排气净化系统转让专利

申请号 : CN201480055554.X

文献号 : CN105612319B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 内山正藤江英和村泽直人塙哲史

申请人 : 五十铃自动车株式会社

摘要 :

本发明涉及一种排气净化系统,高精度地检测DPF的PM堆积量。该排气净化系统具备:DOC(21),设置于发动机(10)的排气通路(12);前级DPF(22)以及后级DPF(23),设置于比DOC(21)靠下游侧的排气通路(12),捕集排气中的PM;电极(27),对前级DPF(22)的静电电容进行检测;PM堆积量推测部(51),基于从电极(27)输入的静电电容,至少推测后级DPF(23)的PM堆积量;以及强制再生控制部(53),当从PM堆积量推测部(51)输入的PM堆积量超过规定量时,朝DOC(21)喷射燃料,执行至少将堆积于后级DPF(23)的PM燃烧除去的强制再生。

权利要求 :

1.一种排气净化系统,具备:

氧化催化剂,设置于内燃机的排气通路;

一对的第1过滤器以及第2过滤器,设置于比上述氧化催化剂靠下游侧的排气通路,捕集排气中的微粒物质;

静电电容检测单元,对上述第1过滤器的静电电容进行检测;

堆积量推测单元,基于从上述静电电容检测单元输入的静电电容,至少推测上述第2过滤器的微粒物质堆积量;

过滤器再生单元,当从上述堆积量推测单元输入的微粒物质堆积量超过规定量时,朝上述氧化催化剂喷射燃料,执行至少将堆积于上述第2过滤器的微粒物质燃烧除去的强制再生;

内部温度推测单元,基于从上述静电电容检测单元输入的静电电容,推测上述第1过滤器的内部温度;以及喷射量修正单元,基于强制再生时的过滤器目标温度与从上述内部温度推测单元输入的内部温度的温度差,修正上述过滤器再生单元的燃料喷射量。

2.如权利要求1所述的排气净化系统,其中,上述第1过滤器以及上述第2过滤器在上述排气通路内沿着排气流动方向串联配置。

3.如权利要求1所述的排气净化系统,其中,还具备旁通通路,该旁通通路从比上述氧化催化剂靠下游侧的排气通路分支,对上述第2过滤器进行迂回,上述第1过滤器配置于该旁通通路。

4.如权利要求1至3中任一项所述的排气净化系统,其中,上述静电电容检测单元由在上述第1过滤器内隔着一个以上的隔壁对置配置而形成电容器的至少一对以上的电极构成。

说明书 :

排气净化系统

技术领域

[0001] 本发明涉及一种排气净化系统,尤其涉及具备对从内燃机排出的排气中的微粒物质进行捕集的过滤器的排气净化系统。

背景技术

[0002] 作为对从柴油发动机排出的排气中的微粒物质(Particulate Matter,以下称为PM)进行捕集的过滤器,例如已知有柴油颗粒过滤器(Diesel Particulate Filter,以下称为DPF)。
[0003] DPF的PM捕集量存在限度,因此需要进行将所堆积的PM定期地燃烧除去的所谓的强制再生。强制再生如下地进行:通过排气管内喷射、后喷射朝排气上游侧的氧化催化剂(Diesel Oxidation Catalyst:以下,称为DOC)供给未燃烧的烃(HC)而使其氧化,使排气温度上升至PM燃烧温度。
[0004] 作为对DPF所捕集的PM堆积量进行检测的技术,例如已知有基于DPF的前后差压进行推测的方法、根据设置在DPF内的电极间的静电电容进行推测的方法等(例如,参照专利文献1、2)。
[0005] 现有技术文献
[0006] 专利文献
[0007] 专利文献1:日本特开2011-247145号公报
[0008] 专利文献2:日本特开2009-97410号公报

发明内容

[0009] 发明要解决的课题
[0010] 然而,在基于DPF的前后差压推测PM堆积量的方法中,尤其是在排气流量降低的运转区域中灵敏度下降,因此存在无法准确地推测PM堆积量的课题。另一方面,在根据电极间的静电电容进行推测的方法中,能够不受运转状态等的影响地推测PM堆积量。但是,需要根据DPF的单元格形状、间距等而个别地设定电极的尺寸、配置等,因此存在无法灵活地应对DPF的规格等的课题。
[0011] 本发明的系统的目的在于高精度地检测DPF的PM堆积量。
[0012] 用于解决课题的手段
[0013] 本发明的系统具备:氧化催化剂,设置于内燃机的排气通路;一对的第1过滤器以及第2过滤器,设置于比上述氧化催化剂靠下游侧的排气通路,捕集排气中的微粒物质;静电电容检测单元,对上述第1过滤器的静电电容进行检测;堆积量推测单元,基于从上述静电电容检测单元输入的静电电容,至少推测上述第2过滤器的微粒物质堆积量;以及过滤器再生单元,当从上述堆积量推测单元输入的微粒物质堆积量超过规定量时,朝上述氧化催化剂喷射燃料,执行至少将堆积于上述第2过滤器的微粒物质燃烧除去的强制再生。
[0014] 发明的效果
[0015] 根据本发明的系统,能够高精度地检测DPF的PM堆积量。

附图说明

[0016] 图1是表示本发明的一个实施方式的排气净化系统的示意性的整体构成图。
[0017] 图2是表示本实施方式的ECU的功能框图。
[0018] 图3中(A)是表示本实施方式的前级堆积量映射的一例的图,(B)是表示本实施方式的前级-后级堆积量相关映射的一例的图。
[0019] 图4是表示本实施方式的温度特性映射的一例的图。
[0020] 图5是表示本实施方式的喷射量修正映射的一例的图。
[0021] 图6是表示本实施方式的控制内容的流程图。
[0022] 图7是表示对电极间的静电电容与排气温度传感器的传感器值进行比较的图表的图。
[0023] 图8是表示其他实施方式的内燃机的排气净化系统的示意性的整体构成图。

具体实施方式

[0024] 以下,根据附图对本发明的一个实施方式的排气净化系统进行说明。对于相同的部件标注相同的符号,且这些部件的名称以及功能也相同。因而,不对这些部件重复进行详细说明。
[0025] 如图1所示,在柴油发动机(以下,简称为发动机)10上设置有进气歧管10a和排气歧管10b。在进气歧管10a上连接有导入新气的进气通路11,在排气歧管10b上连接有将排气向大气排出的排气通路12。
[0026] 在进气通路11上,从进气上游侧起依次设置有空气滤清器13、MAF传感器14、增压器15的压缩机15a、中间冷却器16等。在排气通路12上,从排气上游侧起依次设置有增压器15的涡轮15b、排气后处理装置20等。
[0027] 排气后处理装置20构成为,在催化剂壳体20a内从排气上游侧起依次配置DOC21、测定用的前级DPF22、以及后级DPF23。此外,在DOC21的排气上游侧设置有排气管内喷射装置25。
[0028] 排气管内喷射装置25是本发明的过滤器再生单元的一部分,根据从电子控制单元(以下,称为ECU)50输入的指示信号(脉冲电流)朝排气通路12内喷射未燃燃料(主要是HC)。另外,在使用基于发动机10的多级喷射的后喷射的情况下,也可以省略该排气管内喷射装置25。
[0029] DOC21为,例如在堇青石蜂窝构造体等的陶瓷制载体表面上载持催化剂成分而形成,将由多孔性的隔壁划分的多个单元格沿着排气流动方向配置而构成。当通过排气管内喷射装置25或者后喷射供给HC时,DOC21使该HC氧化而使排气温度上升。
[0030] 测定用的前级DPF22是本发明的第1过滤器的一例,将由多孔性的隔壁划分的多个单元格沿着排气流动方向配置而形成,并构成为将排气中的PM捕集到隔壁的细孔、表面上。该前级DPF22的排气流动方向(轴向)的长度形成为比后级DPF23的轴向的长度短。
[0031] 此外,在本实施方式的前级DPF22中,设置有隔着至少一个以上的隔壁对置配置而形成电容器的多个电极27。电极27的外周面由耐腐蚀性的绝缘层(未图示)覆盖。该多个电极27经由未图示的静电电容检测电路与ECU50电连接。多个电极27以及静电电容检测电路(未图示)优选作为本发明的静电电容检测单元的一例。
[0032] 后级DPF23是本发明的第2过滤器的一例,将由多孔性的隔壁划分的多个单元格沿着排气流动方向配置,并且将这些单元格的上游侧和下游侧交替地封孔而形成。后级DPF23为,将排气中的PM捕集到隔壁的细孔、表面上,并且当PM堆积量达到规定量时,执行将该PM燃烧除去的所谓的强制再生。强制再生如下地进行:通过排气管内喷射装置25或者后喷射朝DOC21供给未燃燃料(HC),将朝前级DPF22以及后级DPF23流入的排气温度升温至PM燃烧温度(例如,约500~600℃)。
[0033] ECU50进行发动机10、排气管内喷射装置25等的各种控制,具备公知的CPU、ROM、RAM、输入端口、输出端口等而构成。
[0034] 此外,如图2所示,ECU50作为一部分功能要素而具备PM堆积量推测部51、DPF内部温度推测部52、强制再生控制部53以及喷射量修正部54。将这些各功能要素作为包含于一体的硬件即ECU50的要素来进行说明,但也能够将这些功能要素中的任意一部分设置于分体的硬件。
[0035] PM堆积量推测部51是本发明的堆积量推测单元的一例,基于设置于前级DPF22的电极27间的静电电容C,推测后级DPF23所捕集的PM堆积量(以下,称为后级堆积量PMDW_DEP)。一般情况下,电极27间的静电电容C通过以下的数式1表示,在数式1中设为电极27间的介质的介电常数为ε、电极27的面积为S、电极27间的距离为d。
[0036] [数式1]
[0037]
[0038] 在数式1中,电极27的面积S以及距离d为恒定,当在电极27间PM的堆积增加时,介电常数ε以及距离d变化,由此静电电容C也变化。即,只要检测出电极27间的静电电容C,就能够对前级DPF22所捕集的PM堆积量(以下,称为前级堆积量PMUP_DEP)进行运算。
[0039] 在ECU50中分别存储有预先通过实验等而求出的表示电极27间的静电电容C与前级堆积量PMUP_DEP之间的关系的前级堆积量映射(例如,参照图3(A))以及表示前级堆积量PMUP_DEP与后级堆积量PMDW_DEP之间的关系的前级-后级堆积量相关映射(例如,参照图3(B))。PM堆积量推测部51构成为,通过从前级堆积量映射读取与电极27间的静电电容C对应的值来推测前级堆积量PMUP_DEP,并且通过从前级-后级堆积量相关映射读取与前级堆积量PMUP_DEP对应的值来推测后级堆积量PMDW_DEP。另外,该前级堆积量PMFR_DEP以及后级堆积量PMRE_DEP的推测并不限定于映射,也可以根据预先通过实验等而制作的近似式等来求出。
[0040] DPF内部温度推测部52是本发明的内部温度推测单元的一例,基于电极27间的静电电容C对前级DPF22的内部温度(以下,称为前级DPF内部温度TUP_DPF)进行运算。在上述数式1中,当介电常数ε受到排气温度的影响而变化时,随之静电电容C也变化。即,只要检测出电极27间的静电电容C,就能够对前级DPF内部温度TUP_DPF进行运算。
[0041] 在ECU50中存储有预先通过实验等而求出的表示静电电容C与前级DPF内部温度TUP_DPF之间的关系的温度特性映射(例如,参照图4)。DPF内部温度推测部52构成为,通过从该温度特性映射读取与电极27间的静电电容C对应的值来推测前级DPF内部温度TUP_DPF。另外,前级DPF内部温度TUP_DPF的推测并不限定于映射,也可以根据预先通过实验等而制作的近似式等来求出。
[0042] 强制再生控制部53是本发明的过滤器再生单元的一例,基于从PM堆积量运算部51输入的后级堆积量PMRE_DEP对强制再生进行控制。更详细来说,当后级堆积量PMRE_DEP超过后级DPF23所能够捕集的PM的上限堆积量PMMAX时(PMRE_DEP>PMMAX),强制再生控制部53使排气管内喷射装置23执行规定量的排气管内喷射而开始强制再生。通过后述的喷射量修正部54根据需要来修正该强制再生时的排气管内喷射量。
[0043] 喷射量修正部54基于从DPF内部温度推测部52输入的前级DPF内部温度TFR_DPF与使后级DPF23内的PM大致完全燃烧除去的目标温度TTARGT之间的温度差ΔT,对强制再生时的燃料喷射量进行修正。更详细来说,在ECU50中存储有预先通过实验等而求出的表示温度差ΔT与为了弥补该温度差ΔT而需要的喷射修正量ΔINJ之间的关系的喷射量修正映射(例如,参照图5)。通过从喷射量修正映射读取与温度差ΔT相应的喷射修正量ΔINJ,并且将所读取的喷射修正量ΔINJ与基本喷射量INJQ_std相加或相减,由此设定强制再生时的排气管内喷射量INJQ_exh(INJQ_exh=INJQ_std+/-ΔINJ)。通过使对排气管内喷射装置25的喷射器施加的各喷射的通电脉冲宽度增减或者使喷射次数增减,来执行修正后的燃料喷射。
[0044] 接着,基于图6对本实施方式的排气净化系统的控制流程进行说明。另外,在点火开关的开启操作的同时开始主控制。
[0045] 在步骤(以下,将步骤简记为S)100中,从前级堆积量映射(参照图3(A))读取与电极27间的静电电容C对应的前级DPF22的前级堆积量PMUP_DEP。进而,在S110中,从前级-后级堆积量相关映射(参照图3(B))读取与S100的前级堆积量PMUP_DEP对应的后级DPF23的后级堆积量PMDW_DEP。
[0046] 在S120中,判定后级堆积量PMDW_DEP是否超过上限堆积量PMMAX。在后级堆积量PMDW_DEP超过上限堆积量PMMAX的情况下(是),为了开始强制再生而前进至S130。
[0047] 在S130中,从温度特性映射(参照图4)读取与电极27间的静电电容C对应的前级DPF内部温度TUP_DPF,在S140中,对前级DPF内部温度TUP_DPF与目标温度TTARGT进行比较。在目标温度TTARGT与前级DPF内部温度TUP_DPF的温度差ΔT(绝对值)大于零的情况下(是),前进至S150。另一方面,在温度差ΔT为零的情况下(否),即便以基本喷射量INJQ_std执行排气管内喷射,也能够使前级DPF内部温度TFR_DPF上升至目标温度TTARGT。在该情况下,前进至S170,以基本喷射量INJQ_std执行排气管内喷射。
[0048] 在S150中,根据温度差ΔT来执行将从喷射量修正映射读取的喷射修正量ΔINJ与基本喷射量INJQ_std相加或相减的喷射量修正(INJQ_exh=INJQ_std+/-ΔINJ),在S160中,基于修正后的排气管内喷射量INJQ_exh来执行排气管内喷射。
[0049] 在S180中,判定后级堆积量PMDW_DEP是否降低至表示后级DPF23的再生结束的下限阈值PMMIN。在后级堆积量PMDW_DEP下降至下限阈值PMMIN的情况下(是),在S190中停止排气管内喷射而主控制返回。之后,反复执行S100~190的各控制步骤直至点火开关的关闭操作为止。
[0050] 接着,对本实施方式的排气净化系统的作用效果进行说明。
[0051] 以往,在使用差压传感器来推测PM堆积量的方法中,存在尤其是在排气流量降低的低负载运转区域、强制再生的最后阶段灵敏度降低的课题。与此相对,本实施方式的排气净化系统为,基于设置于测定用的前级DPF22内的电极27间的静电电容C,来推测堆积于后级DPF23的后级堆积量PMRE_DEP。即,构成为,基于即便是在低负载运转区域、强制再生的最后阶段灵敏度也良好的电极27间的静电电容C,来高精度地推测后级DPF23的PM堆积量。
[0052] 因而,根据本实施方式的排气净化系统,能够不受运转状态的影响等而高精度地推测PM堆积量。并且,通过将电极27设置于测定用的前级DPF22,由此无需根据后级DPF23的单元格形状、间距等来个别地设定电极27的尺寸、配置等,能够灵活地应对后级DPF23的规格等。
[0053] 此外,一般情况下,如图7所示,电极27间的静电电容C具有相对于排气温度的变化呈现比排气温度传感器的传感器值更快的响应性的特性。即,如果使用配置在测定用DPF22内的电极27间的静电电容C,则与设置于DPF22、23前后的排气温度传感器的传感器值相比,能够更准确地检测内部温度。
[0054] 在本实施方式的排气净化系统中,基于根据电极27间的静电电容C运算得到的前级DPF内部温度TFR_DPF与目标温度TTARGT的温度差ΔT,修正强制再生时的排气管内喷射量(或者,后喷射量)。即,与使用排气温度传感器的传感器值进行修正的现有方法相比,能够更准确地检测前级DPF内部温度TFR_DPF,由此能够实现强制再生时的排气管内喷射量的最佳化。
[0055] 因而,根据本实施方式的排气净化系统,能够准确地控制强制再生时的燃料喷射量,能够有效地提高后级DPF23的再生效率。此外,无需在前级DPF22、后级DPF23的前后设置排气温度传感器,还能够有效地减少装置整体的成本、尺寸。
[0056] 另外,本发明并不限定于上述实施方式,在不脱离本发明的主旨的范围内能够适当变形地实施。
[0057] 例如,电极27的个数只要为至少一对以上即可,并不限定于图示例。此外,发动机10并不限定于柴油发动机,能够广泛应用于汽油发动机等其他内燃机。
[0058] 此外,如图8所示,也可以构成为,在排气通路12上连接对DPF23进行迂回的旁通通路26,并在该旁通通路26上配置测定用的DPF22。在该情况下,优选在比测定用的DPF22靠上游侧的旁通通路26上设置调整排气流量的小孔26a(节流孔)。此外,在执行测定用的DPF22的强制再生的情况下,也可以对电极27施加电压而使其作为加热器起作用。
[0059] 符号的说明
[0060] 10:发动机;12:排气通路;20:排气后处理装置;21:DOC;22:前级DPF;23:后级DPF;25:排气管内喷射装置;27:电极;50:ECU;51:PM堆积量推测部;52:DPF内部温度推测部;53:
强制再生控制部;54:喷射量修正部。