红外线检测元件转让专利

申请号 : CN201480059033.1

文献号 : CN105684164B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 三嶋飞鸟押村吉德

申请人 : 浜松光子学株式会社

摘要 :

本发明涉及一种红外线检测元件。该红外线检测元件具备缓冲层(InAsSb层)(3)、缓冲层(InAs层)(4)、及光吸收层(InAsSb层)(5)。InAs层的临界膜厚hc与InAs层的厚度t满足hc<t的关系。在该情况下,可以改善形成于缓冲层(3)上的InAs的缓冲层(4)及InAsSb的光吸收层(5)的结晶性。

权利要求 :

1.一种红外线检测元件,其特征在于,所述红外线检测元件具备:

第1InAsSb层;

InAs层,其生长于所述第1InAsSb层上;及第2InAsSb层,其生长于所述InAs层上,所述InAs层的临界膜厚hc与所述InAs层的厚度t满足hc<t的关系,所述第1InAsSb层及所述第2InAsSb层中的As的组成比X分别为0.7以上且0.9以下。

2.如权利要求1所述的红外线检测元件,其特征在于,所述InAs层的厚度t进一步满足t≦2.0μm。

说明书 :

红外线检测元件

技术领域

[0001] 本发明涉及一种由InAsSb/InAs/InAsSb结构的化合物半导体构成的红外线检测元件。

背景技术

[0002] 在专利文献1中记载有现有的红外线检测元件。该红外线检测元件具有由上下的化合物半导体层(InSb、InAsSb或InSbN)夹持中间层(InAsSb、GaInSb、AlAs、InAs、GaAs、AlSb、或GaSb)的结构。根据该文献可知,在这样的结构的情况下,通过将中间层制成超晶格结构,将构成超晶格结构的各层的厚度设定为临界膜厚以下,从而可以提高元件特性。
[0003] 现有技术文献
[0004] 专利文献
[0005] 专利文献1:日本特开2009-246207号公报

发明内容

[0006] 发明所要解决的技术问题
[0007] 然而,本申请发明者们发现,在上述现有技术中,在中间层包含 InAs,且上下的化合物半导体层为InAsSb的情况下,将中间层的膜厚设定为临界膜厚以下无法改善元件特性。
[0008] 本发明是鉴于这样的技术问题而成的,其目的在于提供一种在中间层为InAs,并且上下的化合物半导体层为InAsSb的情况下,能够具有优异的检测特性的红外线检测元件。
[0009] 解决技术问题的手段
[0010] 在现有技术中,将构成中间层的各层的厚度设定为临界膜厚以下的理由被认为是基于如果作用于各层的应力超过临界膜厚,则各自的结晶性劣化的见解。换而言之,认为在InAs层为临界膜厚以下的的情况下,各个InAs层的结晶缺陷可以改善。
[0011] 然而,本申请发明者们发现,与现有的见解不同,特别是在一对 InAsSb层间夹持中间层的结构的情况下,并且在该中间层中采用包含 InAs层的超晶格结构的情况下,在晶体生长时裂缝或失配位错等位错缺陷等的缺陷会自基底的InAsSb层与InAs层的界面延伸,经延伸的缺陷的生长无法在较薄厚度的InAs层停止。因此,发现在不采用超晶格结构,并且将InAs层的厚度设定为较临界膜厚大时,自界面延伸的缺陷的生长停止,改善这些化合物半导体层的结晶性,提高检测特性。
[0012] 即,本发明的实施方式所涉及的红外线检测元件其特征在于,具备:第1InAsSb层;InAs层,其生长在所述第1InAsSb层上;及第2 InAsSb层,其生长在所述InAs层上,所述InAs层的临界膜厚hc与所述InAs层的厚度t满足hc<t的关系。
[0013] 在该情况下,红外线检测元件可以具有优异的检测特性。
[0014] 特别是,在所述第1InAsSb层及所述第2InAsSb层中的As的组成比X分别为0.58以上且1.0以下的情况下,进一步优选为0.7以上且0.9以下的情况下,可以改善InAs层及第2InAsSb层的结晶性。
[0015] 另外,所述InAs层的厚度t优选进一步满足t≦2.0μm。其原因是由于在厚度t超过2.0μm的情况下,制造过程时间明显变长,不适于量产。
[0016] 发明的效果
[0017] 本发明的红外线检测元件可以具有优异的检测特性。

附图说明

[0018] 图1是表示红外线检测元件的截面结构的图。
[0019] 图2是表示各层的材料、导电类型、杂质浓度、厚度的图表。
[0020] 图3是表示InAsSb/InAs/InAsSb结构的截面TEM图像(实施例) 的图。
[0021] 图4是表示InAsSb/(InAsSb/InAs超晶格结构)/InAsSb结构的截面TEM图像(比较例)的图。
[0022] 图5是表示入射光的波长(μm)与比检测能力(cm·Hz1/2/W)的关系的曲线图。
[0023] 图6是表示InAsSb中的As的组成比X与InAs层的临界膜厚hc (nm)的关系的曲线图。
[0024] 图7是用于说明临界膜厚hc的计算式的图表。
[0025] 图8是表示为了进行X射线衍射测定而使用的层叠结构的图。
[0026] 图9是表示X射线衍射测定中InAsSb层的As的组成比X与摇摆曲线的半峰宽FWHM(弧秒)的关系的曲线图。
[0027] 符号的说明:
[0028] 1…半导体基板、2…缓冲层、3…缓冲层、4…缓冲层、5…光吸收层、6…阻挡层、7…帽层、8…保护膜、9,10…电极、IR…红外线。

具体实施方式

[0029] 以下,对实施方式所涉及的红外线检测元件进行说明。对相同要素使用相同符号,并省略重复的说明。
[0030] 图1是表示红外线检测元件的截面结构的图。
[0031] 该红外线检测元件具备多个化合物半导体层,且具备在半绝缘性的半导体基板1上依序层叠缓冲层2、缓冲层3(第1InAsSb层)、缓冲层4(InAs层)、光吸收层5(第2InAsSb层)、阻挡层6、及帽层7 而成的半导体结构。这些各化合物半导体层是通过分子束外延(MBE) 法而在半导体基板1上生长而成的。
[0032] 该半导体结构的一部分区域通过自表面侧蚀刻而被除去。即,帽层(cap layer)7、阻挡层6、光吸收层5及缓冲层4的一部分的区域自这些的各表面沿着厚度方向被蚀刻,通过该蚀刻,从而缓冲层4的表面露出,形成有台面结构。另外,由非掺杂形成的半绝缘性的缓冲层2的表面也直至其一部分露出为止对元件间实施蚀刻,在制造时邻接的红外线检测元件彼此分离。即,使缓冲层4的表面露出之后,进一步以包围红外线检测元件的方式进行缓冲层4及缓冲层3的蚀刻,进行元件间分离。上述蚀刻可以采用干式蚀刻及湿式蚀刻的任一种。
[0033] 以覆盖缓冲层2的表面、缓冲层4的表面、半导体结构的侧面、帽层7的一部分的表面的方式形成有保护膜8。保护膜8由氧化硅 (SiO2)或氮化硅(SiNx)等无机绝缘体构成,保护各红外线检测元件,并且防止因灰尘或尘埃等引起的邻接的红外线检测元件间的短路,维持这些元件间的绝缘。多个红外线检测元件也可以在制造后个别地分开使用,由于维持了各元件间的绝缘,因此,也可以用作红外线光电二极管阵列。
[0034] 保护膜8的一部分的区域被除去,在通过除去而形成的接触孔内形成有电极。即,在帽层7上的保护膜8的接触孔内,第1电极9与帽层7接触而形成,在缓冲层4上的保护膜8的接触孔内,第2电极 10与缓冲层4接触而形成。在自基板侧入射红外线IR的情况下,电极材料只要是与对象的化合物半导体层欧姆接触的,就不特别限定,因此,可以使用金(Au)或铝(Al)等的金属。
[0035] 在自与基板相反侧入射红外线的情况下,电极材料只要是与对象的化合物半导体层欧姆接触的,并且只要由红外线透过的材料构成或者为较薄的金属膜,另外,具有网眼或开口的形状,就不特别限定。在该情况下,作为电极材料,也可以使用上述的金或铝等金属。
[0036] 上述半导体结构构成了红外线光电二极管。即,自半导体基板1 的背面侧依次经由半导体基板1、缓冲层2、3、4而入射至光吸收层5 的光在光吸收层5内发生光电转换,在光吸收层5内产生电子空穴对。阻挡层6、光吸收层5、缓冲层4各层的能带隙E6、E5、E4的大小关系满足E6>E5、E4>E5。阻挡层6的晶格常数a6、光吸收层5的晶格常数a5、缓冲层4的晶格常数a4例如可以设定为a6<a5、a4<a5。
[0037] 另外,如果使红外线自表面侧入射,则在帽层7中红外线的一部分被大幅吸收,因此,优选红外线IR自背面侧入射。红外线IR可以透过能带隙比光吸收层5大的半导体基板1、缓冲层2、4,入射至光吸收层5。另外,红外线IR在通过缓冲层2之后,也透过厚度比光吸收层薄的缓冲层3,由于在此处产生若干的吸收,因此,缓冲层3可以尽可能地薄。但是,在缓冲层3过薄的情况下,其上的缓冲层4的结晶性劣化,因此,缓冲层3的厚度优选为0.1μm以上且
0.5μm以下。
[0038] 伴随红外线IR向光吸收层5入射,在光吸收层5内产生的电子由于通过这些能带隙而形成的能级的倾斜,而难以向阻挡层6方向扩散。另外,由于帽层7及阻挡层6为P型,光吸收层5为非掺杂,缓冲层4 为N型,因此,通过这些而构成了PIN光电二极管。在无偏压状态下,在PIN光电二极管内部中产生扩散电位,作为载流子的电子脱离后的 N型的缓冲层4的电位带正电,作为载流子的空穴脱离后的P型的帽层7及阻挡层6的电位带负电。因此,在光吸收层5内产生的电子随着扩散电位和能级的倾斜,向缓冲层4方向移动,空穴向阻挡层6方向移动。这些载流子可以通过分别与帽层7及半导体基板1接触的第1 电极9及第2电极10而取出至外部。
[0039] 图2是表示各层的材料、导电类型、杂质浓度、厚度的图表。InAsSb 及AlInAsSb中的P型的杂质可以使用Zn、Be、C或Mg等,N型的杂质可以使用Si、Te、Sn、S或Se等。作为具体的一个例子,InAsSb及 AlInAsSb中的P型的杂质为Zn,InAs中的N型的杂质为Si。
[0040] 如该图所示,各层的材料/导电类型/杂质浓度/厚度如下所述。
[0041] ·帽层7:
[0042] InAsSb/P型/2×1018~1×1019cm-3/0.5μm
[0043] ·阻挡层6:
[0044] AlInAsSb/P型/2×1018~1×1019cm-3/0.02μm
[0045] ·光吸收层5:
[0046] InAsSb/N-型(非掺杂)/2×1017cm-3以下/2.0μm
[0047] ·缓冲层4:
[0048] InAs/N型/2×1018~5×1018cm-3/0.5μm
[0049] ·缓冲层3:
[0050] InAsSb/N-型(非掺杂)/2×1017cm-3以下/0.5μm
[0051] ·缓冲层2:
[0052] GaAs/半绝缘型(非掺杂)/1×1015cm-3以下/0.2μm
[0053] ·半导体基板1:
[0054] GaAs/半绝缘型/1×1015cm-3以下/250μm
[0055] 另外,如果将各层的上述各杂质浓度设定为C,则即便在0.1×C 以上且10×C以下的范围内发生杂质变动,作用效果也不会产生较大的变化,因此,认为可以作为优异的特性的红外线检测元件发挥作用。优选为上述杂质浓度(载流子浓度)的范围。
[0056] 在此,由InAsSb构成的缓冲层3由InAsX1Sb1-X1构成的情况下的 As的组成比X1与光吸收层5由InAsX2Sb1-X2构成的情况下的As的组成比X2相等(X1=X2)。另外,即便X2相对于X1具有±30%的误差,晶体生长上也没有较大的差异。
[0057] 由InAs层构成的缓冲层(InAs层)4的临界膜厚hc与缓冲层4 的厚度t满足hc<t的关系。
[0058] 在此,对求出临界膜厚hc的方法进行说明。
[0059] 图7是用于说明临界膜厚hc的计算式的图表。
[0060] 式(1)表示与双异质结构的中间层的临界膜厚相关的马修斯式(记载于J.W.Matthews and A.E.Blackeslee,J.Cryst.Growth,27,118(1974) 等),基于作用于2个层的异质界面的位错的力而进行导出。在式(1) 中,hc表示InAs的临界膜厚,f表示晶格失配度,ν表示泊松比,b表示伯格斯矢量。在闪锌矿结构的情况下,如果根据 cosα= 1/2,cosλ=1/2,代入至式(1)并进行整理,则可以得到式(2)。
[0061] 如果考虑实施方式的晶体生长顺序,则着眼于InAs/InAsSb结构 (=单异质结构)。即,在生长中途的单异质结构中,与双异质结构相比,通过减少1个异质界面,从而InAs层自异质界面所受的张力变为 1/2,临界膜厚变为2倍。在该情况下,式(2)变形为式(3)。
[0062] 式(3)中的As组成的变量为晶格失配度f。由于InAs及InSb均为ν=0.35,因此,在作为这些混晶的InAsSb中,不管As组成可以设定为ν=0.35。
[0063] 另外,如果使用InAsSb的As组成X、InAs的晶格常数aInAs、InSb 的晶格常数aInSb,则将式(4)的a=aInAs代入至晶格常数a,另外,通过式(5)求出晶格失配度f。另外,InAsSb的晶格常数为aInAsSb。另外,作为混晶的InAsSb的晶格常数aInAsSb通过维加德定律(Vegard's law),以式(6)的方式求出。如果将式(4)~式(6)的值代入至式 (3),则可以获得也考虑了As组成的临界膜厚hc。
[0064] 在此,在InAs的临界膜厚hc<厚度t的情况下,红外线检测元件可以具有噪声低(比检测能力高)的优异的检测特性。其原因是由于在InAsSb/InAs/InAsSb结构的红外线检测元件中,可以使自InAs层与基底的InAsSb层的界面延伸的结晶缺陷的生长停止。因此,通过将作为中间层的缓冲层4(InAs层)的厚度设定得比临界膜厚hc大,从而改善这些化合物半导体层的结晶性,提高检测特性。另外,为了使器件工艺容易,缓冲层4的厚度t优选为0.5μm≦t,且优选为t≦2.0μm。即,在厚度t超过2.0μm的情况下,制造过程时间明显变长,变得不适合量产。
[0065] 其次,对InAs层的临界膜厚hc进一步进行说明。
[0066] 图6是表示InAsSb中的As的组成比X与通过上述式求出的InAs 层的临界膜厚hc(nm)的关系的曲线图。
[0067] 如果As的组成比X增加,特别是,在X=0.4以上的情况下,hc 急剧增加。在X=0.8的情况下hc=30nm,在X=0.9的情况下hc= 70nm。在缓冲层3及光吸收层5的As的组成比X均为0.85的情况下,如下所述,确认了确实地改善缓冲层4及光吸收层5的结晶性。
[0068] 另外,如果将上述各层(InAsSb、AlInAsSb、InAsSb)中的As的组成比设定为X,将Sb的组成比设定为1-X,则在帽层7、阻挡层6、光吸收层5及缓冲层3中,优选设定为X=0.85。从结晶性的改善效果的观点出发,X的值优选为0.58以上且1.0以下的情况,更优选为0.7 以上且0.9以下的情况。在该情况下,至少可以改善光吸收层5(InAsSb 层)的结晶性。
[0069] 图8是表示为了进行X射线衍射测定而使用的层叠结构的图。(A) 中表示在GaAs基板上形成有InAsXSb1-X的结构,(B)中表示在GaAs 基板上依次层叠有InAsXSb1-X、InAs、InAsXSb1-X的结构。各层的制造条件与下述实施例相同。
[0070] 图9是表示X射线衍射测定中的InAsSb层的As的组成比X与来自InAsSb层的X射线衍射的摇摆曲线半峰宽FWHM(弧秒)的关系的曲线图。方形符号是图8的(A)的结构的曲线图,菱形符号是图8 的结构(B)的曲线图。另外,该曲线图中,变化为X=0.58、0.85、 1.00。
[0071] 可知在X至少为0.58以上且1.0以下的情况下,FWHM变小, InAsSb层的结晶性改善。可知在0.7以上且0.9以下的情况下,FWHM 变小,InAsSb层的结晶性改善。
[0072] 另外,不包括对光吸收与结晶性带来影响的缓冲层3及缓冲层4 的厚度,只要光吸收层5为适当的厚度(大于117nm),则若将各层的上述各厚度设定为d,则即便在0.2×d以上且5×d以下的范围内产生厚度变动,作用效果也产生较大的变化的理由较少,因此,作为优异的特性的红外线检测元件而发挥作用。
[0073] 其次,对生长在缓冲层3(InAsSb层)上的缓冲层4(InAs层)4 及光吸收层5(InAsSb层)的结晶性改善效果进行说明。
[0074] (实施例)
[0075] 在由GaAs构成的半导体基板1上使用MBE法层叠如图2所示的化合物半导体层。MBE法中,在配置有原料供给用的坩埚的真空容器内配置基板,将构成各层的各元素分别放入至独立的坩埚内,将这些加热,由此将各元素同时供给至各层,使各层在基底层上生长。在添加杂质的情况下,将成为掺杂物的杂质(Zn或Si等)供给至生长中的各层。在使非掺杂的半导体层生长的情况下,不供给杂质。另外,在不供给杂质的情况下,半导体层的结晶性提高。在图2的结构中,GaAs 的生长温度设定为690℃,InAsSb的生长温度设定为610℃,InAs的生长温度设定为620℃,AlInAsSb的生长温度设定为630℃。另外,X =0.85,AlInAsSb层中的Al的组成比为0.3。在各层生长之后,进行上述蚀刻及由SiO2构成的保护膜8的形成,进一步,在帽层7及缓冲层4上形成Al的电极9、10。
[0076] 另外,各半导体层即便使用MOVPE(金属有机气相外延)法也可以形成。
[0077] (比较例)
[0078] 作为比较例的前阶段的实验,在半绝缘性的GaAs基板上直接利用 MBE法形成InAsSb层的情况下,如果观察截面TEM图像(透射型电子显微镜图像),则与实施例相比观察到非常多的失配位错等位错缺陷。该缺陷自基板与InAsSb层的界面向倾斜方向延伸。该结构由于完全不使用缓冲层,因此,为预想的结果。因此,制造临界膜厚hc以下的与认为优选的上述现有技术的文献相同的结构作为比较例。
[0079] 即,代替实施例中的作为中间层的InAs的缓冲层4,而形成使用了多个临界膜厚以下的InAs层和InAsSb层的结构。换而言之,比较例中,代替缓冲层4而采用厚度为200nm(=0.2μm)的超晶格缓冲层 (层叠5个InAsSb/InAs对而成的结构:合计10层且各层的厚度为 
20nm)。AlInAsSb、GaAs、InAsSb及InAs的形成方法、杂质浓度、生长温度与实施例相同,但厚度设定为如下所述。各层的材料/导电类型/ 厚度如下所述。
[0080] ·帽层7:
[0081] InAsSb/P型/0.5μm
[0082] ·阻挡层6:
[0083] AlInAsSb/P型/0.02μm
[0084] ·光吸收层5:
[0085] InAsSb/N-型(非掺杂)/2.0μm
[0086] ·缓冲层:
[0087] InAsSb/N型/1.0μm
[0088] ·缓冲层4:
[0089] 如上所述的超晶格缓冲层
[0090] ·缓冲层3:
[0091] InAsSb/N-型(非掺杂)/0.3μm
[0092] ·缓冲层2:
[0093] GaAs/半绝缘型(非掺杂)/0.2μm
[0094] ·半导体基板1:
[0095] GaAs/半绝缘型250μm
[0096] 另外,其它条件与实施例相同。
[0097] (实验结果)
[0098] 图3是表示实施例所涉及的InAsSb/InAs/InAsSb结构的截面TEM 图像的图,图4是表示比较例所涉及的InAsSb/(InAsSb/InAs超晶格结构)/InAsSb结构的截面TEM图像的图。
[0099] 在实施例中,形成于InAsSb层(缓冲层3)上的InAs层(缓冲层 4)及InAsSb层(光吸收层5)的结晶性相比比较例,得到了改善。即,相比各层使用临界膜厚以下的InAs/InAsSb超晶格的情况,在不使用超晶格且厚度大于临界膜厚的实施例的情况下,缓冲层4及光吸收层5 的结晶性提高。
[0100] 如果观察比较例的截面TEM图像,则可知,由于构成超晶格的各层的厚度较薄,因此,结晶缺陷的生长不会停止而贯通超晶格层的整体。以前,根据在超过临界膜厚的情况下结晶性劣化的本领域技术人员的常识,进行将各层的厚度形成得较薄,但是本申请发明者们根据按照现有方法的比较例的方法,发现虽然各InAs层的结晶性的劣化分别得到抑制,但作为整体无法停止结晶缺陷的生长。于是,发现通过使用超过临界膜厚的InAs层,可以停止结晶缺陷的生长。
[0101] 如果观察图3的截面TEM图像,则可以大致掌握各层的生长过程中的状态。即,距离下侧的缓冲层3(InAsSb层)与缓冲层4(InAs 层)的界面大致42nm以下,结晶性劣化,但如果超过其,则结晶性明显改善。即,可知只要InAs层的厚度至少大于大致42nm,则结晶性改善。该大致42nm的值与计算上求出的临界膜厚hc=44.2nm大致一致。即,可知只要至少InAs层的厚度大于临界膜厚hc,则可以获得InAs 层及其上的InAsSb层的结晶性的改善效果。
[0102] 另外,如果进一步观察图3的截面TEM图像,则观察到自InAs 层/InAsSb层的界面分别延伸至60nm的位置、95nm的位置、258nm的位置为止的位错缺陷。因此,更优选InAs层的厚度大于60nm(= hc×1.357)、大于95nm(=hc×2.149)、或大于258nm(=hc×5.837)。即,是由于随着厚度增加,InAs层的生长面中的缺陷密度减少。
[0103] 另外,由于成为光吸收层5的上部的InAsSb层自与InAs层的界面至117nm的位置为止的结晶性劣化,因此,光吸收层5的厚度优选大于117nm。
[0104] 图5是表示入射光(红外线)的波长(μm)与红外线检测元件的比检测能力(cm·Hz1/2/W)的关系的曲线图。比检测能力表示红外线检测元件的每单位面积的灵敏度。
[0105] 根据该曲线图明确,在红外线的波长为2.0μm~5.8μm的范围中,实施例的比检测能力显示出与比较例的比检测能力相比更高的值。另外,实施例的比检测能力在波长为3.0~4.0μm之间为大致固定的值,最大值为2.0×109(cm·Hz1/2/W)以上。
[0106] 如上所述,从电特性的观点出发,也判明实施例的红外线检测元件优于比较例的红外线检测元件。另外,在上述红外线元件中,也可以使用不对特性带来较大影响的程度的杂质或化合物半导体。进一步,上述红外线检测元件也可以作为能够室温工作的传感器用于各种用途中。