具有带气门罩盖的可调节TRIM离心压缩机以及具有其的涡轮增压机转让专利

申请号 : CN201510973615.7

文献号 : CN105626239B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : H·莫塔W·J·史密斯S·皮斯

申请人 : 盖瑞特交通一公司

摘要 :

用于涡轮增压机的带气门罩盖的离心压缩机包括在压缩机的空气入口中的入口调节机构,可操作为在空气入口的打开位置和闭合位置之间移动。该入口调节机构包括轴向延长环。在打开位置时,该环的径向外表面与空气入口的锥形内表面间隔开,使得空气能够在该锥形表面和该环之间的环形通道中流动,并且该环打开带气门罩盖。在闭合位置时,该环紧靠锥形表面以闭合环形通道,并且闭合带气门罩盖。入口调节机构从打开位置到闭合位置的移动对把压缩机的喘振线移位到低流率是有效的。

权利要求 :

1.一种涡轮增压机,包括:

涡轮机壳体和涡轮机叶轮,涡轮机叶轮安装在涡轮机壳体中并且连接到可旋转轴以用于随其旋转,所述涡轮机壳体接收废气,并且把废气供应到所述涡轮机叶轮;

离心压缩机组件,包括压缩机壳体和压缩机叶轮,压缩机叶轮安装在压缩机壳体中并且连接到可旋转轴以用于随其旋转,所述压缩机壳体限定空气入口,所述空气入口用于将空气一般轴向地引导到压缩机叶轮中,所述压缩机壳体进一步限定蜗壳,所述蜗壳用于接收从压缩机叶轮一般径向向外排出的压缩空气,所述空气入口具有内表面,所述内表面的一部分形成滑动表面,所述滑动表面沿着下游轴向方向延伸轴向长度,所述滑动表面后面是锥形表面,所述锥形表面沿着下游轴向方向延伸轴向长度,所述锥形表面在下游轴向方向上直径变得更小,其中所述压缩机壳体限定流再循环系统,所述流再循环系统包括:泄放端口,泄放端口邻接压缩机叶轮的入口导流器部分定位以允许空气穿过;再循环通道,与泄放端口连接并且从泄放端口向上游延伸;以及注射端口,从再循环通道通向位于入口导流器部分上游的所述空气入口中,由此空气可以沿所述空气入口和入口导流器部分之间的任一方向流动通过再循环系统;和压缩机入口调节机构,设置在压缩机壳体的所述空气入口中,并且可在打开位置和闭合位置之间移动,所述入口调节机构包括轴向延长环,所述轴向延长环包括管状壁,所述管状壁的内表面在下游轴向方向朝向压缩机叶轮直径变小使得所述内表面的直径在所述环的下游端部小于在所述环的上游端部,所述环的下游端部在后边缘处终止,在所述后边缘处的所述环的内直径小于在所述压缩机叶轮的导流器部分处的压缩机壳体的罩盖表面的内直径,所述环被布置成使得当入口调节机构处于打开位置时,所述泄放端口打开并且所述环与所述空气入口的锥形表面间隔开,从而使得在所述锥形表面和所述环之间存在环形通道用于空气流通过,并且所述环打开注射端口以允许空气流通过再循环系统,并且当入口调节机构处于闭合位置时,所述泄放端口保持打开并且所述环紧靠所述锥形表面以消除所述环形通道,并且所述环闭合注射端口,并且阻止空气流通过再循环系统。

2.根据权利要求1所述的涡轮增压机,其中处于闭合位置的所述环沿下游方向基本延伸到压缩机叶轮的入口导流器部分,使得在入口导流器部分的所述空气入口的有效直径由所述环的内直径确定。

3.根据权利要求1所述的涡轮增压机,其中所述入口调节机构进一步包括支撑部分,支撑部分包括连接到所述环的多个沿圆周间隔的支柱,所述支撑部分具有径向外表面,径向外表面接合所述空气入口的滑动表面,并且可沿着滑动表面移动。

4.根据权利要求3所述的涡轮增压机, 其中所述支柱在θ-z平面中具有机翼形剖面形状。

5.根据权利要求4所述的涡轮增压机,其中存在沿圆周间隔开的3个所述支柱。

6.根据权利要求1所述的涡轮增压机,其中所述环包括在r-z平面中具有机翼形剖面形状的管状壁。

7.根据权利要求1所述的涡轮增压机,其中所述环包括管状壁,在管状壁后边缘处的管状壁限定内直径dr,内直径dr在dIS的0.45和0.98倍之间,其中dIS是压缩机叶轮的入口导流器部分的直径。

8.根据权利要求7所述的涡轮增压机,其中管状壁具有轴向长度L,并且管状壁的后边缘在闭合位置时与压缩机叶轮的入口导流器部分的前边缘间隔开轴向距离S,并且其中L大幅大于S。

9.根据权利要求8所述的涡轮增压机,其中S<8.5(dIS-dr)。

说明书 :

具有带气门罩盖的可调节TRIM离心压缩机以及具有其的涡轮

增压机

背景技术

[0001] 本公开涉及诸如用于涡轮增压机中的离心压缩机,并且更具体地涉及其中有效入口面积或直径能够针对不同的运行状况被调节的离心压缩机。
[0002] 废气驱动的涡轮增压机是一种与内燃机共同使用的装置,用于通过压缩空气来增加发动机的动力输出,该空气被递送到发动机的进气口以与燃料混合并且在发动机中燃烧。涡轮增压机包括:安装在压缩机壳体中的轴的一端上的压缩机叶轮和安装在涡轮机壳体中的轴的另一端上的涡轮机叶轮。典型地,涡轮机壳体与压缩机壳体分开形成,并且存在再另一个中心壳体连接在涡轮机壳体和压缩机壳体之间以用于包含轴的轴承。该涡轮机壳体限定一般环形腔,该环形腔环绕涡轮机叶轮并且接收来自发动机的废气。涡轮机组件包括喷嘴,喷嘴从该腔通向涡轮机叶轮中。废气从该腔流动通过喷嘴到涡轮机叶轮,并且涡轮机叶轮被废气驱动。涡轮机因此从废气中提取动力并且驱动压缩机。压缩机通过压缩机壳体的入口接收周围空气,并且空气被压缩机叶轮压缩,并且然后从该壳体排出到发动机进气口。
[0003] 典型地,涡轮增压机采用离心(也称为“径向”)型的压缩机叶轮,因为离心压缩机在紧凑的布置中能实现相对高的压力比。用于压缩机的进入空气在离心压缩机叶轮的进口导流器部分一般在轴向方向被接收,并且在该叶轮的出口导流器部分一般在径向方向上被排出。来自该叶轮的压缩空气被递送到蜗壳,并且该空气从蜗壳被供应到内燃机的进口。
[0004] 压缩机的运行范围是涡轮增压机的整体性能的重要方面。运行范围一般由喘振线和阻塞线在压缩机的运行特性线图上划界。压缩机特性线图典型地呈现为在竖轴上的压力比(排出压力Pout除以入口压力Pin)与横轴上的校正质量流率。压缩机特性线图上的阻塞线位于高流率处并且表示超出压力比范围的最大质量流率点的位置;也就是说,对于阻塞线上的给定点,不可能在增加流率的同时保持相同的压力比,因为在压缩机中发生阻塞流状况。
[0005] 喘振线位于低流率处,并且表示超出压力比范围的、没有喘振的最小质量流率点的位置;也就是说,对于喘振线上的给定点,降低流率而不改变压力比,或者增加压力比而不改变流率,将导致喘振发生。喘振是流不稳定性,其典型地发生在压缩机叶片冲角变得如此大以使得在压缩机叶片上出现大量的流动分离时。压力波动和回流可能在喘振期间发生。
[0006] 在用于内燃机的涡轮增压机内,当发动机在高负载或者扭矩和低发动机速度运行时,或者当发动机在低速运行并且存在高水平的废气再循环(EGR)时,压缩机喘振可能发生。当发动机从高速状况突然减速时,也可能发生喘振。把压缩机的无喘振运行范围扩大到较低流率是压缩机设计中经常追求的目的。

发明内容

[0007] 本公开描述了用于离心压缩机的机构和方法,该机构和方法能够使压缩机的喘振线可选择地移位到左侧(即,喘振在给定的压力比处被推迟到较低流率),并且使阻塞流线移位到右侧(即,阻塞流在给定的压力比处增加到高流率)。这里描述的一个实施例包括具有以下特征的涡轮增压机:
[0008] 涡轮机壳体和涡轮机叶轮,涡轮机叶轮安装在涡轮机壳体中并且连接到可旋转轴以用于随其旋转,所述涡轮机壳体接收废气,并且把废气供应到所述涡轮机叶轮;
[0009] 离心压缩机组件,包括压缩机壳体和压缩机叶轮,压缩机叶轮安装在压缩机壳体中并且连接到可旋转轴以用于随其旋转,所述压缩机壳体限定空气入口,所述空气入口用于将空气一般轴向地引导到压缩机叶轮中,所述压缩机壳体进一步限定蜗壳,所述蜗壳用于接收从压缩机叶轮一般径向向外排出的压缩空气,所述空气入口具有内表面,所述内表面的一部分限定滑动表面,所述滑动表面沿着下游轴向方向延伸轴向长度,所述滑动表面后面是锥形表面,所述锥形表面沿着下游轴向方向延伸轴向长度,所述锥形表面在下游轴向方向上直径变得更小;
[0010] 中心壳体,连接在压缩机壳体和涡轮机壳体之间;以及
[0011] 压缩机入口调节机构,设置在压缩机壳体的所述空气入口中,并且可在打开位置和闭合位置之间沿滑动表面移动(通过不具有旋转的轴向滑动或通过组合的轴向滑动和旋转,诸如螺杆移动方式)以用于调节空气流到压缩机叶轮中的有效流动面积。
[0012] 所述入口调节机构包括轴向延长环,所述环被布置成使得当入口调节机构处于打开位置时,所述环与所述空气入口的锥形表面间隔开,从而使得在所述锥形表面和所述环之间存在环形通道用于空气流通过,并且当入口调节机构处于闭合位置时,所述环紧靠所述锥形表面以消除所述环形通道。处于闭合位置的所述环沿下游方向基本延伸到压缩机叶轮的入口导流器部分,使得在入口导流器部分的所述空气入口的有效直径(这里称为dIS)由所述环的内直径确定。
[0013] 所述压缩机壳体另外限定流再循环系统,所述流再循环系统包括:泄放端口,泄放端口邻接压缩机叶轮的入口导流器部分定位以允许空气穿过;再循环通道,与泄放端口连接并且从泄放端口向上游延伸;以及注射端口,从再循环通道通向位于入口导流器部分上游的所述空气入口中。空气可以沿所述空气入口和入口导流器部分之间的任一方向流动通过再循环系统。
[0014] 入口调节装置的环被布置成使得在闭合位置时该环闭合注射端口,并且阻止空气流通过再循环系统,并且在打开位置时,该环打开注射端口,以允许空气流通过再循环系统。在低发动机速度(并且对应地在低压缩机速度),带气门的罩盖是闭合的,并且有效入口直径被减小,由此在压缩机特性线图上使压缩机喘振线向左移位,并且提高低流量效率。
[0015] 在高发动机速度(并且对应地在高压缩机速度),带气门的罩盖是打开的,使得阻塞流线在压缩机特性线图上向右移位。
[0016] 在一个实施例中,入口调节机构进一步包括支撑部分,支撑部分由多个沿圆周间隔的支柱连接到环。所述支撑部分具有径向外表面,径向外表面接合所述空气入口的滑动表面,并且可沿着滑动表面轴向滑动。
[0017] 在一个实施例中,空气入口包括突起,该突起从入口的内表面径向向内凸出,并且当入口调节机构处于闭合位置时,形成停止部供支撑部分紧靠。
[0018] 支柱可以具有各种剖面形状中的任一种,例如,在θ-z平面中的机翼形剖面形状。这种支柱的数量以及它们的厚度可以依赖于具体情况的需要来选择。在一个实施例中,存在三个沿圆周间隔开的支柱。
[0019] 该环可以包括管状壁,管状壁具有各种剖面形状中的任一种,例如,在r-z平面中的机翼形剖面形状。
[0020] 管状壁具有轴向长度L,并且管状壁的后边缘在闭合位置时与压缩机叶轮的入口导流器部分的前边缘间隔开轴向距离S。管状壁的长度与间隔距离S相比应当相对较大。
[0021] 有利地,间隔距离S应当与实际可行的一样小。例如,当S<8.5(dIS-dr)时,其中dr是环的后边缘处的环的内直径,入口调节机构预期对喘振裕度具有有益效果,该益处在S变得更小时通常变得更大。

附图说明

[0022] 至此已经概括地描述了本发明,现在将参考附图,附图不一定按照比例绘制,并且其中:
[0023] 图1是根据本发明一个实施例的涡轮增压机的透视图,其中压缩机壳体的一部分被切除以示出内部细节;
[0024] 图2是图1的涡轮增压机的轴向剖视图,其中入口调节机构处于闭合位置;
[0025] 图2A是图2的放大部分;
[0026] 图3是与图2类似但是其中入口调节机构处于打开位置的视图;
[0027] 图4是图1的涡轮增压机的分解图;

具体实施方式

[0028] 现在本发明将在后面参考附图被更全面地描述,在附图中示出了本发明的一些而不是全部的实施例。实际上,这些发明可以体现为许多不同的形式,并且不应当被理解成被限制到这里所阐述的实施例。更进一步说,这些实施例被提供以使得本公开将满足可应用的法律要求,相似的附图标记贯穿全文指代相似的元件。
[0029] 根据本发明的一个实施例的涡轮增压机10在图2中的剖视图中被图示。涡轮增压机包括压缩机12,压缩机12具有在可旋转轴18一端在压缩机壳体16中安装的压缩机叶轮或涡轮14。压缩机壳体限定空气入口17,用于一般轴向地引导空气到压缩机叶轮14中。轴18支撑在轴承19中,轴承19安装在涡轮增压机的中心壳体20中。轴18通过安装在来自压缩机叶轮的轴18的另一端的涡轮机叶轮22旋转,因此可旋转地驱动压缩机叶轮,压缩机叶轮压缩通过压缩机入口吸入的空气,并且将该压缩空气从压缩机叶轮通常径向向外地排出到用于接收压缩空气的蜗壳21中。该空气从蜗壳21被发送到内燃机(没有示出)的进口,用于提高发动机的性能。
[0030] 空气入口17有内表面,内表面的一部分形成滑动表面17s,滑动表面17s沿着下游轴向方向延伸轴向长度。滑动表面后面是锥形表面17t,锥形表面17t沿着下游轴向方向延伸轴向长度。该锥形表面在下游轴向方向直径变得更小。
[0031] 压缩机壳体还限定流再循环系统,其包括:位于邻接压缩机叶轮的入口导流器部分14i处的泄放端口11,用于允许空气穿过;与泄放端口连接并且从泄放端口向上游延伸的再循环通道13;以及注射端口15,从再循环通道通向入口导流器部分上游的空气入口17中,由此空气可以在空气入口17和入口导流器部分14i之间的任一方向上流动通过再循环系统。
[0032] 涡轮增压机还包括涡轮机壳体24,其容纳涡轮机叶轮22。涡轮机壳体限定了一般环形腔26,该一般环形腔26环绕涡轮机叶轮并且接收来自内燃机的废气以驱动涡轮机叶轮。废气从腔26通常径向向内被引导通过涡轮机喷嘴28到达涡轮机叶轮22。当废气流动通过在涡轮机叶轮的叶片30之间的通道时,气体膨胀到较低压,并且从该叶轮排出的气体通过涡轮机壳体中的一般轴向孔32离开涡轮机壳体。
[0033] 涡轮机喷嘴28是可变喷嘴,用于改变通过喷嘴的剖面流动面积,以调整进入涡轮机叶轮的流量。喷嘴包括多个轮叶34,其关于喷嘴沿圆周间隔。每个轮叶固定至轮轴(没有示出),该轮轴穿过在一般环形喷嘴环38中的孔,一般环形喷嘴环38关于涡轮机叶轮22同轴安装。每个轮轴可关于它的轴线旋转以旋转附接的轮叶。喷嘴环38形成喷嘴28的流动通道的一个壁。每个轮轴都具有固定于轮轴一端的轮叶臂(没有明确图示),轮轴从喷嘴环38向外突出,并且接合一般环形的协调环42(这里也称为致动器环),协调环42可关于它的轴线旋转,并且与喷嘴环38同轴。致动器(没有示出)连接到协调环42以使它关于它的轴线旋转。当协调环旋转时,轮叶臂旋转以使得轮轴关于它们的轴线旋转,从而使轮叶34旋转,从而改变通过喷嘴28的剖面流动面积。如到目前为止所描述的,可变喷嘴机构一般地对应于具有可变轮叶的常规可变喷嘴。
[0034] 在所示的实施例中,可变轮叶机构以筒50的形式被提供,筒50作为一个单元可安装到涡轮增压机中,并且可从涡轮增压机移除。筒50包括喷嘴环38,轮叶34,轮轴,轮叶臂和协调环42。筒进一步包括插入件52,插入件52具有:管状部分54,管状部分54被密封地接收到涡轮机壳体的孔32的一部分32a中;和喷嘴部分56,其从管状部分54的一端一般径向向外延伸,喷嘴部分56与喷嘴环38轴向间隔开,使得轮叶34在喷嘴环38和喷嘴部分56之间延伸。涡轮机壳体的孔部分32a有一半径,该半径超过孔32的剩余部分的半径一定量,该一定量比插入件52的管状部分54的径向厚度稍微大。管状部分54的径向外表面具有至少一个圆周凹槽,并且优选具有两个如图2中所示的轴向间隔开的凹槽,每个凹槽中保持一密封环58,用于密封地接合孔部分32a的内表面。有利地,插入件的管状部分54的外直径比孔部分32a的内直径稍微小,使得在它们之间限定一个小间隙,并且仅密封环58与孔部分32a的内表面接触。另外,在喷嘴部分56和孔部分32a的一端处的涡轮机壳体的邻接端之间存在间隙60。通过这种方式,插入件52与涡轮机壳体24机械和热解耦。
[0035] 多个间隔件70连接在喷嘴环38和插入件52的喷嘴部分56之间,用于把喷嘴环固定到插入件,并且在插入件的喷嘴部分和喷嘴环之间保持所期望的轴向间隔。
[0036] 筒50进一步包括防热罩盖80,当筒安装到中心壳体上时,防热罩盖80受约束地保持在喷嘴环38和中心壳体20之间。防热罩盖80提供了在喷嘴环和中心壳体之间的密封,以防止热废气在这些部件之间迁移到腔中,在腔中设置有轮叶臂和协调环42。防热罩盖80有利地是回弹弹性材料,例如弹性钢或类似物,并且该罩盖被配置为使得它在喷嘴环38和中心壳体20之间在轴向方向被压缩,使得罩盖的恢复力促使喷嘴环轴向(向图2中的右侧)抵靠夹在中心壳体和涡轮机壳体之间的凸缘或保持架82,由此在涡轮增压机中轴向地定位喷嘴环(并且因此定位整个可变喷嘴筒50)。在这点上,按照在共同拥有的美国专利号8333556中描述的基本相同的方式轴向定位筒50,该专利的整个公开内容由此通过引用被合并于此。筒通过定位器环84径向定位,定位器环84的径向外边界接合喷嘴环38的径向向内的表面,并且定位器环84的径向内边界接合中心壳体20的径向向外的表面。
[0037] 根据本发明,涡轮增压机的压缩机包括入口调节机构100,入口调节机构100设置在压缩机壳体的空气入口17中并且可在打开位置(图3)和闭合位置(图2和2A)之间移动。机构100的移动能牵涉该机构的轴向滑动或者该机构的螺旋(螺杆类型)移动。入口调节机构包括轴向延长环110。该环110被布置成使得当入口调节机构100处于打开位置时(图3),环110与空气入口的锥形表面17t间隔开,从而使得在锥形表面和环之间存在环形通道112,用于空气流通过。而且,在打开位置时,环110打开注射端端口15,以允许空气流通过再循环系统。当入口调节机构100处于闭合位置时(图2和2A),环110紧靠锥形表面17t以消除环形通道112,并且该环闭合注射端口15,并且阻止空气流通过再循环系统。
[0038] 处于闭合位置(图2和2A)的环110沿下游方向基本延伸到压缩机叶轮14的入口导流器14i,使得在入口导流器部分的空气入口的有效直径由在环110后边缘处的环110的内直径来确定。
[0039] 在所示实施例中的入口调节机构100进一步包括支撑部分,支撑部分包括多个沿圆周间隔的支柱114,支柱114其连接到环110。支撑部分具有径向外表面,径向外表面接合空气入口17的滑动表面17s并且沿着滑动表面可轴向滑动或可螺旋移动(即,如螺杆似的具有组合的轴向和旋转移动)。在所示的实施例中,支撑部分的外表面由支柱114的外表面限定。然而,替代地,支撑部分可包括与支柱114连接的另一部分(例如环或类似物),并且这样的另一部分能够限定沿着入口的圆柱表面滑动的外表面。
[0040] 有利地,支柱114在θ-z平面中具有机翼形剖面形状。支柱在数量上可以不同。所示的实施例具有3个支柱,但是可以改为使用其它的数量。
[0041] 参考图2A,环110包括管状壁,有利地,管状壁在r-z平面中有机翼形剖面形状。在管状壁后边缘处的管状壁限定了内直径dr,内直径dr在dIS的0.45和0.98倍之间,其中dIS是压缩机叶轮的入口导流器部分14i的直径。
[0042] 管状壁有轴向长度L,并且管状壁的后边缘在闭合位置时与压缩机叶轮的入口导流器部分的前边缘间隔开轴向距离S。管状壁的长度与间隔距离S相比较应当相对较大。
[0043] 有利地,间隔距离S应与实际可行的一样小。例如,当S<8.5(dIS-dr)时,入口调节机构被预期对喘振裕度具有有益效果,当S变得更小时该益处一般变得更大。当S比该值更大时,预期对喘振裕度的益处将是可忽略不计或不存在的。但是,该经验法则基于在特定涡轮增压机配置中的有限数量的研究,并且因此不能被视为适用于所有涡轮增压机配置的规则。相应地,不是所有的所附权利要求都受限于由该经验法则遵守的S值。
[0044] 入口调节机构100实现调节进入压缩机叶轮14中的入口的有效尺寸或直径。如图2和2A中所示,当入口调节机构处于闭合位置时,进入压缩机叶轮中的入口的有效直径由在环110的后边缘处的环110的内直径dr规定。为了获得这个效果,轴向间隔距离S必须与实际可行的一样小,如以前所描述的那样,以使得进入压缩机叶轮中的整个空气流穿过环110的内部,并且在环的后边缘的下游不存在足够的距离供该流在空气碰见它时为止膨胀到压缩机叶轮14的入口导流器部分14i的整个直径。入口直径由此有效地减小到由直径dr规定的值。此外,流再循环系统是闭合的,因为环110闭合了注射端口15。
[0045] 另一方面,当入口调节机构100移动到图3的打开位置时,进入入口17的某一部分空气能够流动通过在环110和入口的内表面之间的环形间隔112,并且因此入口的有效直径是在入口导流器部分14i处的入口的整个直径。此外,流再循环系统是打开的。
[0046] 在低流率处(例如低发动机速度),入口调节机构100能被放置为处于图2和2A的闭合位置。这能够具有减小有效入口直径并且因此增加进入压缩机叶轮的流速的效果。结果将是减小压缩机叶片冲角,从而有效地稳定该流(例如,使叶片失速和压缩机喘振的可能性减小)。换句话说,压缩机的喘振线将移动到更低的流率(在压缩机压力比与流率的特性线图上为到左侧)。
[0047] 在中间和高流率处,入口调节机构100可以如图3中那样被打开。这能够具有增加有效入口直径并且因此降低进入压缩机叶轮中的流速的效果。同时,再循环系统也是打开的,使得更大的总流率能够得到处置而不经历压缩机阻塞,因为总流量的某一部分再循环通过泄放端口11、泄放通道13和注射端口15。在压缩机特性线图上的阻塞流线因此向右移位。
[0048] 这里阐述的本发明的许多修改和其它实施例将被如下这些发明所属领域的技术人员想到:这些发明具有在前面的描述和关联的附图中呈现的教导的益处。因此,要理解本发明不局限于公开的具体实施例,并且修改和其它实施例意图被包括在所附权利要求的范围内。尽管特定术语在这里被采用,但它们仅以一般和描述性的意义被使用并且不出于限制的目的被使用。