动力传递装置转让专利

申请号 : CN201480056314.1

文献号 : CN105636812B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 柴田宽之盐入广行驹田英明黑崎祐树邓洪南

申请人 : 丰田自动车株式会社

摘要 :

一种动力传递装置包括发动机(1)和第一电机(MG1)。第二电机(MG2)配置在与供配置发动机(1)的轴(1a)不同的轴(32)上。第一差动机构(10)具有与第一电机(MG1)连接的太阳齿轮(11)、与发动机(1)连接的行星架(14)以及与第二电机(MG2)和驱动轮(35)连接的齿圈(13)。第二差动机构(20)具有与第一电机(MG1)连接的第一旋转元件(21)、第二旋转元件(24)和与发动机(1)连接的第三旋转元件(23),并且配置成使得第一电机(MG1)位于第一差动机构(10)与第二差动机构(20)之间。外壳(4)收纳第二差动机构(20)。制动机构(40)构造成限制第二旋转元件(24)的旋转并且配置在外壳(4)内。

权利要求 :

1.一种动力传递装置,包括:

发动机;

第一电机;

配置在与供配置所述发动机的轴不同的轴上的第二电机;

第一差动机构,所述第一差动机构具有与所述第一电机连接的太阳齿轮、与所述发动机连接的行星架以及与所述第二电机和驱动轮连接的齿圈;

第二差动机构,所述第二差动机构具有与所述第一电机连接的第一旋转元件、第二旋转元件、和与所述发动机连接的第三旋转元件,所述第二差动机构配置成使得所述第一电机在所述发动机的轴向上位于所述第一差动机构与所述第二差动机构之间;

外壳,所述外壳收纳所述第二差动机构;和

制动机构,所述制动机构构造成限制所述第二电机的旋转,并且所述制动机构构造成使得通过限制所述第二旋转元件的旋转来使发动机转速升高并且所述发动机转速从所述齿圈输出,所述制动机构配置在所述外壳内。

2.根据权利要求1所述的动力传递装置,还包括:

油泵,所述油泵配置在与供配置所述第二差动机构的轴不同的轴上;其中旋转地驱动所述油泵的泵驱动齿轮与所述第三旋转元件连接,且所述泵驱动齿轮与所述第三旋转元件一体地旋转。

3.根据权利要求1所述的动力传递装置,其中

所述制动机构是在所述第二旋转元件的单向旋转被限制的限制状态与所述第二旋转元件的双向旋转被容许的容许状态之间切换的可选择的单向离合器。

4.根据权利要求3所述的动力传递装置,还包括:

电子控制单元,所述电子控制单元配置成在所述第二旋转元件由所述第一电机沿与所述单向旋转相反的方向旋转的状态下将所述可选择的单向离合器从所述限制状态切换至所述容许状态。

5.根据权利要求3所述的动力传递装置,还包括:

电子控制单元,所述电子控制单元配置成在所述第二旋转元件由所述第一电机沿与所述单向旋转相反的方向旋转的状态下将所述可选择的单向离合器从所述容许状态切换至所述限制状态。

6.根据权利要求2所述的动力传递装置,其中,所述第二差动机构和所述油泵配置成在所述第二差动机构的径向上彼此重叠。

说明书 :

动力传递装置

技术领域

[0001] 本发明涉及一种动力传递装置。

背景技术

[0002] 通常,已经可获得混合动力车辆。例如,日本专利申请公报No.2010-139052(JP 2010-139052 A)公开了一种两个电机配置在不同轴上的动力传递装置的技术。
[0003] 此外,日本专利申请公报No.2009-208721(JP 2009-208721 A)公开了一种通过包括发动机和电动发电机而构成并可在至少无级变速模式与固定变速比模式这两种模式之间切换的混合动力车辆的技术。

发明内容

[0004] 在对动力传递装置增设允许在多种模式之间切换的机构的情况下,希望缩短与要增设的机构的安装有关的过程。例如,如果要增设的机构能被模块化,则能通过将该模块安装在已有的构型上来缩短该过程。
[0005] 本发明提供了一种动力传递装置,其能够所缩短与要增设的允许在多种模式之间切换的机构的安装有关的过程。
[0006] 本发明的第一方面是包括发动机、第一电机、第二电机、第一差动机构、第二差动机构、外壳和制动机构的动力传递装置。所述第二电机配置在与供配置所述发动机的轴不同的轴上。所述第一差动机构具有与所述第一电机连接的太阳齿轮、与所述发动机连接的行星架以及与所述第二电机和驱动轮连接的齿圈。所述第二差动机构具有与所述第一电机连接的第一旋转元件、第二旋转元件和与所述发动机连接的第三旋转元件。所述第二差动机构配置成使得所述第一电机在所述发动机的轴向上位于所述第一差动机构与所述第二差动机构之间。所述外壳收纳所述第二差动机构。所述制动机构配置成限制所述第二电机的旋转。所述制动机构构造成使得通过限制所述第二旋转元件的旋转来使所述发动机转速升高并且所述发动机转速从所述齿圈输出。所述制动机构配置在所述外壳内。
[0007] 在上述方面中,在与供配置所述第二差动机构的轴不同的轴上可配置有油泵。旋转地驱动所述油泵的泵驱动齿轮可与所述第三旋转元件连接且所述泵驱动齿轮可与所述第三旋转元件一体地旋转。
[0008] 在上述方面中,所述制动机构可以是在所述第二旋转元件的单向旋转被限制的限制状态与所述第二旋转元件的双向旋转被容许的容许状态之间切换的可选择的单向离合器。
[0009] 在上述方面中,可设置有电子控制单元。所述电子控制单元可配置成在所述第二旋转元件由所述第一电机沿与所述单向旋转相反的方向旋转的状态下将所述可选择的单向离合器从所述限制状态切换至所述容许状态。
[0010] 在上述方面中,可设置有电子控制单元。所述电子控制单元可配置成在所述第二旋转元件由所述第一电机沿与所述单向旋转相反的方向旋转的状态下将所述可选择的单向离合器从所述容许状态切换至所述限制状态。
[0011] 在上述方面中,所述第二差动机构和所述油泵可配置成在所述第二差动机构的径向上彼此重叠。
[0012] 根据上述方面,能发挥缩短与要增设的机构的安装有关的过程的效果。

附图说明

[0013] 下面将参照附图说明本发明的示例性实施方式的特征、优点及技术和工业意义,在附图中相似的附图标记表示相似的要素,并且其中:
[0014] 图1是根据第一实施方式的动力传递装置的架构图;
[0015] 图2是根据第一实施方式的车辆的框图;
[0016] 图3是根据第一实施方式的动力传递装置的THS模式的共线图;
[0017] 图4是示出了处于THS模式的可选择的单向离合器的视图;
[0018] 图5是根据第一实施方式的动力传递装置的OD锁定模式的共线图;
[0019] 图6是示出了处于OD锁定模式的可选择的单向离合器的视图;
[0020] 图7是与根据第一实施方式的动力传递装置的模式转换的时间对应的共线图;
[0021] 图8是用于示出模式转换期间的所需推力的视图;
[0022] 图9是根据第一实施例的动力传递装置的主要部分的截面图;
[0023] 图10是根据第二实施方式的动力传递装置的架构图;
[0024] 图11是根据第二实施方式的动力传递装置的主要部分的截面图;
[0025] 图12是根据第二实施方式的动力传递装置的OD锁定模式的共线图;
[0026] 图13是根据第三实施方式的动力传递装置的架构图。

具体实施方式

[0027] 在下文中将参照附图对根据本发明的实施方式的动力传递装置进行详细说明。应当指出,本发明并不限于文中所述的实施方式。此外,以下实施方式中的部件包括本领域的技术人员能容易地设想的部件或实质上相同的部件。
[0028] 下文将参照图1至图9对第一实施方式进行说明。本实施方式涉及动力传递装置。
[0029] 图1所示的车辆100是具有发动机(E/G)1、第一电机MG1和第二电机MG2作为动力源的混合动力(HV)车辆。车辆100可以是能利用外部电源充电的插电式混合动力(PHV)车辆。除上述动力源外,车辆100通过包括第一差动机构10、第二差动机构20、可选择的单向离合器(下文称为“SOWC”)40和图2所示的HV_ECU50而构成。
[0030] 根据第一实施方式的动力传递装置101通过包括发动机1、第一电机MG1、第二电机MG2、第一差动机构10、第二差动机构20和SOWC 40而构成。动力传递装置101可通过还包括HV_ECU 50而构成。动力传递装置101可应用于FF(前置发动机,前轮驱动)车辆、RR(后置发动机,后轮驱动)车辆等。例如,动力传递装置101在车辆100中被安装成使得其轴向与车辆宽度方向一致。本实施方式的动力传递装置101是第二电机MG2配置在与供配置发动机1和第一电机MG1的轴不同的轴上的多轴型动力传递装置。
[0031] 发动机1将燃料的燃烧能量变换为曲轴1a的旋转运动并输出曲轴1a的旋转运动。发动机1的曲轴1a经由减振器1b与输入轴2连接。输入轴2与曲轴1a共轴地配置并且配置在曲轴1a的延长线上。输入轴2与第一差动机构10的第一行星架14和第二差动机构20的第二齿圈23连接。
[0032] 第一差动机构10是单小齿轮型的行星齿轮机构,并具有第一太阳齿轮11、第一小齿轮12、第一齿圈13和第一行星架14。第一齿圈13与第一太阳齿轮11共轴地配置并且配置在第一太阳齿轮11的径向外侧。第一小齿轮12配置在第一太阳齿轮11与第一齿圈13之间,并与第一太阳齿轮11和第一齿圈13啮合。第一小齿轮12由第一行星架14可旋转地支承。第一行星架14与输入轴2联接并与输入轴2一体地旋转。换言之,第一行星架14经由输入轴2与发动机1连接。
[0033] 相应地,第一小齿轮12能与输入轴2一起围绕输入轴2的中心轴线旋转(公转),并且也能通过由第一行星架14支承而绕第一小齿轮12的中心轴线旋转(自转)。第一差动机构10用作将从发动机1输入的动力分割至第一电机MG1侧和驱动轮35侧的动力分割机构。
[0034] 第二差动机构20是单小齿轮型的行星齿轮机构并具有第二太阳齿轮21、第二小齿轮22、第二齿圈23和第二行星架24。第二齿圈23与第二太阳齿轮21共轴地配置并且配置在第二太阳齿轮21的径向外侧。第二小齿轮22配置在第二太阳齿轮21与第二齿圈23之间,并与第二太阳齿轮21和第二齿圈23啮合。第二小齿轮22由第二行星架24可旋转地支承。第二行星架24与输入轴2联接并与输入轴2一体地旋转。
[0035] 相应地,第二小齿轮22能与输入轴2一起围绕输入轴2的中心轴线旋转(公转),并且也能通过由第二行星架24支承而绕第二小齿轮22的中心轴线旋转(自转)。
[0036] 第一太阳齿轮11和第二太阳齿轮21与第一电机MG1的电机轴31连接并与电机轴31一体地旋转。电机轴31呈圆筒形状,并与输入轴2共轴地配置并且配置在输入轴2的径向外侧。电机轴31被支承成可相对于输入轴2旋转。
[0037] 在本实施方式的第二差动机构20中,第二太阳齿轮21是第一旋转元件的一个示例。此外,第二行星架24是旋转受SOWC 40限制的第二旋转元件的一个示例。此外,第二齿圈23经由输入轴2与发动机1连接并且是第三旋转元件的一个示例。
[0038] 副轴驱动齿轮15与第一齿圈13连接。副轴驱动齿轮15在轴向上配置在第一差动机构10与减振器1b之间。副轴驱动齿轮15与副轴从动齿轮16啮合。副轴从动齿轮16经由副轴17与驱动小齿轮18连接。驱动小齿轮18与差动装置19的差动齿圈19a啮合。差动装置19经由左、右驱动轴34与驱动轮35连接。
[0039] 副轴从动齿轮16与减速齿轮33啮合。减速齿轮33与第二电机MG2的电机轴32连接。减速齿轮33具有比副轴从动齿轮16小的直径,使第二电机MG2的旋转减速,并且将第二电机MG2的旋转传递到副轴从动齿轮16。从发动机1和第一电机MG1传递的动力和从第二电机MG2传递的动力在副轴从动齿轮16中合并,并且传递到驱动轮35。第一齿圈13经由副轴驱动齿轮15与第二电机MG2和驱动轮35连接。
[0040] 油泵3配置在输入轴3的位于与发动机1侧相反一侧的端部处。油泵3通过输入轴2的旋转而被旋转地驱动,并排出油。油泵3向动力传递装置101的各个部分如发动机1、第一电机MG1、第二电机MG2、第一差动机构10和第二差动机构20供油。
[0041] 第一电机MG1和第二电机MG2各自都具有作为电机(电动机)的功能和作为发电机的功能。第一电机MG1和第二电机MG2经由逆变器与电池连接。第一电机MG1和第二电机MG2能将从电池供给的电力变换为机械动力并且能输出该机械动力。此外,第一电机MG1和第二电机MG2通过输入动力而被驱动,并且能将机械动力变换为电力。由电机MG1、MG2产生的电力能被充入电池内。例如,能使用交流同步型的电动发电机作为第一电机MG1和第二电机MG2各者。
[0042] 如图2所示,车辆100具有HV_ECU 50、MG_ECU 60和发动机ECU 70。各ECU 50、60、70是带有计算机的电子控制单元。HV_ECU 50具有用于整个车辆100的总控制的功能。MG_ECU 60和发动机ECU 70与HV_ECU 50电连接。
[0043] MG_ECU 60控制第一电机MG1和第二电机MG2。例如,MG_ECU 60调节供给到第一电机MG1的电流值并且还调节供给到第二电机MG2的电流值。MG_ECU 60由此能控制第一电机MG1的输出转矩和第二电机MG2的输出转矩。
[0044] 发动机ECU 70控制发动机1。例如,发动机ECU 70能控制发动机1的电子节气门的开度,通过输出点火信号来控制发动机1的点火,控制对发动机1的燃料喷射,等等。发动机ECU 70能通过电子节气门开度控制、喷射控制、点火控制等来控制发动机1的输出转矩。
[0045] HV_ECU 50与车速传感器、加速器操作量传感器、MG1转速传感器、MG2转速传感器、输出轴转速传感器、电池传感器等连接。HV_ECU 50能从这些传感器取得车速、加速器操作量、第一电机MG1的转速、第二电机MG2的转速、动力传递装置101的输出轴的转速、电池的SOC等。
[0046] 基于所取得的信息,HV_ECU 50能计算用于车辆100的要求驱动力、要求功率、要求转矩等。基于计算出的要求值,HV_ECU 50确定第一电机MG1的输出转矩(下文也被记载为“MG1转矩”)、第二电机MG2的输出转矩(下文也被记载为“MG2转矩”)和发动机1的输出转矩(下文也被记载为“发动机转矩”)。HV_ECU 50向MG_ECU 60输出MG1转矩的指令值和MG2转矩的指令值。此外,HV_ECU 50向发动机ECU 70输出发动机转矩的指令值。HV_ECU 50基于下文将说明的行驶模式来控制SOWC 40。
[0047] 动力传递装置101主要具有HV行驶模式和EV行驶模式这两种行驶模式。HV行驶模式是车辆利用发动机1作为动力源来行驶的行驶模式。在HV行驶模式下,第二电机MG2还可被用作动力源。EV行驶模式是车辆利用第二电机MG2作为动力源来行驶的行驶模式。
[0048] 本实施方式的动力传递装置101具有THS模式和OD锁定模式作为HV行驶模式。将参照图3说明THS模式。在图3、图5和图7的共线图中,第一太阳齿轮11、第一行星架14和第一齿圈13分别被表示为“S1”、“C1”和“R1”。此外,第二太阳齿轮21、第二行星架24和第二齿圈23分别被表示为“S2”、“C2”和“R2”。
[0049] THS模式是由第一电机MG1产生对抗发动机1的动力的反作用力以使车辆行驶的行驶模式。如图3所示,当车辆100向前行驶时,第一电机MG1输出相对于发动机1的正向转矩Te的逆向转矩Tg。相应地,第一电机MG1用作用于发动机转矩Te的反作用接收器,并从第一齿圈13向驱动轮35输出发动机转矩Te。在本说明书中,“正向”表示车辆100向前行驶时第一齿圈13的旋转方向。在本说明书中,“逆向”表示与正向相反的旋转方向。
[0050] 当执行THS模式时,HV_ECU 50使SOWC 40进入容许状态。将参照图4说明SOWC 40的构型。SOWC 40是制动机构的一个示例,并且是能在容许状态与限制状态之间切换的可选择型的单向离合器。容许状态是SOWC 40容许第二行星架24的双向旋转的状态。另一方面,限制状态是SOWC 40限制第二行星架24的单向旋转的状态。在限制状态下,本实施方式的SOWC 40限制第二行星架24的正向旋转(正转)并容许逆向旋转(反转)。
[0051] 如图4所示,SOWC 40通过包括固定侧座圈41、旋转侧座圈42、支柱(strut)43、选择板44和弹簧45而构成。图4是从径向外侧看SOWC 40的侧视图。
[0052] 固定侧座圈41和旋转侧座圈42各自都是圆盘形状的部件。固定侧座圈41和旋转侧座圈42与第二差动机构20共轴地配置。固定侧座圈41是固定在车体侧且不可旋转的部件。旋转侧座圈42与固定侧座圈41共轴地配置成与固定侧座圈41对向。旋转侧座圈42以能够相对于固定侧座圈41旋转的方式被支承。旋转侧座圈42与第二行星架24联接并与第二行星架
24一体地旋转。
[0053] 支柱43与旋转侧座圈42的接合凹部46靠接并由此限制旋转侧座圈42的旋转。接合凹部46配置在旋转侧座圈42的与固定侧座圈41对向的面上。接合凹部46是深度朝沿周向的逆向侧增大的沟槽。接合凹部46的位于逆向侧的端部是壁面46a。壁面46a是正交于周向的面。多个接合凹部46沿周向以规定间隔布置。
[0054] 支柱43是板部件并且配置在固定侧座圈41的沟槽47中。设置了多个支柱43和多个沟槽47,以便与多个接合沟凹部46相对应。沟槽47配置在固定侧座圈41与旋转侧座圈42对向的面中。支柱43的位于正向侧的端部43a由沟槽47保持。支柱43能以端部43a为支点沿箭头Y1所示的旋转方向转动。
[0055] 弹簧45是配置在沟槽47的底部与支柱43之间的弹簧。弹簧45将支柱43沿轴向朝旋转侧座圈42挤压。选择板44是选择性地将SOWC 40切换至容许状态或限制状态的切换部件。选择板44是配置在固定侧座圈41与旋转侧座圈42之间的板部件。选择板44能相对于固定侧座圈41沿周向移动。为一个支柱43配置一个选择板44。
[0056] 选择板44通过致动器48的推力而相对于固定侧座圈41移动。选择板44彼此联接并彼此一体地移动。选择板44构造成使得根据其在周向上的位置而选择性地执行如图4所示的支柱43收纳在沟槽47中的状态或如图6所示的支柱43与接合凹部46接合的状态。
[0057] 如图4所示,在支柱43收纳在沟槽47中的状态下,旋转侧座圈42的旋转不受限制。换言之,旋转侧座圈42能正向旋转或逆向旋转。此状态为SOWC 40的容许状态,且容许第二行星架24正向旋转或逆向旋转。参照图3,第二行星架24(C2轴线)的转速能被调节为正转速或负转速中的任意转速。因而,第一电机MG1能根据运转状态等而以任意转速操作。
[0058] 当执行OD锁定模式时,HV_ECU 50使SOWC 40进入限制状态。HV_ECU 50命令SOWC 40的致动器48将选择板44移动至支柱43能与接合凹部46接合的位置。致动器48使选择板44沿正向移动而打开沟槽47。相应地,已由弹簧45挤压的支柱43从沟槽47朝旋转侧座圈42突出。支柱43朝旋转侧座圈42移动,并如图6所示与接合凹部46的壁面46a相靠接。结果,限制了旋转侧座圈42的正向旋转。
[0059] 因而,如图5所示,SOWC 40限制第二行星架24(C2轴线)的正转。SOWC 40产生对发动机转矩Te的反作用转矩Tw并用作用于发动机转矩Te的反作用接收器。由于反作用转矩Tw,SOWC 40从第一齿圈13输出发动机转矩Te。
[0060] 如图5所示,在OD锁定模式下,第一行星架14(C1轴线)的转速低于第一齿圈13(R1轴线)的转速,并且从发动机1输入的速度升高并从第一齿圈13输出。换言之,SOWC 40限制作为第二旋转元件的第二行星架24的旋转,并由此产生发动机1的转速升高并从第一齿圈13输出的超速状态。
[0061] 这里,优选降低在SOWC 40的状态被切换时需要的致动器48的推力。例如,在SOWC 40从图6所示的SOWC 40的限制状态切换为容许状态的情况下,有必要通过致动器48的推力F1来解除支柱43与接合凹部46之间的接合。此时,如果SOWC 40传递反作用转矩Tw,则所需推力F1的大小取决于传递转矩。
[0062] 相应地,在SOWC 40传递反作用转矩Tw的状态下,如果SOWC 40切换至容许状态,则必须根据最大反作用转矩Tw来确定能产生的推力F1的最大值。这导致致动器48的大型化。
[0063] 如下文将说明的,在根据本实施方式的动力传递装置101中,在SOWC 40从限制状态切换至容许状态下的情况下,SOWC 40在第一电机MG1使第二行星架24沿逆向旋转的情况下从限制状态切换至容许状态。相应地,可以抑制致动器48的所需推力F1的变动并且还降低所需推力F1的最大值。
[0064] 如图7所示,当进行从OD锁定模式到THS模式的变换时,HV_ECU50使第二行星架24(C2轴线)由第一电机MG1沿逆向旋转。此时,第一电机MG1用作用于发动机转矩Te的反作用接收器。如图8所示,当旋转侧座圈42逆向旋转时,从限制状态切换至容许状态所需的推力F1由选择板44与支柱43之间的动摩擦、选择板44与各座圈41、42之间的动摩擦以及通过弹簧45的挤压力产生的负荷来决定。由于SOWC 40不传递转矩,所以抑制了由于诸如传递转矩的扰乱而导致的所需推力F1的变动。因而,根据本实施方式的动力传递装置101,能使致动器48小型化。
[0065] 这里,HV_ECU 50不仅在SOWC 40从限制状态切换至容许状态的情况下而且在SOWC 40从容许状态切换至限制状态情况下可通过第一电机MG1使第二行星架24逆向旋转。通过在第二行星架24逆向旋转的同时将SOWC 40从容许状态切换至限制状态,能降低在切换期间要求的推力F1。
[0066] 在根据本实施方式的动力传递装置101中,第二差动机构20和SOWC 40以部件能与常规动力传递装置共同化的方式配置。如图1所示,第二差动机构20与第一差动机构10在轴向上配置成在第一电机MG1介于两者之间的状态下位于相反侧。第二差动机构20配置成使得第一电机MG1在轴向上位于第一差动机构10与第二差动机构20之间。第一差动机构10配置在第一电机MG1的发动机1侧,而第二差动机构20配置在发动机1侧的相反侧并相比于第一电机MG1更远离发动机1。SOWC 40也与第一差动机构10在轴向上配置成在第一电机MG1介于两者之间状态下位于相反侧。SOWC 40配置成使得第一电机MG1在轴向上位于第一差动机构10与SOWC 40之间。因而,在对具有发动机1、第一差动机构10和第一电机MG1作为已有部件并且其中发动机1和第二电机MG2配置在不同轴上的动力传递装置增设第二差动机构20和SOWC 40的情况下,部件能以最大限度被共同化。
[0067] 如下面将参照图9说明的,SOWC 40配置在用于收纳第二差动机构20的外壳4中。因而,SOWC 40和第二传动机构20能预先与外壳等组装。因此,可以缩短装配要增设的机构(SOWC 40和第二差动机构20)的过程。
[0068] 如图9所示,动力传递装置101具有外壳4和罩盖5。例如,外壳4是后壳。外壳4除第二差动机构20外还可将第一电机MG1和第一差动机构10收纳在其中。第二差动机构20和SOWC 40由外壳4和罩盖5收纳。外壳4具有中心支承件4a。中心支承件4a是从外壳4的外壳体向径向内侧突出的支承部。这里,“径向”表示以输入轴2的中心轴线X为中心正交于中心轴线X的径向。第一电机MG1的电机轴31由中心支承件4a的末端部、也就是位于径向内侧的端部经由轴承6支承。
[0069] 第二差动机构20的第二太阳齿轮21以不能相对于电机轴31旋转的方式嵌合在电机轴31上,并由中心支承件4a经由电机轴31和轴承6支承。连接部件25与第二齿圈23联接。连接部件25在轴向上相对于第二齿圈23配置在发动机1侧的相反侧。连接部件25配置成使得第二齿圈23在轴向上位于发动机1与连接部件25之间。连接部件25是环形部件,且其在径向内侧的端部以不能相对于输入轴2旋转的方式嵌合在输入轴2上。
[0070] SOWC 40在轴向上配置在中心轴4a与第二差动机构20之间。SOWC 40的固定侧座圈41以不能相对于中心支承件4a旋转的方式固定在中心支承件4a上。更具体地,固定侧座圈
41形成在中心支承件4a的位于发动机1侧的相反侧的面上。换言之,在本实施方式中,沟槽
47形成在中心支承件4a中,并且中心支承件4a用作固定侧座圈41。旋转侧座圈42相对于固定侧座圈41配置在发动机1侧的相反侧。旋转侧座圈42配置成使得固定侧座圈41位于发动机1与旋转侧座圈42之间。旋转侧座圈42由固定侧座圈41可旋转地支承。旋转侧座圈42配置在第二行星架24的径向外侧,并与第二行星架24联接。换言之,旋转侧座圈42在轴向上的位置与第二行星架24在轴向上的位置重叠,且因而配置成使得旋转侧座圈42和第二行星架24在沿径向看去时彼此重叠。
[0071] 罩盖5相对于外壳4配置在发动机1侧的相反侧。罩盖5配置成使得外壳4位于发动机1与罩盖5之间。罩盖5封闭外壳4并连同外壳4一起将第二差动机构20、SOWC 40、油泵3等收纳在其中。
[0072] 根据本实施方式的动力传递装置101,第二差动机构20、SOWC 40、油泵3和罩盖4能被预先组装。因而,在动力传递装置101的组装期间,可以缩短组装第二差动机构20、SOWC 40、油泵3和罩盖5的过程。
[0073] 在根据本实施方式的动力传递装置101中,第二行星架24在OD锁定模式下是固定的。由于第二行星架24不公转,所以存在不会产生由于第二行星架24和第二小齿轮22的离心载荷而导致的损失的优点。
[0074] 第一电机MG1的转子由中心支承件4a支承。由于SOWC 40和第二差动机构20是一体的和增设的,所以不需要改变轴承5在轴向上的配置。此外,SOWC 40和第二差动机构20可以是一体的和增设的而不增加收纳包含各差动机构10、20、电机MG1、MG2等的变速驱动桥部分的外壳的配合面的数量。因而,就抑制漏油而言是有利的。
[0075] SOWC 40的固定侧座圈41与中心支承件4a是一体的。因而,根据本实施方式的动力传递装置101就小型化、轴向长度的缩短、部件数量的缩减等而言是有利的。
[0076] 将参照图10至图12说明第二实施方式。在第二实施方式中,具有与在第一实施方式中说明的功能相同的功能的部件用同样的附图标记表示,并且将不进行重复说明。图10是根据第二实施方式的动力分割装置的架构图,图11是根据第二实施方式的动力传递装置的主要部分的截面图,图12是根据第二实施方式的动力传递装置的OD锁定模式的共线图。本实施方式的动力传递装置102与上述第一实施方式的动力传递装置101的不同之处在于第二差动机构80是双小齿轮型行星齿轮机构这一点和油泵90配置在与供配置第二差动机构80的轴不同的轴上且油泵90由第二行星架84旋转地驱动这一点。
[0077] 如图10所示,与上述第一实施方式的第二差动机构20相似,第二差动机构80与第一差动机构10在轴向上配置成在第一电机MG1介于两者之间的状态下位于相反侧。与上述第一实施方式的第二差动机构20相似,第二差动机构80配置成使得第一电机MG1在轴向上位于第一差动机构10与第二差动机构80之间。第二差动机构80是双小齿轮型的行星齿轮机构,并具有第二太阳齿轮81、内侧第二小齿轮82a、外侧第二小齿轮82b、第二齿圈83和第二行星架84。
[0078] 第二齿圈83与第二太阳齿轮81共轴地配置并且还配置在第二太阳齿轮81的径向外侧。内侧第二小齿轮82a和外侧第二小齿轮82b配置在第二太阳齿轮81与第二齿圈83之间。内侧第二小齿轮82a与第二太阳齿轮81和外侧第二小齿轮82b啮合。外侧第二小齿轮82b与内侧第二小齿轮82a和第二齿圈83啮合。第二小齿轮82a、82b由第二行星架84可旋转地支承。第二行星架84与输入轴2联接并与输入轴2一体地旋转。
[0079] 相应地,第二小齿轮82a、82b能与输入轴2一起围绕输入轴2的中心轴线旋转(公转),并且也能通过由第二行星架84支承而绕各第二小齿轮82a、82b的中心轴线旋转(自转)。
[0080] 第二太阳齿轮81与第一电机MG1的电机轴31连接并与电机轴31一体地旋转。第二行星架84经由输入轴2与发动机1连接。第二齿圈83与SOWC 40连接,且其旋转由SOWC 40限制。
[0081] 因而,在本实施方式的第二差动机构80中,第二太阳齿轮81是第一旋转元件的一个示例。第二齿圈83是第二旋转元件的一个示例。第二行星架84是第三旋转元件的一个示例。
[0082] 本实施方式的油泵90配置在与供配置第二差动机构80的轴不同的轴上。第二行星架84具有旋转地驱动油泵90的泵驱动齿轮84a。泵驱动齿轮84a与第二行星架84连接并与第二行星架84一体地旋转。油泵90具有与泵驱动齿轮84a啮合的输入齿轮92a。油泵90通过从泵驱动齿轮84a输入到输入齿轮92a的转矩而被旋转地驱动。在根据本实施方式的动力传递装置102中,第二差动机构80在轴向上的位置与油泵90在轴向上的位置重叠,且第二差动机构80和油泵90配置成使得第二差动机构80和油泵90在第二差动机构80的径向上彼此重叠。因而,关于第二差动机构80和油泵90的配置,可以缩短轴向长度。结果,由于能利用空置空间来配置SOWC 40,所以可以减小SOWC 40的直径等。
[0083] 将参照图11对第二差动机构80、SOWC 40、油泵90等的配置进行详细的说明。如图11所示,动力传递装置102具有外壳7和罩盖8。第一电机MG1的电机轴31由外壳7的中心支承件7a经由轴承6可旋转地支承。
[0084] 第二太阳齿轮81以不能相对于电机轴31旋转的方式与电机轴31连接。第二齿圈83以不能相对于旋转侧座圈42旋转的方式经由连接部件85与SOWC 40的旋转侧座圈42连接。连接部件85在轴向上相对于第二齿圈83配置在发动机1侧的相反侧。连接部件85配置成使得第二齿圈83位于发动机1与连接部件85之间。连接部件85是圆环形状的部件。旋转侧座圈
42相对于连接部件85配置在第二齿圈83侧的相反侧。旋转侧座圈42配置成使得连接部件85位于第二齿圈83与旋转侧座圈42之间。
[0085] 油泵90配置在与输入轴2不同的轴上。在本实施方式的动力传递装置102中,油泵90相对于第二差动机构80配置在竖直方向上方。油泵90通过包括泵体91、泵轴92、泵转子93和泵室94而构成。泵体91是大致圆筒形状的中空部件。泵体91在轴向上的端部是开口的,并且开口部由分隔部件95闭塞。泵室94是泵体91的中空部,并由泵体91和分隔部件95包围。
[0086] 泵转子93配置在泵室94内。泵转子93具有驱动转子93a和从动转子93b。驱动转子93a与泵轴92联接。泵轴92贯穿泵体91并由泵体91可旋转地支承。输入齿轮92a与泵轴92联接。
[0087] 第二行星架84的行星架凸缘84b具有泵驱动齿轮84a。泵驱动齿轮84a配置在行星架凸缘84b的外周面上。泵驱动齿轮84a与油泵90的输入齿轮92a啮合。当第二行星架84旋转时,其旋转从泵驱动齿轮84a经由输入齿轮92a传递到油泵90。相应地,泵轴92和驱动转子93a被旋转地驱动。油由于驱动转子93a和从动转子93b在泵室94内的旋转而被加压。
[0088] 在罩盖8内形成有供油通路8a和排油通路8b。油通过泵转子93的旋转而经由供油通路8a被抽吸到泵室94内。此外,已由泵转子93压缩的油被压出到排油通路8b中并供给到动力传递装置102中的各个部分。
[0089] 在本实施方式的动力传递装置102中,泵体91能通过缩短使配置在第二差动机构80的外周上的阀与泵排出部相连接的排油通路8b而被小型化。
[0090] 如图10所示,油泵90经由第二行星架84和输入轴2与发动机1连接。相应地,在图12所示的OD锁定模式下,油泵90与发动机1的旋转相结合地旋转,且因而能供给油。当SOWC 40在OD锁定模式下进入限制状态时,SOWC 40限制第二齿圈83(R2轴线)的正向旋转。SOWC 40用作用于发动机转矩Te的反作用接收器,并从第一齿圈13输出发动机转矩Te。
[0091] 由于第二行星架84在OD锁定模式下旋转,所以第二行星架84能利用其离心力来将油输送到径向外侧。因而,存在提高了第二差动机构80和SOWC 40的润滑性能的优点。
[0092] 将参照图13说明第三实施方式。在第三实施方式中,具有与在第一实施方式或第二实施方式中说明的功能相同的功能的部件用同样的附图标记表示,并且将不进行重复说明。图13是根据第三实施方式的动力传递装置的架构图。第三实施方式的动力传递装置103与上述各实施方式的动力传递装置101、102的不同之处在于SOWC 40经由振动控制机构9与车体侧连接这一点。
[0093] 如图13所示,SOWC 40的固定侧座圈41经由振动控制机构9固定在车体侧而不能旋转。振动控制机构9具有作为弹簧机构9a和振动控制机构9b的功能。本实施方式的振动控制机构9用作其中弹簧机构9a和振动控制机构9b并列配置的振动控制机构。
[0094] 在OD锁定模式下,第一差动机构10的传动比转变为高传动比。例如,该传动比被固定为在比THS模式下一般使用的传动比高的传动比。相应地,在OD锁定模式下,发动机1在低转速范围内使用的可能性高,且因而容易发生由于轰鸣声而造成的噪音和振动。相反,振动控制机构9允许降低驱动系统的转矩振动的传递率并因而允许抑制振动和噪音。此外,由于在OD锁定模式期间振动控制机构9设置在转矩传递路径上,所以仅在OD锁定模式下能发挥振动控制机构9的效果。
[0095] 上述第一实施方式至第三实施方式中的制动机构是SOWC 40。然而,可使用其他制动机构代替SOWC 40。此外,SOWC 40的具体构型并不限于已在上述各实施方式中公开的构型。
[0096] 已在上述实施方式和该型中说明的内容可以适当地组合并实施。