一种测量大气水Raman谱和气溶胶荧光谱的激光雷达系统转让专利

申请号 : CN201610226616.X

文献号 : CN105675576B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 易帆柳付超张云鹏余长明何裕金翁淼易洋

申请人 : 武汉大学

摘要 :

本发明公开了一种测量大气水Raman谱和气溶胶荧光谱的激光雷达系统。该系统由发射单元、光学接收与信号检测单元和控制单元组成。发射单元采用种子注入的固体激光器输出极窄线宽的354.8 nm紫外激光并导向天顶;光学接收与信号检测单元收集来自大气物质的后向散射光,对354.8 nm附近光产生优于15个数量级的抑制,并以0.8 nm的谱精度分辨与记录393.0-424.0 nm谱带范围信号光;控制单元保障整个雷达系统有序工作。在波长354.8 nm紫外激光辐射下,气态、液态和固态水的振转Raman谱区依次对应395-409 nm、396-410 nm和401-418 nm范围。本发明可同时记录由三相态水产生的Raman谱和由气溶胶粒子产生的荧光谱,实现对大气水和气溶胶等物质的同时探测。

权利要求 :

1.一种测量大气水Raman谱和气溶胶荧光谱的激光雷达系统,包括发射单元、光学接收与信号检测单元、控制单元;发射单元采用种子注入的固体激光器输出极窄线宽的紫外激光并导向天顶;光学接收与信号检测单元收集来自大气物质的后向散射光;控制单元控制发射单元、光学接收与信号检测单元,保障整个雷达系统有序工作,其特征在于:所述发射单元采用种子注入的固体激光器输出极窄线宽的354.8nm紫外激光并导向天顶;光学接收与信号检测单元对354.8nm附近光产生优于15个数量级的抑制,并以0.8nm的谱精度分辨与记录393.0-424.0nm谱带范围信号光。

2.如权利要求1所述的一种测量大气水Raman谱和气溶胶荧光谱的激光雷达系统,其特征在于:所述光学接收与信号检测单元包括望远镜、光阑、准直镜、反射镜、带通滤光片1、分束镜、干涉滤光片、汇聚镜、探测器1、带通滤光片2、耦合镜和双光栅光谱仪系统;

望远镜收集的大气后向散射信号穿过光阑后由准直镜变为平行光,经反射镜导向水平方向后照射带通滤光片1;

透过带通滤光片1的光被分束镜分为两路:分束镜反射的10%信号光首先照射中心波长386.8nm、带宽0.3nm的干涉滤光片,经汇聚镜后由探测器1记录作为参考信号;分束镜透射的90%信号首先照射带通滤光片2,随后由耦合镜馈入双光栅光谱仪系统;

带通滤光片1对354.8nm附近光产生优于6个量级的抑制,并以高于94%的透过率传输

387.0-447.0nm范围光;带通滤光片2对354.8nm、375.5nm和386.7nm附近光产生优于3个量级的抑制,并以高于80%的透过率传输393.0-424.0nm范围光。

3.如权利要求2所述的一种测量大气水Raman谱和气溶胶荧光谱的激光雷达系统,其特征在于:所述发射单元包括种子激光器、固体激光器、扩束镜、发射台;

种子激光器产生极窄线宽的1064nm红外基频光;基频光由光纤导入固体激光器谐振腔内,经两级放大后再由三倍频晶体产生极窄线宽的354.8nm紫外激光输出;紫外激光在水平方向上传播,通过5倍扩束镜扩束后照射发射台;发射台可电动精密控制,以高于99.5%的反射率将来射紫外激光导向天顶方向。

4.如权利要求3所述的一种测量大气水Raman谱和气溶胶荧光谱的激光雷达系统,其特征在于:所述控制单元包括计算机;计算机通过时序电路控制系统发射单元、光学接收与信号检测单元有序工作;其采用一个RS232串口与探测器1传输数据,采用一根网线与探测器2传输数据,传输的数据在计算机上自动存储。

5.如权利要求4所述的一种测量大气水Raman谱和气溶胶荧光谱的激光雷达系统,其特征在于:所述双光栅光谱仪系统包括光纤、透镜1和光栅1、透镜2和光栅2、探测器2;

光纤提供方便灵活的接入方式,将来自耦合镜的信号光传导并馈入后续的光栅色散系统;光纤芯径0.6mm、数值孔径0.12,出端口中心精准位于透镜1的焦点上;透镜1和光栅1、透镜2和光栅2分别准Littrow结构布局,构成两组级联的光栅色散系统;两个光栅色散系统的焦面在同一铅直面内,光轴在同一水平面内相互平行且间距53.69mm;双光栅色散系统对

354.8nm附近光产生优于6个量级的抑制,同时高效传输并以1.0mm nm-1的线色散率在空间上色散393.0-424.0nm范围光;探测器2以0.8nm的谱精度记录色散后的393.0-424.0nm范围信号光。

6.如权利要求5所述的一种测量大气水Raman谱和气溶胶荧光谱的激光雷达系统,其特征在于:所述探测器2共包括32个探测通道,单个探测通道光敏面物理尺寸为0.8mm×

7.0mm,相邻探测通道之间有0.2mm的死区间隔,通道间距1.0mm;探测器2光敏面准确定位在透镜2焦面上,每个探测通道光敏面长7.0mm边都平行于铅直方向。

7.如权利要求6所述的一种测量大气水Raman谱和气溶胶荧光谱的激光雷达系统,其特征在于:

所述透镜1直径100mm,焦距300mm,双面镀增透膜,对393.0-424.0nm范围光透过率大于

99%;光栅1为平面反射式闪耀光栅,刻线密度600gr mm-1,闪耀波长410nm,闪耀角度6.89°,工作角度9.27°,衍射级次为一级;

所述透镜2直径100mm,焦距400mm,双面镀增透膜,对393.0-424.0nm范围光透过率大于

99%;光栅2为平面反射式闪耀光栅,刻线密度600gr mm-1,闪耀波长410nm,闪耀角度

21.10°,工作角度21.72°,衍射级次为三级。

说明书 :

一种测量大气水Raman谱和气溶胶荧光谱的激光雷达系统

技术领域

[0001] 本发明涉及一种能同时测量大气中由三相态水产生的Raman谱和由气溶胶粒子产生的荧光谱的激光雷达系统。

背景技术

[0002] 水是大气中的一种重要物质。水汽及由液态/固态水组成的云在大气中的存在与变化,都会直接影响大气辐射收支。精确掌握大气水的含量、分布及相态等信息在大气研究领域是非常必要的。实现大气水的高精度探测需要付出极大的技术努力;水Raman激光雷达利用水的振转Raman谱测量大气水,具有高时空分辨率的优势。水汽Raman激光雷达主要通过接收水汽振转Raman谱Q支信号获取水汽剖面,在晴朗天气条件下常会获得可靠数据,但在有云存在时则会出现相对湿度结果大于100%的情况。其根源在于,由云中液态或/固态水产生的Raman信号,在频谱上与水汽Raman信号交叠进而对水汽信号产生“干扰”,导致测量结果错误。为此,有研究单位通过在水汽Raman激光雷达中增添一个检测液/固态水Raman回波的测量通道,实现对水汽和液/固态水的同时监测。但三相态水Raman谱在频谱上的交叠是固有的,靠采用滤波器件提取有限带宽内水Raman信号的方法,不能直接排除各相水Raman信号相互串扰带来的影响。同时,液水Raman谱与温度相关,单凭有限带宽内液水Raman信号总强度也不能反映出云内部微物理特性的变化。另一个潜在的干扰因素是气溶胶荧光:在大气中,包含有机物或源自生物质的气溶胶粒子,在紫外激光的辐射下会释放谱宽极宽的荧光。气溶胶荧光在频谱上可完全覆盖三相态水的Raman谱,进而进入雷达系统并对最终测量结果造成影响。利用有限带宽滤波器件提取水Raman信号的激光雷达系统,都难以直接识别气溶胶荧光是否存在,在气溶胶荧光存在的情况下也不能剔除气溶胶荧光的干扰。
[0003] 综合考虑以上因素,为实现在更多天气条件下的针对大气水的高精度探测,我们提出研制新型的水Raman激光雷达系统:系统能同时获取由三相态水产生的Raman谱信号,同时能直接判断是否有气溶胶荧光存在,并在荧光存在时能检测荧光强度并消除荧光对水Raman谱信号的干扰。这要求雷达系统具有适当的光谱范围来同时记录三相态的水Raman谱和荧光谱,并具有合适的谱分辨能力。另外,考虑到水在大气中含量相对很少,Raman散射相对弹性散射而言效率很低,还要求系统能高效传输目标信号、对发射激光波长附近的弹性回波产生足够程度的抑制,具备从极强的弹性信号中成功检出极弱Raman信号的能力。

发明内容

[0004] 本发明的目的是提出了一种测量大气水Raman谱和气溶胶荧光谱的激光雷达系统,该系统能实现对大气中由三相态水产生的Raman谱和由气溶胶粒子产生的荧光谱的同时探测。该系统由发射单元、光学接收与信号检测单元和控制单元组成。发射单元采用种子注入的固体激光器输出极窄线宽的354.8nm紫外激光并导向天顶;光学接收与信号检测单元收集来自大气物质的后向散射光,对354.8nm附近光产生优于15个数量级的抑制,并以0.8nm的谱精度分辨与记录393.0-424.0nm谱带范围信号光;控制单元保障整个雷达系统有序工作。
[0005] 为了实现上述目的,本发明提供的技术方案是:
[0006] 一种测量大气水Raman谱和气溶胶荧光谱的激光雷达系统,该系统由发射单元、光学接收与信号检测单元和控制单元组成。发射单元包括种子激光器、固体激光器、扩束镜、发射台。光学接收与信号检测单元由望远镜、光阑、准直镜、反射镜、带通滤光片1、分束镜、干涉滤光片、汇聚镜、探测器1、带通滤光片2、耦合镜和双光栅光谱仪系统组成。双光栅光谱仪系统由光纤、透镜1和光栅1、透镜2和光栅2、探测器2组成。双光栅光谱仪系统实现对354.8nm附近光优于6个数量级的抑制,高效传输并以0.8nm的谱精度记录393.0-424.0nm谱带范围信号光。控制单元由计算机组成,通过时序电路控制发射单元、光学接收与信号检测单元,保障整个雷达系统有序工作。
[0007] 种子激光器产生极窄线宽的1064nm红外基频光;基频光由光纤导入固体激光器谐振腔内,经两级放大后再由三倍频晶体产生极窄线宽的354.8nm紫外激光输出;紫外激光在水平方向上传播,通过5倍扩束镜扩束后照射发射台;发射台可电动精密控制,以高于99.5%的反射率将来射紫外激光导向天顶方向。
[0008] 望远镜收集的大气后向散射信号穿过光阑后由准直镜变为平行光,经反射镜导向水平方向后照射带通滤光片1。透过带通滤光片1的光被分束镜分为两路:分束镜反射的10%信号光首先照射中心波长386.8nm、带宽0.3nm的干涉滤光片,经汇聚镜后由探测器1记录作为参考信号;分束镜透射的90%信号首先照射带通滤光片2,随后由耦合镜馈入双光栅光谱仪系统。带通滤光片1对354.8nm附近光产生优于6个量级的抑制,并以高于94%的透过率传输387.0-447.0nm范围光。带通滤光片2对354.8nm、375.5nm和386.7nm附近光产生优于
3个量级的抑制,并以高于80%的透过率传输393.0-424.0nm范围光。
[0009] 双光栅光谱仪系统由光纤、透镜1和光栅1、透镜2和光栅2、探测器2组成。光纤提供方便灵活的接入方式,将来自耦合镜的信号光传导并馈入后续的光栅色散系统。透镜1和光栅1、透镜2和光栅2分别准Littrow结构布局,构成两组级联的光栅色散系统;两个光栅色散系统的焦面在同一铅直面内,光轴在同一水平面内相互平行且间距53.69mm。双光栅色散系统对354.8nm附近光产生优于6个量级的抑制,同时高效传输并以1.0mm nm-1的线色散率在空间上色散393.0-424.0nm范围光。探测器2以0.8nm的谱精度记录色散后的393.0-424.0nm范围信号光。
[0010] 光纤芯径0.6mm、数值孔径0.12,出端口中心精准位于透镜1的焦点上。透镜1直径100mm,焦距300mm,双面镀增透膜,对393.0-424.0nm范围光透过率大于99%;光栅1为平面反射式闪耀光栅,刻线密度600gr mm-1,闪耀波长410nm,闪耀角度6.89°,工作角度9.27°,衍射级次为一级。透镜2直径100mm,焦距400mm,双面镀增透膜,对393.0-424.0nm范围光透过率大于99%;光栅2为平面反射式闪耀光栅,刻线密度600gr mm-1,闪耀波长410nm,闪耀角度
21.10°,工作角度21.72°,衍射级次为三级。探测器2共包括32个线阵排列的探测通道,单个探测通道光敏面物理尺寸为0.8mm×7.0mm,相邻探测通道之间有0.2mm的死区间隔,通道间距1.0mm。探测器2光敏面准确定位在透镜2焦面上,每个探测通道光敏面长7.0mm边都平行于铅直方向。
[0011] 双光栅色散系统光谱区为393.0-424.0nm范围,线色散率1.0mm nm-1;探测器2记录393.0-424.0nm谱带信号,谱精度0.8nm。在波长354.8nm激光辐射下,气态、液态和固态水的振转Raman谱区依次对应395-409nm、396-410nm和401-418nm范围。雷达系统记录的395-
418nm范围谱可用以识别三相态水产生的振转Raman谱;393-394nm与419-424nm范围谱可用以直接识别气溶胶荧光谱,间接获取395-418nm范围荧光谱。据此,激光雷达系统实现对大气水Raman谱和气溶胶荧光谱的同时测量。
[0012] 如上所述的一种测量大气水Raman谱和气溶胶荧光谱的激光雷达系统,带通滤光片1、带通滤光片2和双光栅光谱仪系统组合产生对354.8nm附近光优于15个量级的抑制。
[0013] 如上所述的一种测量大气水Raman谱和气溶胶荧光谱的激光雷达系统,双光栅光谱仪系统采用准Littrow结构布局的两组级联的光栅色散系统实现对393.0-424.0nm范围光的高效传输和以1.0mm nm-1的线色散率在焦面上色散开来。
[0014] 如上所述的一种测量大气水Raman谱和气溶胶荧光谱的激光雷达系统,采用包括32个探测通道的线阵探测器记录393.0-424.0nm范围谱信号,谱分辨率0.8nm,实现在
354.8nm激光辐射时对大气中三相态水Raman谱和气溶胶荧光谱的同时测量。
[0015] 本发明具有以下优点和有益效果:
[0016] 为实现对大气水Raman谱和气溶胶荧光谱的同时探测,本发明的激光雷达系统具有适当的光谱探测范围和光谱分辨能力,并对354.8nm激光波长附近信号产生足够程度的抑制。
[0017] 激光雷达系统引入一个双光栅光谱仪系统实现对393.0-424.0nm范围信号光的分辨与记录。双光栅光谱仪系统采用光纤将传导的信号以准“点光源”的形式馈入后续的色散系统。光纤芯径0.6mm,数值孔径0.12,出端口中心精准位于透镜1的焦点上。色散系统由透镜1和光栅1、透镜2和光栅2组成。透镜1直径100mm,焦距300mm,双面镀增透膜,对393.0-424.0nm范围光透过率大于99%;光栅1为平面反射式闪耀光栅,刻线密度600gr mm-1,闪耀波长410nm,闪耀角度6.89°,工作角度9.27°,衍射级次为一级。透镜2直径100mm,焦距
400mm,双面镀增透膜,对393.0-424.0nm范围光透过率大于99%;光栅2为平面反射式闪耀光栅,刻线密度600gr mm-1,闪耀波长410nm,闪耀角度21.10°,工作角度21.72°,衍射级次为三级。透镜1和光栅1、透镜2和光栅2分别准Littrow结构布局,构成两组级联的光栅色散系统;两个光栅色散系统的焦面在同一铅直面内,光轴在同一水平面内平行且间距53.69mm。
双光栅色散系统对354.8nm附近光产生优于6个量级的抑制,同时高效传输并以1.0mm nm-1的线色散率在空间上色散393.0-424.0nm范围光。探测器2检测并记录色散开来的393.0-
424.0nm范围信号光。探测器2共包括32个探测通道,单个探测通道光敏面物理尺寸为0.8mm×7.0mm,相邻探测通道之间有0.2mm的死区间隔,通道间距1.0mm。探测器2光敏面准确定位在透镜2焦面上,每个探测通道光敏面长7.0mm边都平行于铅直方向。双光栅光谱仪系统通-1
道光谱区范围为393.0-424.0nm,线色散率1.0mm nm ;探测器2各探测通道光敏面水平宽度
0.8mm,单通道带宽0.8nm,同时雷达系统对393.0-424.0nm内谱信号具有0.8nm的光谱探测精度。在波长354.8nm紫外激光辐射下,气态、液态和固态水产生的振转Raman谱区依次对应
395-409nm、396-410nm和401-418nm范围。其中,395-418nm范围谱可用以识别三相态水产生的振转Raman谱;393-394nm与419-424nm范围谱可用以直接识别气溶胶荧光谱,间接获取
395-418nm范围的荧光谱。最终,激光雷达系统实现对大气中三相态水Raman谱和气溶胶荧光谱的同时测量。
[0018] 在雷达系统接收光路中,额外引入带通滤光片1和带通滤光片2,依次提供对354.8nm附近光优于6和3个数量级的抑制能力。双光栅色散系统对354.8nm附近光也产生优于6个数量级的抑制,最终激光雷达系统对354.8nm附近光产生优于15个数量级的抑制,确保测量的水Raman谱和气溶胶荧光谱信号不受强弹性信号的干扰。
[0019] 雷达系统发射单元采用种子注入的固体激光器作为光源,输出线宽极窄的354.8nm紫外激光并由发射台导向天顶方向。光学接收与信号检测单元收集来自大气物质的后向散射光,在滤波、色散后由探测器实现目标信号的光电转换与数据记录。控制单元通过时序电路控制整个雷达系统有序工作,同时完成数据的传输与存储。当前,整个激光雷达系统已经实现光路调节和数据采集的自动化运行。

附图说明

[0020] 图1为本发明实施例的激光雷达系统工作原理框图。

具体实施方式

[0021] 本发明的关键在于输出354.8nm极窄线宽紫外激光后,采用一个双光栅色散系统-1实现对收集的393.0-424.0nm范围光的高效传输和以1.0mm nm 的线色散率在焦面上色散开来,采用一个32通道的线阵探测器以0.8nm的谱精度分辨与记录谱带内信号,并组合带通滤光片产生对带外354.8nm附近光优于15个数量级的抑制,实现对大气水Raman谱和气溶胶荧光谱的同时测量。
[0022] 本发明由发射单元、光学接收与信号检测单元和控制单元组成。如附图1。
[0023] 发射单元采用一个种子激光器产生1064nm红外极窄线宽基频光导入固体Nd:YAG激光器谐振腔,经放大、三倍频后产生354.8nm紫外激光输出(线宽小于0.1pm)。紫外激光在通过一个自制的5倍扩束镜扩束后由电控反射台精准导向天顶方向。
[0024] 光学接收与信号检测单元由望远镜、光阑、准直镜、反射镜、带通滤光片1、分束镜、干涉滤光片、汇聚镜、探测器1、带通滤光片2、耦合镜和双光栅光谱仪系统组成。卡塞格林式望远镜光轴精确对准天顶,在焦面上的光阑直径设置为1mm以控制望远镜系统视场。通过光阑的回波信号由准直镜变为平行光,再由反射镜导向水平方向,经过带通滤光片1后照射分束镜。带通滤光片1初步抑制354.8nm附近光,并以高于94%的透过率传输387.0-447.0nm范围信号光。分束镜反射10%信号光,经中心波长386.8nm、带宽0.3nm干涉滤光片后,穿过汇聚镜,由探测器1记录,作为参考用的N2分子Raman信号。分束镜透射90%信号,经带通滤光片2后由耦合镜馈入双光栅光谱仪系统。带通滤光片2提供对354.8nm、375.5nm和386.7nm附近光优于3个量级的抑制,并以高于80%的透过率传输393.0-424.0nm范围光。双光栅光谱仪系统由光纤、透镜1和光栅1、透镜2和光栅2、探测器2组成。光纤提供方便灵活的光学接入方式,将来自耦合镜的信号光传导并馈入后续的色散系统。光纤为美国Fiberguide公司产品,芯径0.6mm,数值孔径0.12,出端口中心精准定位在透镜1的焦点上。透镜1和光栅1、透镜2和光栅2构成两个级联的光栅色散系统,对354.8nm附近光产生优于6个量级的抑制,同时-1
高效传输并以1.0mm nm 的线色散率在空间上色散393.0-424.0nm范围光。透镜1和透镜2为定制品,光栅1和光栅2为美国Newport公司标准品。透镜1直径100mm,焦距300mm,双面镀增透膜,对393.0-424.0nm范围光透过率大于99%;光栅1选用平面反射式闪耀光栅,刻线密度
600gr mm-1,闪耀波长410nm,闪耀角度6.89°,工作角度9.27°,衍射级次为一级。透镜2直径
100mm,焦距400mm,双面镀增透膜,对393.0-424.0nm范围光透过率大于99%;光栅2选用平面反射式闪耀光栅,刻线密度600gr mm-1,闪耀波长410nm,闪耀角度21.10°,工作角度
21.72°,衍射级次为三级。探测器2选用德国Licel公司的多通道数据采集系统,其光电转换器件为日本Hamamatsu公司生产的H7260系列线阵光电倍增管,具体包括32个探测通道,单通道光敏面为7mm×0.8mm矩形,通道间距1mm,通道间隔0.2mm。探测器2光敏面精准定位在透镜2焦面上,与色散系统配合并以0.8nm的谱精度检测并记录色散开来的393.0-424.0nm范围信号光。
[0025] 控制单元通过一个自制的时序电路控制系统发射单元、光学接收与信号检测单元有序工作。控制单元包括计算机,分别与探测器1、探测器2、固体激光器连接。计算机采用一个RS232串口与探测器1进行数据传输,采用一根网线与探测器2进行数据传输,传输的数据在计算机上自动存储。