验例1~13是使用耐热性树脂作为第一层和中间层、使用柔软性树脂作为第二层的例子。按照以下程序制作各实验例的晶片保持台的样品。该样品是在图1中省略了供电部件13a、13b的样品。首先,在具有冷却水路的直径300mm的Al制的冷却板上,贴附作为应力缓和层前驱体的未固化且易变形的粘接剂薄片。在此,作为粘接剂薄片,使用在发明的实施方式的栏目中所说明的粘接剂薄片(3)。接着,在该粘接性薄片上贴合成为中间层的平坦的树脂片。平坦的树脂片是热固化后的耐热性树脂片,是没有粘接性且能够维持平坦的树脂片。接着,在平坦的树脂片上贴合作为耐热层前驱体的未固化的粘接性薄片。其中,在耐热层的前驱体为糊状的情况下(例如环氧系),在平坦的树脂片上涂布该糊。接着,通过在耐热层的前驱体上贴合埋设有电极的直径300mm、厚度4~5mm的陶瓷基体,从而制作层叠体。接着,将该层叠体用耐热性高的布包覆。进而将它装入树脂制的套袋,将袋内抽真空。将经抽真空的袋放入高压釜中,在150~180℃、1.0MPa下粘接。由此,应力缓和层的前驱体和耐热层的前驱体分别进行热固化,成为应力缓和层和耐热层,制成晶片保持台的样品。然后,将晶片保持台的样品从高压釜取出。表1中示出在实验例1~13中所使用的各层的具体材料、厚度。
[0050] 用于耐热层和中间层的耐热性树脂的选定如下进行。如图3所示,准备两片纵25mm×横35mm×厚10mm的氮化铝板,在使双方的氮化铝板错开的状态下,用试验对象的树脂接合,制作剪切试验用的接合体。树脂的部分为纵25mm×横25mm×厚0.01~0.40mm。另外,若厚度为该范围内,则从经验上,得到的结果几乎相同。剪切试验如下进行:以接合体的一方的氮化铝板的25mm×10mm的面朝下的方式将接合体载置于支持台上,对另一方的氮化铝板施加竖直向下的载荷(力量)。将试验时的温度设为250℃或200℃,气氛设为大气气氛。这样的剪切试验中,在施加热负荷的前后进行测定。基于剪切试验的结果,求出剪切强度。对热负荷,使剪切试验用的接合体在与试验时相同的温度、相同的气氛下,暴露1000小时。根据应力计算,在250℃或200℃所需要的剪切强度为0.3MPa以上,从而对具有0.3MPa以上的剪切强度的树脂,判断为在250℃或200℃具有耐热性。对表1中用于耐热层和中间层的耐热性树脂(聚酰亚胺系、环氧系、PEEK),使用无论在250℃还是在200℃都有耐热性的材料。顺便提及,有机硅系无论在250℃还是在200℃均无耐热性。
[0051] 树脂的剪切的弹性模量Z(MPa)(=强度/应变),使用通过在室温下进行上述剪切试验而得到的剪切强度(MPa)和剪切应变来算出。
[0052] 此外,上述剪切试验中,将一方的氮化铝板更改为相同尺寸的铝板,采用本发明的三层结构(氮化铝板与第一层粘接,铝板与第二层粘接)作为将氮化铝板与铝板接合的接合层,结果与第一层、中间层相比,第二层的伸长率增大。由此可确认,第二层与其他层相比有柔软性、弹性模量小。另外,为了评价晶片保持台的产品的粘接层,可通过从产品切出样品,进行上述剪切试验,从而同样地进行评价。
[0053] [实验例14~18]
[0054] 实验例14~18是仅由耐热性树脂的第一层(即单层)构成粘接层的例子。对它们,除了在冷却板上未贴附作为第二层的前驱体的粘接性薄片、未使用成为中间层的平坦的树脂片以外,与实验例1~13同样地操作,制作晶片保持台的样品。表1中示出在实验例14~18中所使用的第一层的具体材料、厚度。
[0055] [实验例19~23]
[0056] 实验例19~23是由耐热性树脂的第一层和柔软性树脂的第二层(即两层)构成粘接层的例子。对它们,除了未使用成为中间层的平坦的树脂片以外,与实验例1~13同样地操作,制作晶片保持台的样品。表1中示出在实验例19~23中所使用的各层的具体材料、厚度。
[0057] 2.评价试验
[0058] [翘曲量]
[0059] 将各实验例的晶片保持台的样品以陶瓷基体的表面朝下的方式置于水平的台子上,利用三维测定器,对陶瓷基体的表面的85处测定Z坐标。求出所测定的Z坐标的最大值与最小值之差,作为平面度(翘曲量(μm))。对翘曲量为50μm以下的样品判断为可使用。表1中示出各实验例的初期(刚制作后)的翘曲量。
[0060] [气泡的有无]
[0061] 对各实验例,制造使用玻璃来替代陶瓷基体的样品(玻璃样品)。通过目视从玻璃侧观察玻璃样品,确认气泡的有无。进而,将玻璃样品放入纯水中,利用超声波探伤装置确认气泡的有无。通过超声波探伤装置,对纯水中的产品发射25MHz的脉冲波,有气泡的部分因介质的变化而产生反射波,由此通过反射波的有无来确认气泡的有无。具体地,在无φ1mm以上的气泡,且小于φ1mm的气泡在每706.5cm2为20个以下的情况下,判断为无气泡。超声波探伤装置中,通过显示器上所显示的图像来确认气泡的直径、数量。另外,关于气泡的有无,无论通过目视还是超声波探伤装置都能得到相同的结果,因此利用目视和超声波探伤装置中的至少一方来判断即可。表1中示出各实验例的初期的气泡的有无。
[0062] [热浸(在高温环境下的样品放置)]
[0063] 将各实验例的晶片保持台的样品设置于真空腔体内,使冷却水在冷却板上流淌。在陶瓷基体的上表面上设置加热器。然后,将陶瓷下表面调节成预定的高温(250℃或200℃),并且,将冷却板上表面调节成100℃,在该状态下放置1000小时。热浸后,测定各实验例的晶片保持台的翘曲量和气泡。表1中示出其结果。
[0064] 另外,表1中示出,在200℃时的第二层的最高温度和250℃时的第二层的最高温度。这些是基于陶瓷下表面的温度、冷却板上表面的温度和层厚度进行计算而求出的温度。
[0065] 表1
[0066]
[0067] 3.评价结果
[0068] 实验例1~10为使用聚酰亚胺系树脂作为第一层和中间层、使用环氧-丙烯酸酯混合树脂作为第二层的例子。实验例1~10均在刚制作后(初期)无气泡且第一层、中间层和第二层气密地接触,未见裂纹、剥离。
[0069] 其中,实验例1~6是将第一层的厚度固定于10μm、中间层的厚度固定于390μm(第一层和中间层的厚度之和为400μm),使第二层的厚度在100~500μm的范围内变化的例子。该实验例1~6中,均能够将200℃热浸后的翘曲量抑制于50μm以下,由此可知即使在200℃也能够良好地维持陶瓷基体与冷却板的粘接状态。此外,实验例2~5是第二层的厚度为150~400μm的例子,均能够将250℃热浸后的翘曲量抑制于50μm以下,可知即使在250℃也能够良好地维持陶瓷基体与冷却板的粘接状态。另外,在实验例1中,可认为由于第二层的厚度薄,因此在250℃热浸的情况下无法充分地缓和应力。此外,实验例6中,可认为由于第二层的厚度厚,因此在250℃热浸的情况下冷却板的冷却效果未达到邻近中间层的部分,从而超过耐热温度而脆化(按计算为183℃),其结果是,在第二层和中间层之间产生了剥离。
[0070] 实验例7、8是将第二层的厚度固定于200μm,将第一层和中间层的厚度适宜地设定以使它们的合计为400μm的例子。关于它们,也与实验例2~5同样地,能够将200℃热浸后和250℃热浸后的翘曲量抑制于50μm以下,可知无论在200℃还是在250℃,都能够良好地维持陶瓷基体与冷却板的粘接状态。
[0071] 实验例9、10是将第一层的厚度固定于10μm,将中间层的厚度设定为140μm、190μm、第二层的厚度设定为150μm、200μm的例子。关于它们,也与实验例2~5同样地,能够将200℃热浸后和250℃热浸后的翘曲量抑制于50μm以下,可知无论在200℃还是250℃,都能够良好地维持陶瓷基体与冷却板的粘接状态。
[0072] 实验例11~13是将实验例3的材料更改的例子。实验例11除了将中间层设为PEEK系树脂以外与实验例3相同,实验例12除了将第一层设为环氧系树脂以外与实验例3相同,实验例13除了将第一层设为环氧系树脂、将中间层设为PEEK系树脂以外与实验例3相同。关于实验例11~13,也与实验例3同样地,能够将200℃热浸后和250℃热浸后的翘曲量抑制于50μm以下,可知无论在200℃还是250℃,都能够良好地维持陶瓷基体与冷却板的粘接状态。
[0073] 实验例14~18是仅由耐热性树脂的第一层(即单层)构成粘接层的例子。实验例14、15是将第一层设为聚酰亚胺系树脂,将厚度设定为50μm、400μm的例子,实验例16~18是将第一层设为环氧系树脂,将厚度设定为50μm、200μm、400μm的例子。实验例14~18中均在刚制作后(初期)产生了裂纹。可认为若这样仅由耐热性树脂的第一层构成粘接层,则由于树脂的弹性模量高且柔软性低,因此无法吸收陶瓷基体与冷却板的热膨胀差,产生了裂纹。
[0074] 实验例19~23是由耐热性树脂的第一层和柔软性树脂的第二层(即两层)构成粘接层的例子。实验例19、20是将第一层设为聚酰亚胺系树脂并将厚度设定为50μm、400μm,将第二层设为环氧-丙烯酸酯混合树脂并将厚度设为200μm的例子、实验例21~23是将第一层设为环氧系树脂并将厚度设定为50μm、200μm、400μm,将第二层设为环氧-丙烯酸酯混合树脂并将厚度设为200μm的例子。实验例19~23均在刚制作后(初期),在第一层和第二层之间产生了剥离。剥离的原因,可认为是因为在第一层和第二层之间存在有气泡。在样品制作时,陶瓷基体上形成第一层前驱体的层即未固化的聚酰亚胺系粘接剂的层,在冷却板上形成第二层前驱体的层即未固化的环氧-丙烯酸酯系粘接剂的层,而这两层由于其形状不稳定,因此若在两者接触的状态下进行加热,则气泡容易残留。
[0075] 以上实验例1~23中,实验例1~13相当于本发明的实施例,实验例14~23相当于比较例。另外,实验例1~10中,作为耐热层,使用环氧系树脂(被判断为耐热性树脂的材料)来替代聚酰亚胺系树脂的情况下,也得到了几乎同样的结果。
[0076] 本申请以2014年9月4日所提出的美国临时申请第62/045,745号为优先权主张的基础,通过引用,其内容的全部包含在本说明书内。
[0077] 另外,不言而喻,上述实验例不对本发明进行任何限定。
[0078] 产业上的可利用性
[0079] 本发明可用于将静电卡盘与冷却板粘接的晶片保持台。
[0080] 符号说明
[0081] 10…晶片保持台、12…静电卡盘、12a…静电电极、12b…加热器电极、13a…供电部件、13b…供电部件、14…冷却板、14a…制冷剂通路、16…粘接层、16a…第一层、16b…第二层、16c…中间层、26a…第一层前驱体的层、26b…第二层前驱体的层、26c…树脂片。