一种支持大规模、全光互连的光交换机转让专利

申请号 : CN201610199688.X

文献号 : CN105681932B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 董德尊保金桢赵保康龚正虎罗章王克非肖立权张鹤颖肖灿文曹继军雷斐

申请人 : 中国人民解放军国防科学技术大学

摘要 :

本发明公开了一种支持大规模、全光互连的光交换机,包括东西南北四个方向接口,每个方向有N个光纤接口,用于光交换机之间互连;还包括:(1)四个完全相同的掺铒光纤放大器(EDFA),(2)N+1个5:5光纤分束器(5:5splitter),(3)波分复用器(MUX),(4)解波分复用器(DEMUX),(5)光纤耦合器(Coupler),(6)2个N/2*1波长选择开关(WSS),2个N*1波长选择开关,(7)M个双向光纤接口(fiber),与ToR交换机通过光纤进行连接,(8)2(N‑2)个完全相同的1:N光纤分束器(1:N splitter),(9)控制端口(Console)。基于该光交换机组成的网络可以支持大规模数据中心ToR互连,能够在任意ToR之间建立点到点光链路,降低了网络传输延时,同时也提高了光交换网络的灵活性。

权利要求 :

1.一种支持大规模、全光互连的光交换机,其特征在于,包括四个完全相同的掺铒光纤放大器EDFA,N+1个5:5光纤分束器即5:5splitter,波分复用器MUX,解波分复用器DEMUX,光纤耦合器Coupler,2个N/2*1波长选择开关WSS,2个N*1波长选择开关WSS,M个双向光纤接口fiber,2(N-2)个完全相同的1:N光纤分束器即1:N splitter,其中N为整数,N由波长选择开关决定,以及控制端口Console;还包括东西南北四个方向接口,每个方向有N个光纤接口,用于光交换机之间互连,N个南方接口分别记为第1南方接口S1、…、第i南方接口Si、…、第N南方接口SN,N个北方接口分别记为第1北方接口N1、…、第i北方接口Ni、…、第N北方接口NN,N个东方接口分别记为第1东方接口E1、…、第i东方接口Ei、…、第N东方接口EN,N个西方接口分别记为第1西方接口W1、…、第i西方接口Wi、…、第N西方接口WN,i为整数,1≤i≤N;包含M个双向光纤接口,与柜顶交换机即ToR交换机通过光纤进行连接,分别记为第1收发接口P1,…,第k接收发接口Pk,…,第M收发接口PM,k为整数,1≤k≤M;

四个掺铒光纤放大器分别记为第一掺铒光纤放大器EDFA1、第二掺铒光纤放大器EDFA2、第三掺铒光纤放大器EDFA3、第四掺铒光纤放大器EDFA4;2个N/2*1波长选择开关分别记为第一波长选择开关WSS1、第二波长选择开关WSS2,2个N*1波长选择开关分别记为第三波长选择开关WSS3、第四波长选择开关WSS4;N+1个(5:5)光纤分束器分别记为第1(5:5)光纤分束器、…、第s(5:5)光纤分束器、…、第N(5:5)光纤分束器,第(N+1)(5:5)光纤分束器,1≤s≤N,s为整数,第s(5:5)光纤分束器形式化表示为(5:5)Splitters;2(N-2)个1:N光纤分束器分别记为第1(1:N)光纤分束器,…,第t(1:N)光纤分束器,…,第2(N-2)(1:N)光纤分束器,t为整数,1≤t≤2(N-2),第t(1:N)光纤分束器形式化表示为(1:N)Splittert;

第1到第(N-2)(1:N)光纤分束器位于南北方向,第n(1:N)光纤分束器的输入端与第n北方接口Nn相连,分光比为N的输出端口与第n+2南方接口Sn+2相连,1≤n≤N-2,n为整数,n为偶数时,第n(1:N)光纤分束器的分光比为1的输出端口与第四波长选择开关WSS4相连,n为奇数时,第n(1:N)光纤分束器的分光比为1输出端口与第(n+1)/2(5:5)光纤分束器相连,通过第(n+1)/2(5:5)光纤分束器将信号发送到第一波长选择开关WSS1和第三波长选择开关WSS3;

第N-1到第2(N-2)(1:N)光纤分束器位于东西方向,第(N+n-2)(1:N)光纤分束器的输入端与第n西方接口Wn相连,分光比为N的输出端口与第n+2东方接口En+2相连,其中n为偶数时,第n(1:N)光纤分束器的分光比为1的输出端口与第四波长选择开关WSS4相连,n为奇数时,第n(1:N)光纤分束器的分光比为1输出端口与第(N+n-1)/2(5:5)光纤分束器相连,通过第(N+n-1)/2(5:5)光纤分束器将信号发送到第二波长选择开关WSS2和第三波长选择开关WSS3;

波分复用器MUX与第(N+1)(5:5)光纤分束器和外部ToR交换机相连;波分复用器MUX通过M个光纤接口从外部ToR接收到不同波长的光信号,通过波分复用器复用到一根光纤,发送给第(N+1)(5:5)光纤分束器;

当1≤s≤N/2-1时,第s(5:5)光纤分束器与第一波长选择开关、第三波长选择开关和第(2s+1)(1:N)光纤分束器相连;第s(5:5)光纤分束器从第(2s+1)(1:N)光纤分束器接收到分光比为1的光信号,然后等分成2部分,分别发送给第一波长选择开关和第三波长选择开关,用于判断信号是接收或者转发;当s为N/2时,第s(5:5)光纤分束器与第一波长选择开关、第三波长选择开关以及第N-1北方接口相连,第s(5:5)光纤分束器从第N-1北方接口接收信号,然后等分成2部分,分别发送给第一波长选择开关和第三波长选择开关,用于判断信号是接收或者转发;当N/2+1≤s≤N-1时,第s(5:5)光纤分束器与第二波长选择开关、第三波长选择开关和第(2s-1)(1:N)光纤分束器相连,第s(5:5)光纤分束器从第(2s-1)(1:N)光纤分束器接收到分光比为1的信号,然后等分成2部分,分别发送给第二波长选择开关和第三波长选择开关,用于判断信号是接收或者转发;当s为N时,第s(5:5)光纤分束器与第二波长选择开关、第三波长选择开关以及第N-1东方接口相连,第s(5:5)光纤分束器从第N-1东方接口接收信号,然后等分成2部分,分别发送给第二波长选择开关和第三波长选择开关,用于判断信号是接收或者转发;第(N+1)(5:5)光纤分束器波分复用器MUX、第一掺铒光纤放大器EDFA1、第二掺铒光纤放大器EDFA2相连;第(N+1)(5:5)光纤分束器通过一根光纤从波分复用器MUX接收光信号,经过第(N+1)(5:5)光纤分束器将光信号等分成两部分,分别发送给第一掺铒光纤放大器EDFA1、第二掺铒光纤放大器EDFA2;

第一掺铒光纤放大器EDFA1与第(N+1)(5:5)光纤分束器相连,第一掺铒光纤放大器EDFA1从第(N+1)(5:5)光纤分束器接收光信号,将光信号放大,然后发送到南北方向接口;

第二掺铒光纤放大器EDFA2与第(N+1)(5:5)光纤分束器相连,第二掺铒光纤放大器EDFA2从第(N+1)(5:5)光纤分束器接收光信号,将光信号放大,然后发送到东西方向接口;第三掺铒光纤放大器EDFA3与第一波长选择开关WSS1相连,第三掺铒光纤放大器EDFA3从第一波长选择开关WSS1接收光信号,将光信号放大,然后发送到南北方向接口;第四掺铒光纤放大器EDFA4与第二波长选择开关WSS2相连,第四掺铒光纤放大器EDFA4从第二波长选择开关WSS2接收光信号,将光信号放大,然后发送到东西方向接口;

第一波长选择开关WSS1与第1(5:5)光纤分束器、…、第w1(5:5)光纤分束器、…、第N/2(5:5)光纤分束器,以及第四掺铒光纤放大器EDFA4相连,w1为整数,1≤w1≤N/2;第一波长选择开关WSS1从第1(5:5)光纤分束器、…、第w1(5:5)光纤分束器、…、第N/2(5:5)光纤分束器接收光信号,决定是否将光信号通过第四掺铒光纤放大器EDFA4转发到东西方向;

第二波长选择开关WSS2与第(N/2+1)(5:5)光纤分束器、…、第w2(5:5)光纤分束器、…、第N(5:5)光纤分束器,以及第三掺铒光纤放大器EDFA3相连,w2为整数,N/2+1≤w2≤N;第二波长选择开关WSS2从第(N/2+1)(5:5)光纤分束器、…、第w2(5:5)光纤分束器、…、第N(5:5)光纤分束器接收光信号,决定是否将光信号通过第三掺铒光纤放大器EDFA3转发到南北方向;

第三波长选择开关WSS3与第1(5:5)光纤分束器、…、第w3(5:5)光纤分束器、…、第N(5:

5)光纤分束器,以及光纤耦合器Coupler相连,w3为整数,1≤w3≤N;第三波长选择开关从第1(5:5)光纤分束器、…、第w3(5:5)光纤分束器、…、第N(5:5)光纤分束器接收到同一维度上其他光交换机转发过来的信号,决定是否与其它维度的交换机建立连接,然后将选择的光信号发送给光纤耦合器Coupler;

第四波长选择开关WSS4与第2(1:N)光纤分束器、…、第w4(1:N)光纤分束器、…、第2(N-

2)(1:N)光纤分束器的分光比为1的输出端口,以及光纤耦合器Coupler相连,w4为整数,2≤w4≤2(N-2),且w4为偶数;第四波长选择开关从第2(1:N)光纤分束器、…、第w4(1:N)光纤分束器、…、第2(N-2)(1:N)光纤分束器的分光比为1的输出端口接收光信号,决定是否与其它维度的交换机建立连接,然后将选择的光信号发送给光纤耦合器Coupler;

光纤耦合器Coupler与第三波长选择开关WSS3、第四波长选择开关WSS4、解波分复用器DEMUX相连;光纤耦合器Coupler从第三波长选择开关WSS3、第四波长选择开关WSS4接收光信号,将光信号耦合到一根光纤,然后将光信号发送给解波分复用器;

解波分复用器DEMUX与光纤耦合器Coupler相连,并通过M个光纤接口连接到外部ToR交换机相连;解波分复用器DEMUX从光纤耦合器Coupler接收光信号,将不同的波长信号通过M个光纤接口发送到外部ToR交换机;

控制端口与第一波长选择开关WSS1、第二波长选择开关WSS2、第三波长选择开关WSS3、第四波长选择开关WSS4以及外部SDN控制器即软件定义网络控制器相连;通过SDN控制器对光交换机进行配置。

说明书 :

一种支持大规模、全光互连的光交换机

技术领域

[0001] 本发明属于网络体系结构领域,尤其是能支持大规模数据中心网络的光交换机。

背景技术

[0002] 随着云计算、大数据等技术的发展,数据中心的规模越来越大。传统数据中心网络主要采用树形网络拓扑,面临超额订购、网络拥塞等问题。近年来,基于光交换机的动态网络研究增多。光交换机能够动态改变网络的连接方式,按照需求建立链路,极大的减少了网络的部署代价,提升网络的性能。
[0003] 目前商用的光交换机主要是基于微电机系统(Micro-electromechanical System,MEMS)和波长选择开关(Wave Selection Switch,WSS)的光交换机。基于MEMS的光交换机在输入端口和输出端口之间采用微镜阵列,阵列中的镜片通过微机电控制方式在端口之间任意改变角度来改变光束的传输方向,该方式面临的问题是光交换机端口数量有限,不能支持大规模全光互连网络。基于波长选择开关和波分复用技术光交换机通过WSS波长选择开关来控制网络连接方式。美国CoAdna公司采用的基于WSS和波分复用技术的光交换机通过2D-Mesh的方式连接,该方式能够支持大规模柜顶交换机(Top of Rack,ToR)互连,但是在2D-Mesh不同方向上的ToR通信必须经过光电转换进入ToR转发,不能直接建立点到点的光链路。这种方式增大了网络传输的延时,同时也限制光交换网络的灵活性。

发明内容

[0004] 为了克服上述现有技术的缺点,本发明的目的在于设计一种支持大规模节点、能够在任意ToR之间建立点到点光链路的光交换机。本发明所采用的技术方案是基于波长选择开关和波分复用技术的架构,通过在光交换机中增加波长选择开关部件,使得任意ToR之间可以建立一条光链路,而无需经过ToR转发。
[0005] 为了实现上述方案,本发明技术方案如下:
[0006] 如图1所示,本发明支持大规模全光互连的光交换机包括:(1)四个完全相同的掺铒光纤放大器(EDFA),(2)N+1个5:5光纤分束器(5:5splitter),两个方向上分光比为5:5,(3)波分复用器(MUX),(4)解波分复用器(DEMUX),(5)光纤耦合器(Coupler),(6)2个N/2*1波长选择开关(WSS),2个N*1波长选择开关(WSS),(7)M个双向光纤接口(fiber),(8)2(N-2)个完全相同的1:N光纤分束器(1:N splitter),相同方向和垂直方向的分光比为1:N,其中N为整数,N由波长选择开关决定,(9)控制端口(Console)。
[0007] 本发明支持大规模全光互连的光交换机包括东西南北四个方向接口,每个方向有N个光纤接口,用于光交换机之间互连,N个南方接口分别记为第1南方接口S1、…、第i南方接口Si、…、第N南方接口SN,N个北方接口分别记为第1北方接口N1、…、第i北方接口Ni、…、第N北方接口NN,N个东方接口分别记为第1东方接口E1、…、第i东方接口Ei、…、第N东方接口EN,N个西方接口分别记为第1西方接口W1、…、第i西方接口Wi、…、第N西方接口WN,i为整数,1≤i≤N;包含M个双向光纤接口,与ToR交换机通过光纤进行连接,分别记为第1收发接口P1,…,第k接收发接口Pk,…,第M收发接口PM,k为整数,1≤k≤M。
[0008] 四个掺铒光纤放大器分别记为第一掺铒光纤放大器EDFA1、第二掺铒光纤放大器EDFA2、第三掺铒光纤放大器EDFA3、第四掺铒光纤放大器EDFA4。
[0009] 2个N/2*1波长选择开关分别记为第一波长选择开关WSS1、第二波长选择开关WSS2,2个N*1波长选择开关分别记为第三波长选择开关WSS3、第四波长选择开关WSS4。
[0010] N+1个(5:5)光纤分束器分别记为第1(5:5)光纤分束器、…、第s(5:5)光纤分束器、…、第N(5:5)光纤分束器,第(N+1)(5:5)光纤分束器,1≤s≤N,s为整数,第s(5:5)光纤分束器形式化表示为(5:5)Splitters。
[0011] 2(N-2)个1:N光纤分束器分别记为第1(1:N)光纤分束器,…,第t(1:N)光纤分束器,…,第2(N-2)(1:N)光纤分束器,t为整数,1≤t≤2(N-2),第t(1:N)光纤分束器形式化表示为(1:N)Splittert。
[0012] 第1到第(N-2)(1:N)光纤分束器位于南北方向,第n(1:N)光纤分束器的输入端与第n北方接口Nn相连,分光比为N的输出端口与第n+2南方接口Sn+2相连,1≤n≤N-2,n为整数,n为偶数时,第n(1:N)光纤分束器的分光比为1的输出端口与第四波长选择开关WSS4相连,n为奇数时,第n(1:N)光纤分束器的分光比为1输出端口与第(n+1)/2(5:5)光纤分束器相连,通过第(n+1)/2(5:5)光纤分束器将信号发送到第一波长选择开关WSS1和第三波长选择开关WSS3。
[0013] 第N-1到第2(N-2)(1:N)光纤分束器位于东西方向,第(N+n-2)(1:N)光纤分束器的输入端与第n西方接口Wn相连,分光比为N的输出端口与第n+2东方接口En+2相连,其中n为偶数时,第n(1:N)光纤分束器的分光比为1的输出端口与第四波长选择开关WSS4相连,n为奇数时,第n(1:N)光纤分束器的分光比为1输出端口与第(N+n-1)/2(5:5)光纤分束器相连,通过第(N+n-1)/2(5:5)光纤分束器将信号发送到第二波长选择开关WSS2和第三波长选择开关WSS3。
[0014] 波分复用器MUX与第(N+1)(5:5)光纤分束器和外部ToR交换机相连。在本发明光交换机的接收端,波分复用器MUX通过M个光纤接口从外部ToR接收到不同波长的光信号,通过波分复用器复用到一根光纤,发送给第(N+1)(5:5)光纤分束器。
[0015] 当1≤s≤N/2-1时,第s(5:5)光纤分束器与第一波长选择开关、第三波长选择开关和第(2s+1)(1:N)光纤分束器相连。第s(5:5)光纤分束器从第(2s+1)(1:N)光纤分束器接收到分光比为1的光信号,然后等分成2部分,分别发送给第一波长选择开关和第三波长选择开关,用于判断信号是接收或者转发。当s为N/2时,第s(5:5)光纤分束器与第一波长选择开关、第三波长选择开关以及第N-1北方接口相连,第s(5:5)光纤分束器从第N-1北方接口接收信号,然后等分成2部分,分别发送给第一波长选择开关和第三波长选择开关,用于判断信号是接收或者转发。当N/2+1≤s≤N-1时,第s(5:5)光纤分束器与第二波长选择开关、第三波长选择开关和第(2s-1)(1:N)光纤分束器相连,第s(5:5)光纤分束器从第(2s-1)(1:N)光纤分束器接收到分光比为1的信号,然后等分成2部分,分别发送给第二波长选择开关和第三波长选择开关,用于判断信号是接收或者转发。当s为N时,第s(5:5)光纤分束器与第二波长选择开关、第三波长选择开关以及第N-1东方接口相连,第s(5:5)光纤分束器从第N-1东方接口接收信号,然后等分成2部分,分别发送给第二波长选择开关和第三波长选择开关,用于判断信号是接收或者转发。第(N+1)(5:5)光纤分束器波分复用器MUX、第一掺铒光纤放大器EDFA1、第二掺铒光纤放大器EDFA2相连。第(N+1)(5:5)光纤分束器通过一根光纤从波分复用器MUX接收光信号,经过第(N+1)(5:5)光纤分束器将光信号等分成两部分,分别发送给第一掺铒光纤放大器EDFA1、第二掺铒光纤放大器EDFA2。
[0016] 第一掺铒光纤放大器EDFA1与第(N+1)(5:5)光纤分束器相连,第一掺铒光纤放大器EDFA1从第(N+1)(5:5)光纤分束器接收光信号,将光信号放大,然后发送到南北方向接口。第二掺铒光纤放大器EDFA2与第(N+1)(5:5)光纤分束器相连,第二掺铒光纤放大器EDFA2从第(N+1)(5:5)光纤分束器接收光信号,将光信号放大,然后发送到东西方向接口。第三掺铒光纤放大器EDFA3与第一波长选择开关WSS1相连,第三掺铒光纤放大器EDFA3从第一波长选择开关WSS1接收光信号,将光信号放大,然后发送到南北方向接口。第四掺铒光纤放大器EDFA4与第二波长选择开关WSS2相连,第四掺铒光纤放大器EDFA4从第二波长选择开关WSS2接收光信号,将光信号放大,然后发送到东西方向接口。
[0017] 在光交换机的接收端,4个N*1波长选择开关接收到外部不同光交换机发送的不同波长的光信号,通过控制不同波长光信号的断开和通过来与其他ToR交换机建立连接。
[0018] 第一波长选择开关和第二波长选择开关将选择的信号经过掺铒光纤放大器转发到其他方向。
[0019] 第一波长选择开关WSS1与第1(5:5)光纤分束器、…、第w1(5:5)光纤分束器、…、第N/2(5:5)光纤分束器,以及第四掺铒光纤放大器EDFA4相连,w1为整数,1≤w1≤N/2。第一波长选择开关WSS1从第1(5:5)光纤分束器、…、第w1(5:5)光纤分束器、…、第N/2(5:5)光纤分束器接收光信号,决定是否将光信号通过第四掺铒光纤放大器EDFA4转发到东西方向。
[0020] 第二波长选择开关WSS2与第(N/2+1)(5:5)光纤分束器、…、第w2(5:5)光纤分束器、…、第N(5:5)光纤分束器,以及第三掺铒光纤放大器EDFA3相连,w2为整数,N/2+1≤w2≤N。第二波长选择开关WSS2从第(N/2+1)(5:5)光纤分束器、…、第w2(5:5)光纤分束器、…、第N(5:5)光纤分束器接收光信号,决定是否将光信号通过第三掺铒光纤放大器EDFA3转发到南北方向。
[0021] 第三波长选择开关WSS3与第1(5:5)光纤分束器、…、第w3(5:5)光纤分束器、…、第N(5:5)光纤分束器,以及光纤耦合器Coupler相连,w3为整数,1≤w3≤N。第三波长选择开关从第1(5:5)光纤分束器、…、第w3(5:5)光纤分束器、…、第N(5:5)光纤分束器接收到同一维度上其他光交换机转发过来的信号,决定是否与其它维度的交换机建立连接,然后将选择的光信号发送给光纤耦合器Coupler。
[0022] 第四波长选择开关WSS4与第2(1:N)光纤分束器、…、第w4(1:N)光纤分束器、…、第2(N-2)(1:N)光纤分束器的分光比为1的输出端口,以及光纤耦合器Coupler相连,w4为整数,2≤w4≤2(N-2),且w4为偶数。第四波长选择开关用来控制与不同维度上的光交换机的连接,第四波长选择开关从第2(1:N)光纤分束器、…、第w4(1:N)光纤分束器、…、第2(N-2)(1:N)光纤分束器的分光比为1的输出端口接收光信号,决定是否与其它维度的交换机建立连接,然后将选择的光信号发送给光纤耦合器Coupler。
[0023] 光纤耦合器Coupler与第三波长选择开关WSS3、第四波长选择开关WSS4、解波分复用器DEMUX相连。光纤耦合器Coupler从第三波长选择开关WSS3、第四波长选择开关WSS4接收光信号,将光信号耦合到一根光纤,然后将光信号发送给解波分复用器。
[0024] 解波分复用器DEMUX与光纤耦合器Coupler相连,并通过M个光纤接口连接到外部ToR交换机相连。如图2(a)所示,解波分复用器DEMUX从光纤耦合器Coupler接收光信号,将不同的波长信号通过M个光纤接口发送到外部ToR交换机。
[0025] 控制端口与第一波长选择开关WSS1、第二波长选择开关WSS2、第三波长选择开关WSS3、第四波长选择开关WSS4以及外部SDN控制器即软件定义网络控制器(Software Defined Network)相连。通过SDN控制器对光交换机进行配置。
[0026] 如图2(b)所示,在实际部署中,光交换机之间利用东西南北四个方向端口按照2D-Mesh的方式连接,光交换机与ToR之间利用包含不同波长的光纤连接,光交换机的控制端口与SDN控制器相连,通过SDN控制器对光交换机进行配置。
[0027] 基于该光交换机的互连网络工作过程如图3所示:
[0028] 步骤(1):SDN控制器通过应用层或者网络层获得带宽需求矩阵
[0029] 步骤(2):SDN控制器判断当前网络拓扑与带宽需求矩阵是否相匹配,如果匹配则不需要改变网络拓扑,并继续感知网络带宽需求;
[0030] 步骤(3):如果不匹配,SDN控制器则根据带宽需求矩阵,动态调整光交换机的波长使网络拓扑满足带宽需求;
[0031] 步骤(4):光交换机波长分配完成后,SDN控制器改变ToR的转发规则,与新的网络拓扑相适应;
[0032] 步骤(5):拓扑以及规则修改完成后,服务器进行数据传输。
[0033] SDN控制器上运行的光交换机的波长分配流程如图4所示:
[0034] 第一步,输入带宽需求矩阵
[0035] 第二步,将带宽需求矩阵 转化为二部多重图G',波长分配问题转化为二部多重图着色问题;
[0036] 第三步,将源节点和目的节点不在同一维度上的边(u,v)拆分成两条边(u,w)和(w,v),其中w为转发节点,边(u,w)属于G′1,边(w,v)属于G'2,剩余的边属于G′1,从而得到两个二部多重图G′1和G'2;
[0037] 第四步,在G′1和G'2中寻找最大匹配m,然后在{G′1-m}和{G'2-m}中继续寻找最大匹配,依次类推,直到G′1和G'2为空;
[0038] 第五步,对每个匹配分配不同的颜色,即分配不同的波长,波长分配完成。
[0039] 与现有技术相比,采用本发明可达到以下技术效果:
[0040] 1.本发明光交换机基于波长选择开关和波分复用技术的架构,通过在光交换机中增加波长选择开关部件,使得任意ToR之间可以建立一条光链路,而无需经过ToR转发。因此,基于该光交换机组成的网络可以支持大规模数据中心ToR互连,能够在任意ToR之间建立点到点光链路,降低了网络传输延时,同时也提高了光交换网络的灵活性。
[0041] 2.本发明光交换机利用东西南北四个方向端口按照2D-Mesh的方式连接,光交换机与ToR之间利用M个包含不同波长的光纤连接,光交换机的控制端口与SDN控制器相连,通过SDN控制器对光交换机进行配置,可以调整链路的带宽。

附图说明

[0042] 图1是本发明光交换机的结构图。
[0043] 图2(a)是本发明结构简图,图2(b)本发明光交换机在大规模互连网络的部署示意图。
[0044] 图3是基于本发明光交换机的互连网络工作过程流程图。
[0045] 图4是本发明中SDN控制器上运行的光交换机的波长分配流程图。

具体实施方式

[0046] 下面结合附图和实例详细说明本发明的实施方式。
[0047] 本发明是一种用于数据中心网络中光交换机,利用该光交换机能够在任意ToR之间建立点到点的光链路,光交换机的硬件结构如图1所示。
[0048] 如图1所示,本发明支持大规模全光互连的光交换机包括:(1)四个完全相同的掺铒光纤放大器(EDFA),(2)N+1个5:5光纤分束器(5:5splitter),两个方向上分光比为5:5,(3)波分复用器(MUX),(4)解波分复用器(DEMUX),(5)光纤耦合器(Coupler),(6)2个N/2*1波长选择开关(WSS),2个N*1波长选择开关(WSS),(7)M个双向光纤接口(fiber),(8)2(N-2)个完全相同的1:N光纤分束器(1:N splitter),相同方向和垂直方向的分光比为1:N,其中N由波长选择开关决定,(9)控制端口(Console)。
[0049] 本发明支持大规模全光互连的光交换机包括东西南北四个方向接口,每个方向有N个光纤接口,用于光交换机之间互连,N个南方接口分别记为第1南方接口S1、…、第i南方接口Si、…、第N南方接口SN,N个北方接口分别记为第1北方接口N1、…、第i北方接口Ni、…、第N北方接口NN,N个东方接口分别记为第1东方接口E1、…、第i东方接口Ei、…、第N东方接口EN,N个西方接口分别记为第1西方接口W1、…、第i西方接口Wi、…、第N西方接口WN,i为整数,1≤i≤N;包含M个双向光纤接口,与ToR交换机通过光纤进行连接,分别记为第1收发接口P1,…,第k接收发接口Pk,…,第M收发接口PM,k为整数,1≤k≤M。
[0050] 四个掺铒光纤放大器分别记为第一掺铒光纤放大器EDFA1、第二掺铒光纤放大器EDFA2、第三掺铒光纤放大器EDFA3、第四掺铒光纤放大器EDFA4。
[0051] 2个N/2*1波长选择开关分别记为第一波长选择开关WSS1、第二波长选择开关WSS2,2个N*1波长选择开关分别记为第三波长选择开关WSS3、第四波长选择开关WSS4。
[0052] N+1个(5:5)光纤分束器分别记为第1(5:5)光纤分束器、…、第s(5:5)光纤分束器即(5:5)splitters、…、第N(5:5)光纤分束器,第(N+1)(5:5)光纤分束器,1≤s≤N,s为整数,第s(5:5)光纤分束器形式化表示为(5:5)Splitters。
[0053] 2(N-2)个1:N光纤分束器分别记为第1(1:N)光纤分束器,…,第t(1:N)光纤分束器,…,第2(N-2)(1:N)光纤分束器,t为整数,1≤t≤2(N-2),第t(1:N)光纤分束器形式化表示为(1:N)Splittert。
[0054] 第1到第(N-2)(1:N)光纤分束器位于南北方向,第n(1:N)光纤分束器的输入端与第n北方接口Nn相连,分光比为N的输出端口与第n+2南方接口Sn+2相连,1≤n≤N-2,n为整数,n为偶数时,第n(1:N)光纤分束器的分光比为1的输出端口与第四波长选择开关WSS4相连,n为奇数时,第n(1:N)光纤分束器的分光比为1输出端口与第(n+1)/2(5:5)光纤分束器相连,通过第(n+1)/2(5:5)光纤分束器将信号发送到第一波长选择开关WSS1和第三波长选择开关WSS3。
[0055] 第N-1到第2(N-2)(1:N)光纤分束器位于东西方向,第(N+n-2)(1:N)光纤分束器的输入端与第n西方接口Wn相连,分光比为N的输出端口与第n+2东方接口En+2相连,其中n为偶数时,第n(1:N)光纤分束器的分光比为1的输出端口与第四波长选择开关WSS4相连,n为奇数时,第n(1:N)光纤分束器的分光比为1输出端口与第(N+n-1)/2(5:5)光纤分束器相连,通过第(N+n-1)/2(5:5)光纤分束器将信号发送到第二波长选择开关WSS2和第三波长选择开关WSS3。
[0056] 波分复用器MUX与第(N+1)(5:5)光纤分束器和外部ToR交换机相连。在本发明光交换机的接收端,波分复用器MUX通过M个光纤接口从外部ToR接收到不同波长的光信号,通过波分复用器复用到一根光纤,发送给第(N+1)(5:5)光纤分束器。
[0057] 当1≤s≤N/2-1时,第s(5:5)光纤分束器与第一波长选择开关、第三波长选择开关和第(2s+1)(1:N)光纤分束器相连。第s(5:5)光纤分束器从第(2s+1)(1:N)光纤分束器接收到分光比为1的光信号,然后等分成2部分,分别发送给第一波长选择开关和第三波长选择开关,用于判断信号是接收或者转发。当s为N/2时,第s(5:5)光纤分束器与第一波长选择开关、第三波长选择开关以及第N-1北方接口相连,第s(5:5)光纤分束器从第N-1北方接口接收信号,然后等分成2部分,分别发送给第一波长选择开关和第三波长选择开关,用于判断信号是接收或者转发。当N/2+1≤s≤N-1时,第s(5:5)光纤分束器与第二波长选择开关、第三波长选择开关和第(2s-1)(1:N)光纤分束器相连,第s(5:5)光纤分束器从第(2s-1)(1:N)光纤分束器接收到分光比为1的信号,然后等分成2部分,分别发送给第二波长选择开关和第三波长选择开关,用于判断信号是接收或者转发。当s为N时,第s(5:5)光纤分束器与第二波长选择开关、第三波长选择开关以及第N-1东方接口相连,第s(5:5)光纤分束器从第N-1东方接口接收信号,然后等分成2部分,分别发送给第二波长选择开关和第三波长选择开关,用于判断信号是接收或者转发。第(N+1)(5:5)光纤分束器波分复用器MUX、第一掺铒光纤放大器EDFA1、第二掺铒光纤放大器EDFA2相连。第(N+1)(5:5)光纤分束器通过一根光纤从波分复用器MUX接收光信号,经过第(N+1)(5:5)光纤分束器将光信号等分成两部分,分别发送给第一掺铒光纤放大器EDFA1、第二掺铒光纤放大器EDFA2。
[0058] 第一掺铒光纤放大器EDFA1与第(N+1)(5:5)光纤分束器相连,第一掺铒光纤放大器EDFA1从第(N+1)(5:5)光纤分束器接收光信号,将光信号放大,然后发送到南北方向接口。第二掺铒光纤放大器EDFA2与第(N+1)(5:5)光纤分束器相连,第二掺铒光纤放大器EDFA2从第(N+1)(5:5)光纤分束器接收光信号,将光信号放大,然后发送到东西方向接口。第三掺铒光纤放大器EDFA3与第一波长选择开关WSS1相连,第三掺铒光纤放大器EDFA3从第一波长选择开关WSS1接收光信号,将光信号放大,然后发送到南北方向接口。第四掺铒光纤放大器EDFA4与第二波长选择开关WSS2相连,第四掺铒光纤放大器EDFA4从第二波长选择开关WSS2接收光信号,将光信号放大,然后发送到东西方向接口。
[0059] 在光交换机的接收端,4个N*1波长选择开关接收到外部不同光交换机发送的不同波长的光信号,通过控制不同波长光信号的断开和通过来与其他ToR交换机建立连接。
[0060] 第一波长选择开关和第二波长选择开关将选择的信号经过掺铒光纤放大器转发到其他方向。
[0061] 第一波长选择开关WSS1与第1(5:5)光纤分束器、…、第w1(5:5)光纤分束器、…、第N/2(5:5)光纤分束器,以及第四掺铒光纤放大器EDFA4相连,w1为整数,1≤w1≤N/2。第一波长选择开关WSS1从第1(5:5)光纤分束器、…、第w1(5:5)光纤分束器、…、第N/2(5:5)光纤分束器接收光信号,决定是否将光信号通过第四掺铒光纤放大器EDFA4转发到东西方向。
[0062] 第二波长选择开关WSS2与第(N/2+1)(5:5)光纤分束器、…、第w2(5:5)光纤分束器、…、第N(5:5)光纤分束器,以及第三掺铒光纤放大器EDFA3相连,w2为整数,N/2+1≤w2≤N。第二波长选择开关WSS2从第(N/2+1)(5:5)光纤分束器、…、第w2(5:5)光纤分束器、…、第N(5:5)光纤分束器接收光信号,决定是否将光信号通过第三掺铒光纤放大器EDFA3转发到南北方向。
[0063] 第三波长选择开关WSS3与第1(5:5)光纤分束器、…、第w3(5:5)光纤分束器、…、第N(5:5)光纤分束器,以及光纤耦合器Coupler相连,w3为整数,1≤w3≤N。第三波长选择开关从第1(5:5)光纤分束器、…、第w3(5:5)光纤分束器、…、第N(5:5)光纤分束器接收到同一维度上其他光交换机转发过来的信号,决定是否与其它维度的交换机建立连接,然后将选择的光信号发送给光纤耦合器Coupler。
[0064] 第四波长选择开关WSS4与第2(1:N)光纤分束器、…、第w4(1:N)光纤分束器、…、第2(N-2)(1:N)光纤分束器的分光比为1的输出端口,以及光纤耦合器Coupler相连,w4为整数,2≤w4≤2(N-2),且w4为偶数。第四波长选择开关用来控制与不同维度上的光交换机的连接,第四波长选择开关从第2(1:N)光纤分束器、…、第w4(1:N)光纤分束器、…、第2(N-2)(1:N)光纤分束器的分光比为1的输出端口接收光信号,决定是否与其它维度的交换机建立连接,然后将选择的光信号发送给光纤耦合器Coupler。
[0065] 光纤耦合器Coupler与第三波长选择开关WSS3、第四波长选择开关WSS4、解波分复用器DEMUX相连。光纤耦合器Coupler从第三波长选择开关WSS3、第四波长选择开关WSS4接收光信号,将光信号耦合到一根光纤,然后将光信号发送给解波分复用器。
[0066] 解波分复用器DEMUX与光纤耦合器Coupler相连,并通过M个光纤接口连接到外部ToR交换机相连。如图2(a)所示,解波分复用器DEMUX从光纤耦合器Coupler接收光信号,将不同的波长信号通过M个光纤接口发送到外部ToR交换机。
[0067] 控制端口与第一波长选择开关WSS1、第二波长选择开关WSS2、第三波长选择开关WSS3、第四波长选择开关WSS4以及外部SDN控制器相连。通过SDN控制器对光交换机进行配置。
[0068] 如图2(b)所示,在实际部署中,光交换机之间利用东西南北四个方向端口按照2D-Mesh的方式连接,光交换机与ToR之间利用包含不同波长的光纤连接,光交换机的控制端口与SDN控制器相连,通过SDN控制器对光交换机进行配置。
[0069] 基于该光交换机的互连网络工作过程如图3所示:
[0070] 步骤(1):SDN控制器通过应用层或者网络层获得带宽需求矩阵
[0071] 步骤(2):SDN控制器判断当前网络拓扑与带宽需求矩阵是否相匹配,如果匹配则不需要改变网络拓扑,并继续感知网络带宽需求;
[0072] 步骤(3):如果不匹配,SDN控制器则根据带宽需求矩阵,动态调整光交换机的波长使网络拓扑满足带宽需求;
[0073] 步骤(4):光交换机波长分配完成后,SDN控制器改变ToR的转发规则,与新的网络拓扑相适应;
[0074] 步骤(5):拓扑以及规则修改完成后,服务器进行数据传输。
[0075] SDN控制器上运行的光交换机的波长分配流程如图4所示:
[0076] 第一步,输入带宽需求矩阵
[0077] 第二步,将带宽需求矩阵 转化为二部多重图G',波长分配问题转化为二部多重图着色问题;
[0078] 第三步,将源节点和目的节点不在同一维度上的边(u,v)拆分成两条边(u,w)和(w,v),其中w为转发节点,边(u,w)属于G′1,边(w,v)属于G'2,剩余的边属于G′1,从而得到两个二部多重图G′1和G'2;
[0079] 第四步,在G′1和G'2中寻找最大匹配m,然后在{G′1-m}和{G′2-m}中继续寻找最大匹配,依次类推,直到G′1和G'2为空;
[0080] 第五步,对每个匹配分配不同的颜色,即分配不同的波长,波长分配完成。
[0081] 以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。