用喷射组件分离烃和杂质的方法和装置转让专利

申请号 : CN201480062499.7

文献号 : CN105722572B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : J·A·维兰兹阿D·W·马尔

申请人 : 埃克森美孚上游研究公司

摘要 :

分离蒸馏塔中的进料料流的方法,包括在所述蒸馏塔中保持受控的冷冻区(CFZ)工段,在该CFZ工段中的喷嘴组件中接收冷冻区液体料流,其中所述喷嘴组件包含多个在所述喷嘴组件的外围边缘上的外围喷嘴和至少一个在所述外围喷嘴内部的内部喷嘴,其中每个外围喷嘴配置成沿中央喷射轴喷射所述冷冻区液体料流,和其中至少一个所述外围喷嘴的中央喷射轴不平行于CFZ壁,和通过所述喷嘴组件喷射所述冷冻区液体料流到CFZ工段中以保持形成固体和富含烃的蒸气料流的温度和压力。

权利要求 :

1.分离蒸馏塔中的进料料流的方法,包括:

在所述蒸馏塔中保持受控的冷冻区工段;

在所述受控的冷冻区工段中的喷嘴组件中接收冷冻区液体料流,其中所述喷嘴组件包含多个在所述喷嘴组件的外围边缘上的外围喷嘴和至少一个在所述多个外围喷嘴以内的内部喷嘴,其中每个外围喷嘴配置成沿中央喷射轴喷射所述冷冻区液体料流,其中所述多个外围喷嘴的至少一个的中央喷射轴不与受控的冷冻区壁平行,和其中所述多个外围喷嘴的至少一个的中央喷射轴的角度是通过以下方式实现的:使所述外围喷嘴向所述塔的内部呈角度,以保持喷射的冷冻区液体料流离开所述受控的冷冻区壁的模式来改变从所述多个外围喷嘴的至少一个出来的喷射液体的分布,或以上两者;和通过所述喷嘴组件将所述冷冻区液体料流喷射到所述受控的冷冻区工段中以保持所述受控的冷冻区工段处于形成固体和富含烃的蒸气料流的温度和压力下。

2.权利要求1所述的方法,其中所述多个外围喷嘴的至少一个的中央喷射轴计算为减少但不消除喷射液体对所述受控的冷冻区壁的撞击。

3.权利要求1所述的方法,其中相对于所述受控的冷冻区壁的中央喷射轴角度对于每个所述多个外围喷嘴来说相同。

4.权利要求1-3中任一项所述的方法,进一步包括:

使用多个内部喷嘴注射所述冷冻区液体料流到所述受控的冷冻区工段中,其中每个内部喷嘴配置成沿中央喷射轴喷射所述冷冻区液体料流,和其中每个内部喷嘴的中央喷射轴平行于所述受控的冷冻区壁。

5.权利要求1-3中任一项所述的方法,其中每个所述多个外围喷嘴与所述受控的冷冻区壁直接相邻。

6.权利要求1-3中任一项所述的方法,其中所述多个外围喷嘴的至少一个的中央喷射轴计算为消除喷射液体对所述受控的冷冻区壁的撞击。

7.权利要求1-3中任一项所述的方法,其中所述方法进一步包括使所述冷冻区液体喷射通过所述受控的冷冻区工段的顶部流到所述喷嘴组件。

8.权利要求1-3中任一项所述的方法,其中所述方法进一步包括使所述冷冻区液体喷射通过所述受控的冷冻区工段的侧部流到所述喷嘴组件。

9.生产烃的方法,包括:

在蒸馏塔中保持受控的冷冻区工段,该受控的冷冻区工段接收冷冻区液体料流以在所述受控的冷冻区工段中形成固体和富含烃的蒸气料流;

在所述受控的冷冻区工段中保持喷射组件,其中所述喷射组件包含在外围边缘上的多个第一类型的喷嘴和在多个第一类型的喷嘴内部的第二类型的喷嘴,和其中多个第一类型的喷嘴使喷射以相对于受控的冷冻区壁的角度定向喷射,从而最小化喷射液体对所述受控的冷冻区壁的撞击;

通过所述喷射组件注射所述冷冻区液体料流到处于形成所述固体和富含烃的蒸气料流的温度和压力下的所述受控的冷冻区工段中,其中所述冷冻区液体料流包含冷冻区液体料流最外围部分;和生产从所述蒸馏塔提取出的富含烃的蒸气料流。

10.权利要求9所述的方法,其中所述角度配置为使得所述最外围部分不会撞击所述受控的冷冻区壁。

11.权利要求9所述的方法,其中所述角度配置为使得所述最外围部分撞击所述受控的冷冻区壁。

12.权利要求9所述的方法,其中每个所述多个第一类型的喷嘴的角度相同。

13.权利要求9-12中任一项所述的方法,其中通过所述喷射组件注射所述冷冻区液体料流到所述受控的冷冻区工段中包括使所述冷冻区液体料流流动通过所述受控的冷冻区工段的侧部。

14.权利要求9-12中任一项所述的方法,其中注射所述冷冻区液体料流到所述受控的冷冻区工段中通过所述喷射组件包括使所述冷冻区液体料流流动通过所述受控的冷冻区工段的顶部。

15.权利要求9-12中任一项所述的方法,其中所述角度是通过以下方式配置的:使多个第一类型的喷嘴中的至少一个向所述塔的内部呈角度,以保持喷射的冷冻区液体料流离开所述受控的冷冻区壁的模式来改变从多个第一类型的喷嘴中的至少一个出来的喷射液体的分布,或以上两者。

16.将进料料流中的烃与进料料流中的杂质分离的蒸馏塔,所述蒸馏塔包含:受控的冷冻区工段,其包括:

受控的冷冻区壁;

第一类型的喷嘴,其配置为注射冷冻区液体料流到处于形成固体的温度和压力下的所述受控的冷冻区工段中;和在第一类型的喷嘴之下的熔化塔盘组件,其配置为熔化包含所述杂质的固体,其中第一类型的喷嘴配置成用第一类型的喷嘴使冷冻区液体料流最外围部分导向为与所述受控的冷冻区壁呈角度,和其中所述角度计算为最小化或消除所述冷冻区液体料流对所述受控的冷冻区壁的撞击。

17.权利要求16所述的蒸馏塔,其中所述冷冻区液体料流最外围部分不会撞击所述受控的冷冻区壁。

18.权利要求16所述的蒸馏塔,其中所述冷冻区液体料流最外围部分撞击所述受控的冷冻区壁。

19.权利要求16所述的蒸馏塔,其中所述角度是通过以下方式配置的:使至少一个第一类型的喷嘴向所述塔的内部呈角度,以保持喷射的冷冻区液体料流离开所述受控的冷冻区壁的模式改变从至少一个第一类型的喷嘴出来的喷射液体的分布,或以上两者。

20.权利要求16-19中任一项所述的蒸馏塔,其中所述蒸馏塔进一步包括在所述受控的冷冻区工段中的第二类型的喷嘴,所述第二类型的喷嘴距所述受控的冷冻区壁比第一类型的喷嘴远。

说明书 :

用喷射组件分离烃和杂质的方法和装置

[0001] 相关申请的交叉引用
[0002] 本申请涉及2013年12月6日提交的名为“用喷射组件分离烃和杂质的方法和装置”美国专利申请61/912,957,和2014年9月2日提交的名为“用喷射组件分离烃和杂质的方法和装置”的美国专利申请62/044,770,它们的全部内容通过引用纳入本申请。
[0003] 本申请涉及以下申请但不要求它们的优先权:2013年12月6日提交的名为“保持蒸馏塔中的液体水平的方法和系统”的美国临时专利申请61/912,959;2013年12月6日提交的名为“使用辐射检测器分离进料料流的方法和装置”的美国临时专利申请61/912,964;2013年12月6日提交的名为“使蒸馏塔中处理的进料料流脱水的方法和系统”的美国临时专利申请61/912,970;2013年12月6日提交的名为“用进料料流分布机构分离进料料流的方法和系统”的美国临时专利申请61/912,975;2013年12月6日提交的名为“防止固体在蒸馏塔中积累的方法和系统”的美国临时专利申请61/912,978;2013年12月6日提交的名为“通过改变蒸馏塔中的液体水平来去除固体的方法”的美国临时专利申请61/912,983;2013年12月6日提交的名为“在启动操作期间改变液体水平的方法和系统”的美国临时专利申请61/912,984;2013年12月6日提交的名为“用使固体去稳定化和/或防止固体粘结的加热机构分离烃和杂质的方法和装置”的美国临时专利申请61/912,986;2013年12月6日提交的名为“用表面处理机构分离烃和杂质的方法和装置”的美国临时专利申请61/912,987。
[0004] 背景
[0005] 公开领域
[0006] 本公开总体涉及流体分离领域。更具体来说,本公开涉及杂质(例如酸气体)从烃的低温分离。
[0007] 本节意图介绍可能与本公开有关的本领域的各个方面。这样的讨论意图提供有助于对本公开的特定方面的更好理解的框架。因此,应理解的是,本节应基于此来阅读,而不必然是对现有技术的承认。
[0008] 从储层生产天然气体烃,例如甲烷和乙烷,经常还携带偶然产生的非烃气体。这样的气体包括杂质,例如二氧化碳(“CO2”)、硫化氢(“H2S”)、羰基硫化物、二硫化碳和各种巯类中的至少一种。当由储层生产的进料料流包括这些与烃混合的杂质时,该料流通常被称为“酸气”。
[0009] 许多天然气储层具有较低百分比的烃和较高百分比的杂质。杂质可起到稀释剂的作用并降低了气体料流的热容量。一些杂质,比如带硫的化合物,是有毒的,甚至是致命的。另外,在存在水时,一些杂质会变得腐蚀性特别强。
[0010] 期望从含有烃的料流去除杂质以生产清洁的(sweet)和浓的烃。管道外输天然气的规格典型地要求最大2-4%的CO2和1/4格令H2S每100scf(4ppmv)或5mg/Nm3H2S。较低温度工艺例如天然气液化装置或脱氮装置的规格典型地要求低于50ppm CO2。
[0011] 杂质从烃的分离是困难的,因此作出大量工作来开发烃/杂质分离方法。这些方法可以归为三种大致类别:溶剂吸收(物理的、化学的和混杂的)、固体吸附和蒸馏。
[0012] 一些混合物的分离蒸馏可以是相对简单的,并因此广泛用于天然气工业。然而,天然气烃混合物(主要为甲烷,以及天然气中最常见杂质中的一种,二氧化碳)的蒸馏的困难重重。常规蒸馏原理和常规蒸馏设备是基于在整个蒸馏塔中仅存在蒸气和液体相。如果需要管道外输烃或更好的优质烃时,通过蒸馏将CO2从甲烷分离包括导致CO2凝固的温度和压力条件。要求的温度是冰冷的温度,其典型地被称为低温温度。
[0013] 某些低温蒸馏可以克服上述困难。这些低温蒸馏提供适当机构来处置在形成固体的杂质从烃分离期间固体的形成和接下来的熔化。与烃杂质的蒸气-液体混合物平衡的固体杂质的形成在特定的温度和压力的条件下在受控的冷冻区工段中发生。
[0014] 有时固体可以粘附到受控的冷冻区工段的内部(例如受控的冷冻区壁),而不是落到受控的冷冻区工段底部。
[0015] 粘附是不利的。粘附如果不受到控制,就会干扰受控的冷冻区工段的正常操作和甲烷与杂质的有效分离。
[0016] 需要对含烃和杂质的进料料流进行分离,同时还防止固体粘附到受控的冷冻区壁上的改进的技术。
[0017] 概述
[0018] 本公开提供了将杂质从烃分离并防止固体粘附到受控的冷冻区壁上的装置和方法等。
[0019] 分离蒸馏塔中的进料料流的方法包括在所述蒸馏塔中保持受控的冷冻区工段,在所述受控的冷冻区工段中的喷嘴组件中接收冷冻区液体料流,其中所述喷嘴组件包含多个在所述喷嘴组件的外围边缘上的外围喷嘴和至少一个在所述多个外围喷嘴以内的内部喷嘴,其中每个外围喷嘴配置成沿中央喷射轴喷射所述冷冻区液体料流,和其中所述多个外围喷嘴的至少一个的中央喷射轴不与受控的冷冻区壁平行,以及通过所述喷嘴组件将所述冷冻区液体料流喷射到处于形成固体和富含烃的蒸气料流的温度和压力下的所述受控的冷冻区工段中。
[0020] 生产烃的方法包括在所述蒸馏塔中保持受控的冷冻区工段,该受控的冷冻区工段接收冷冻区液体料流以在所述受控的冷冻区工段中形成固体和富含烃的蒸气料流,在所述受控的冷冻区工段中保持喷射组件,其中所述喷射组件包含在外围边缘上的第一类型的喷嘴和在第一类型的喷嘴内部的第二类型的喷嘴,和其中第一类型的喷嘴使喷射以相对于受控的冷冻区壁的角度定向,从而最小化喷射液体对所述受控的冷冻区壁的撞击,通过所述喷射组件将所述冷冻区液体料流注射到处于形成固体和富含烃的蒸气料流的温度和压力下的所述受控的冷冻区工段中,其中所述冷冻区液体料流包含冷冻区液体料流最外围部分,以及生产从所述蒸馏塔提取的富含烃的蒸气料流。
[0021] 从进料料流中的烃分离进料料流中的杂质的蒸馏塔可包含受控的冷冻区工段,所述受控的冷冻区工段包含受控的冷冻区壁,第一类型的喷嘴,其配置为注射冷冻区液体料流到处于形成固体的温度和压力下的所述受控的冷冻区工段中,和在第一类型的喷嘴之下的熔化塔盘组件,其配置为熔化包含所述杂质的固体,其中第一类型的喷嘴配置成用第一类型的喷嘴使冷冻区液体料流最外围部分导向为与所述受控的冷冻区壁呈角度,和其中所述角度计算为最小化或消除所述冷冻区液体料流对所述受控的冷冻区壁的撞击。
[0022] 前面已经宽泛地描述了本公开的特征,从而以下的详细描述将更好地理解。这里还将描述另外的特征。
[0023] 附图简述
[0024] 本公开的这些和其它特征、方面和优点将从以下说明、所附权利要求和附图中更加明显,其中附图简述如下。
[0025] 图1为单一容器内具有多个工段的塔的示意图。
[0026] 图2为多个容器内具有多个工段的塔的示意图。
[0027] 图3为单一容器内具有多个工段的塔的示意图。
[0028] 图4为多个容器内具有多个工段的塔的示意图。
[0029] 图5为受控的冷冻区工段的示意截面图。
[0030] 图6为喷射组件的顶视图。
[0031] 图7为本公开范围内的方法的流程图。
[0032] 应理解,这些图仅仅是实例而不是对本公开拟定范围的限制。此外,这些图通常不是按比例绘制的,而是为了方便和清楚地说明本公开的各方面的目的而描绘的。
[0033] 详细说明
[0034] 为了促进对本公开原理的理解,现将参考附图中显示的特征,并将使用特定的语言来对其进行描述。然而,应理解,不意图对本公开的范围进行限制。对本文描述的本公开原理的任何改变和进一步的调整以及进一步的应用也都涵盖了,正如对本公开所涉及的本领域技术人员通常会发生的那样。对本领域技术人员来说明显的是,与本公开不相关的一些特征为了清楚的原因可能没有在附图中显示。
[0035] 如本申请中引用的,术语“料流”、“气体料流”、“蒸气料流”和“液体料流”是指进料料流在分离甲烷(天然气中的主要烃)和杂质的蒸馏塔中被处理时进料料流的不同阶段。虽然短语“气体料流”、“蒸气料流”和“液体料流”指的是气体、蒸气和液体分别主要存在于料流中的位置,但其它相也可存在于该料流中。例如,气体也可存在于“液体料流”中。在一些情况下,术语“气体料流”和“蒸气料流”可互换使用。
[0036] 本公开涉及分离蒸馏塔中的进料料流的系统和方法。该系统和方法通过引导喷射组件外围边缘处的第一类型的喷嘴冷冻区液体料流最外围部分,从而消除、减少和/或最小化喷射液体对所述受控的冷冻区工段的受控的冷冻区壁的撞击,来帮助防止形成粘附到受控的冷冻区工段壁的固体。本公开的图1-7显示了该系统和方法的各方面。
[0037] 该系统和方法可分离具有甲烷和杂质的进料料流。该系统可包含蒸馏塔104、204(图1-4)。该蒸馏塔104、204可将杂质从甲烷分离。
[0038] 蒸馏塔104、204可分成三个功能工段:低工段106,中间受控的冷冻区工段108和上工段110。当需要和/或期望上工段110时,蒸馏塔104、204可含三个功能工段。
[0039] 当不需要和/或期望上工段110时,蒸馏塔104、204可仅含两个功能工段。当蒸馏塔不包含上工段110时,一部分离开中间受控的冷冻区工段108的蒸气可在冷凝器122中冷凝并作为液体料流经由喷射组件129返回。此外,可取消线路18和20,元件124和126可为一个并且相同,元件150和128可为一个并且相同。线路14中的料流,现在携带离开中间受控的冷冻工段108的蒸气,将这些蒸气引导至冷凝器122。
[0040] 低工段106也可被称为汽提器工段。中间受控的冷冻区工段108也可被称为受控的冷冻区工段。上工段110可也可被称为精馏器工段。
[0041] 蒸馏塔104的工段可容纳于单一容器中(图1和3)。例如,低工段106、中间受控的冷冻区工段108和上工段110可容纳于单一容器164中。
[0042] 蒸馏塔204的工段可容纳于多个容器中以形成分开的塔配置(图2和4)。每个容器可与其它容器分离。管路和/或其它合适的机构可将一个容器与另一个容器连接。在这种情况下,低工段106、中间受控的冷冻区工段108和上工段110可容纳于两个或更多个容器中。例如,如图2和4中所示,上工段110可容纳于单一容器254中,下工段和中间受控的冷冻区工段106、108可容纳于单一容器264中。当是这样的情况时,离开上工段110的液体料流可通过液体出口底部260离开。液体出口底部260处于上工段110的底部。虽然未示出,每个工段可容纳于其自己的分离容器中,或者一个或多个工段可容纳于多个分离容器中,或者上工段和中间受控的冷冻区工段可容纳于单一容器中,并且下工段可容纳于单一容器中等。当蒸馏塔的工段容纳于多个容器中时,所述容器可沿水平线并排,和/或沿竖直线在另一个之上。
[0043] 分开的塔配置可在需要考虑蒸馏塔的高度、运动考量和/或输送问题(例如对于遥远的地点)的情况下是有益的。这种分开的塔配置允许独立操作一个或多个工段。例如,当上工段容纳于单一容器中而下工段和中间受控的冷冻区工段容纳于单一容器中时,使用基本上没有杂质的、大部分是来自填充的气体管道或相邻烃线路的烃料流来独立产生回流液体,会在上工段中发生。并且该回流可用于冷却上工段,在上工段中建立适当的温度形态,和/或在上工段底部积累液体储备以用作中间受控的冷冻区工段的喷射液体的初始来源。此外,中间受控的冷冻区和下工段可通过冷冻进料料流,将其供料到下工段中的或中间受控的冷冻区工段中的最佳位置,为下工段和中间受控的冷冻区工段产生液体,以及在蒸气不符合规格而具有过高杂质含量时将其排出中间受控的冷冻区工段,来独立地准备。此外,来自上工段的液体可不时地或连续地喷射,在中间受控的冷冻区工段的底部中累积液体水平,以及使中间受控的冷冻区工段中的杂质含量下降并接近稳定状态的水平,从而两个容器可连接将蒸气料流从中间受控的冷冻区工段送至上工段,从上工段底部连续地喷射液体进入中间受控的冷冻区工段并稳定化操作为稳定状态条件。分开的塔构造可利用上工段的储槽作为泵128的液体接收器,从而不必需要图1和3中的液体接收器126。
[0044] 系统还可包括换热器100(图1-4)。进料料流10可先进入换热器100,然后进入蒸馏塔104、204。进料料流10可在换热器100内冷却。换热器100帮助将进料料流10的温度降低至适于引入蒸馏塔104、204的水平。
[0045] 系统可包括膨胀器装置102(图1-4)。进料料流10可先进入膨胀器装置102,然后进入蒸馏塔104、204。进料料流10可在离开换热器100后在膨胀器装置102中膨胀。膨胀器装置102帮助将进料料流10的温度降低至适于引入蒸馏塔104、204的水平。膨胀器装置102可为任何合适的装置,例如阀。如果膨胀器装置102为阀,则该阀可为可有助于在进料料流10进入蒸馏塔104、204前使其冷却的任何合适的阀。例如,阀102可包括Joule-Thompson(J-T)阀。
[0046] 系统可包括进料分离器103(图3-4)。进料料流可进入该进料分离器,然后进入蒸馏塔104、204。进料分离器可将具有混合的液体和蒸气料流的进料料流分离成液体料流和蒸气料流。线路12可从进料分离器延伸到蒸馏塔104、204。线路12之一可接收来自进料分离器的蒸气料流。线路12的另一个可接收来自进料分离器的液体料流。每个线路12可延伸到蒸馏塔104、204的相同和/或不同的工段(即中间受控的冷冻区和下工段)。膨胀器装置102可在或不在进料分离器103的下游。膨胀器装置102可包含多个膨胀器装置102使得每个线路12都具有膨胀器装置102。
[0047] 系统可包括脱水单元261(图1-4)。进料料流10可进入脱水单元261,然后进入蒸馏塔104、204。进料料流10进入脱水单元261,然后进入换热器100和/或膨胀器装置102。脱水单元261从进料料流10去除水以防止水之后在换热器100、膨胀器装置102、进料分离器103或蒸馏塔104、204中产生问题。水可以通过形成阻塞线路、设备、或不利地影响蒸馏过程的单独的水相(即冰和/或水合物)而产生恩同。脱水单元261脱水进料料流至足够低的露点,从而确保在余下工艺期间的任何下游位置不会形成单独的水相。脱水单元可为任何合适的脱水机构,例如分子筛或二醇脱水单元。
[0048] 系统可包括过滤单元(未视出)。进料料流10可进入该过滤单元,然后进入蒸馏塔104、204。过滤单元可在进料料流进入蒸馏塔104、204之前从进料料流去除不想要的杂质。
取决于什么样的杂质要去除,过滤单元可在脱水单元261之前或之后和/或在换热器100之前或之后。
[0049] 系统可包括线路12(图1-4)。该线路也可被称为入口通道12。进料料流10可通过线路12引入蒸馏塔104、204。线路12可延伸到蒸馏塔104、204的低工段106或中间受控的冷冻区工段108。例如,线路12可延伸到低工段106使得进料料流10可进入蒸馏塔104、204的低工段106(图1-4)。线路12可直接或间接延伸到低工段106或中间受控的冷冻区工段108。线路12可延伸到蒸馏塔104、204的外围表面,然后进入蒸馏塔104、204。
[0050] 如果系统包含进料分离器103(图3-4),则线路12可包含多个线路12。每个线路可为与从进料分离器延伸到蒸馏塔104、204特定部分的线路相同的线路。
[0051] 低工段106构造和布置成将进料料流10分离成富含杂质的底部液体料流(即液体料流)和冷冻区蒸气料流(即蒸气料流)。低工段106在没有形成固体的温度和压力下分离进料料流。液体料流可包含多于甲烷的量的杂质。蒸气料流可包含多于杂质的量的甲烷。在任何情况下,蒸气料流都轻于液体料流。因此,蒸气料流从低工段106上升,并且液体料流落到低工段106的底部。
[0052] 低工段106可包含分离进料料流的设备和/或连接到这样的设备。该设备可包含用于分离甲烷和杂质的任何合适的设备,例如一个或多个填充的工段181,或一个或多个具有穿孔、下水管和堰口的蒸馏塔盘(图1-4)。
[0053] 设备可包括将热施加到料流以形成蒸气料流和液体料流的组件。例如,设备可包含将热施加到料流的第一再沸器112。第一再沸器112可位于蒸馏塔104、204之外。设备还可包含将热施加到料流的第二再沸器172。第二再沸器172可位于蒸馏塔104、204之外。线路117可从蒸馏塔引导至第二再沸器172。线路17可从第二再沸器172引导至蒸馏塔。还可使用与上述第二再沸器类似设定的另外的再沸器。
[0054] 第一再沸器112可将热施加到通过低工段106的液体出口160离开低工段106的液体料流。该液体料流可从液体出口160通过线路28行进到达第一再沸器112(图1-4)。可以提高通过第一再沸器112施加到液体料流的热的量,从而从杂质分离更多的甲烷。再沸器112施加到料流的热量越多,从液体和杂质分离的甲烷也就越多,但是也会有更多的杂质气化。
[0055] 第一再沸器112还可将热施加到蒸馏塔104、204内的料流。具体来说,第一再沸器112施加的热温热了低工段106。这样的热从低工段106向上行进,并且供应热以温热进入中间受控的冷冻区工段108的熔化塔盘组件139的固体(图1-4),从而固体形成了液体和/或淤浆混合物。
[0056] 第二再沸器172可将热施加到低工段106内的料流。这样的热可比第一再沸器112施加的热更近地施加到中间受控的冷冻区工段108。因此,第二再沸器172施加的热比第一再沸器112施加的热更快地到达中间受控的冷冻区工段108。第二再沸器172还可帮助进行能量整合。一些商业应用可能没有这样的第二再沸器172。
[0057] 设备可包括一个或多个升气管组件135(图1-4)。在落到低工段106底部的同时,液体料流可遇到一个或多个升气管组件135。
[0058] 每个升气管组件135包含收集低工段106内液体料流的升气塔盘131。可将升气塔盘131上收集的液体料流供入第二再沸器172。在液体料流在第二再沸器172中被加热后,料流可返回到中间受控的冷冻区工段106,从而将热供应到中间受控的冷冻区工段106和/或熔化塔盘组件139。可将离开第二再沸器172的未气化的(或部分气化的)料流供回升气塔盘131下的蒸馏塔104、204。离开第二再沸器172的蒸气料流在该蒸气料流进入蒸馏塔104、204时可通过在升气塔盘131之上或之下的途径。
[0059] 升气塔盘131可包含一个或多个升气管137。升气管137用作低工段106中的蒸气料流传过的通道。该蒸气料流行进通过升气塔盘131中在升气管137底部的开口到达升气管137的顶部。在图示的实施方案中,开口距低工段106底部比它距中间受控的冷冻区工段108底部更近。所述顶部距中间受控的冷冻区工段108底部比它距低工段106底部更近。
[0060] 每个升气管137具有与其附接的升气管帽133。升气管帽133覆盖升气管137的升气管顶部开口138。升气管帽133防止液体料流进入升气管137。蒸气料流经由升气管顶部开口138离开升气管组件135。
[0061] 在落到低工段106的底部后,液体料流通过液体出口160离开蒸馏塔104、204。液体出口160在低工段106(图1-4)之内。液体出口160可位于低工段106底部。
[0062] 在通过液体出口160离开后,进料料流可经由线路28行进至第一再沸器112。进料料流可通过第一再沸器112加热,然后蒸气可通过线路30再进入低工段106。未气化的液体可继续经由线路24排出蒸馏工艺。
[0063] 系统可包含膨胀器装置114(图1-4)。在进入线路24后,加热液体料流可在膨胀器装置114中膨胀。膨胀器装置114可为任何合适的装置,例如阀。阀114可为任何合适的阀,例如J-T阀。
[0064] 系统可包括换热器116(图1-4)。由第一再沸器112加热的液体料流可通过换热器116冷却或加热。换热器116可为直接换热器或间接换热器。换热器116可包含任何合适的换热器。
[0065] 低工段106中的蒸气料流从低工段106上升到中间受控的冷冻区工段108。中间受控的冷冻区工段108保持接收冷冻区液体料流以在中间受控的冷冻区工段108、501(图7)中形成固体和蒸气料流(即富含烃的蒸气料流)。中间受控的冷冻区工段108构造和布置成将引入中间受控的冷冻区工段的进料料流10分离成固体和蒸气料流。当冷冻区液体料流在形成固体和蒸气料流的温度和压力下注入中间受控的冷冻区工段108、505(图7)时,固体和蒸气料流在中间受控的冷冻区工段108中形成。固体可包含比甲烷多的杂质。蒸气料流可包含比杂质多的甲烷。
[0066] 中间受控的冷冻区工段108包含低工段40和上工段39(图5)。低工段40低于上工段39。低工段40直接毗连上工段39。低工段40主要为但是可不必只为中间受控的冷冻区工段
108的加热工段。上工段39主要为但是可不必只为中间受控的冷冻区工段108的冷却工段。
上工段39的温度和压力选择为使得固体可以在中间受控的冷冻区工段108中形成。
[0067] 中间受控的冷冻区工段108可包含保持在中间受控的冷冻区工段108中的熔化塔盘组件139(图1-5)。熔化塔盘组件139在中间受控的冷冻区工段108的低工段40内。熔化塔盘组件139不在中间受控的冷冻区工段108的上工段39内。
[0068] 熔化塔盘组件139构造和布置成熔化中间受控的冷冻区工段108中形成的固体。当温热的蒸气料流从低工段106上升到中间受控的冷冻区工段108时,该蒸气料流立刻与熔化塔盘组件139接触并供应热以熔化固体。熔化塔盘组件139可包含熔化塔盘118、泡帽132、液体130和加热机构134中的至少一个。
[0069] 熔化塔盘118可收集液体和/或淤浆混合物。熔化塔盘118将至少一部分中间受控的冷冻区工段108与低工段106分开。熔化塔盘118位于中间受控的冷冻区工段108的底部45。
[0070] 一个或多个泡帽132可起到用于从低工段106上升到中间受控的冷冻区工段108的蒸气料流的通道的作用。泡帽132可提供用于蒸气料流沿升气管140上升,然后沿升气管140并在其周围下降到熔化塔盘118的路径。升气管140被帽141覆盖。帽140防止液体130进入升气管140。帽141帮助防止固体进入升气管140。蒸气料流的通过泡帽132允许蒸气料流将热传递到熔化塔盘组件139内的液体130。
[0071] 一个或多个加热机构134可进一步加热液体130以便于固体熔化成液体和/或淤浆混合物。一个或多个加热机构134可位于熔化塔盘组件139内的任何位置。例如,如图1-4中所示,加热机构134可位于泡帽132周围。加热机构134可为任何合适的机构,例如加热线圈。加热机构134的热源可为任何合适的热源。
[0072] 熔化塔盘组件中的液体130通过蒸气料流加热。液体130还可通过一个或多个加热机构134加热。液体130帮助熔化中间受控的冷冻区工段108中形成的固体成为液体和/或淤浆混合物。具体来说,蒸气料流传到递的热加热了液体,由此使得该热能够熔化固体。液体130处于足以熔化所述固体的水平。
[0073] 中间受控的冷冻区工段108还可包含喷射组件129。喷射组件129冷却从低工段40上升的蒸气料流。喷射组件129将比蒸气料流冷的液体喷射到该蒸气料流上以冷却该蒸气料流。喷射组件129在上工段39内。喷射组件129不在低工段40内。喷射组件129在熔化塔盘组件139之上。换句话说,熔化塔盘组件139低于喷射组件129。
[0074] 如图5-6中所示,喷射组件129包括多个喷嘴121、221。多个喷嘴121、221包含多个在所述喷嘴组件的外围边缘上的外围喷嘴,例如,第一类型的喷嘴121,和至少一个在所述多个外围喷嘴以内的内部喷嘴,例如,第二类型的喷嘴221。第一类型的喷嘴121可在第一角度122、502(图5-7)围绕其轴112-112以喷射分布151(在图5中加入)保持在受控的冷冻区工段108中。第二类型的喷嘴221可在第二角度222围绕其轴212-212以喷射分布251(在图5中加入)保持在受控的冷冻区工段108中。
[0075] 可存在任何合适的量的第一类型的喷嘴121和/或第二类型的喷嘴221。例如,如图6中所示,可存在12个第一类型的喷嘴121和第二类型的喷嘴221。第二类型的喷嘴221形成喷射组件129中喷嘴的内部边缘。第一类型的喷嘴121形成喷射组件129中喷嘴的外围边缘。
[0076] 第一和第二类型的喷嘴121、221分别以液体分布151、251喷射冷冻区液体料流130、230到中间受控的冷冻区工段108中。每个液体分布151、251具有喷射围绕其分散的中央喷射轴。当液体分布151、251对称时,中央喷射轴分别与轴112-112和212-212大体上共同延伸,但也可是发散的,例如,当液体分布151、251是非对称的。将冷冻区液体料流130、230注射到处于形成固体和富含烃的蒸气料流的温度和压力下的受控的冷冻区工段108中。
[0077] 冷冻区液体料流130、230包含冷冻区液体料流最外围部分131、231。从第一类型的喷嘴121喷射的冷冻区液体料流130的冷冻区液体料流最外围部分131可与受控的冷冻区壁46直接相邻。冷冻区液体料流最外围部分131可为冷冻区液体料流130的最外围边界。换句话说,冷冻区液体料流最外围部分131形成从第一喷嘴121喷射的冷冻区液体料流130的最外围周边的第一部分。并且该最外围周边的第一部分比最外围周边的任何其它部分都更接近受控的冷冻区壁46。
[0078] 冷冻区液体料流130、230还可包含冷冻区液体料流最内部部分132、232。从第一类型的喷嘴121喷射的冷冻区液体料流130的冷冻区液体料流最内部部分132不与受控的冷冻区壁46直接相邻。该冷冻区液体料流最内部部分132比冷冻区液体料流最外围部分131距受控的冷冻区壁46远。冷冻区液体料流最内部部分132可为冷冻区液体料流130的最内部边界。换句话说,冷冻区液体料流最内部部分132形成从第一喷嘴121喷射的冷冻区液体料流130的最外围周边的第二部分。并且该最外围周边的第二部分比最外围周边的任何其它部分都距受控的冷冻区壁46远。
[0079] 从最内部部分131、231到最外围部分132、232的液体料流130,230的特性(例如但不限于喷射角度和对称度)被限定为液体分布151、251。
[0080] 从第二类型的喷嘴221喷射的冷冻区液体料流230的冷冻区液体料流最外围部分231和冷冻区液体料流最内部部分232比从第一类型的喷嘴121喷射的冷冻区液体料流130的冷冻区液体料流最外围部分131距受控的冷冻区壁46远。冷冻区液体料流最外围部分231和冷冻区液体料流最内部部分232可比或不比从第一类型的喷嘴121喷射的冷冻区液体料流130的冷冻区液体料流最内部部分132距受控的冷冻区壁46远。
[0081] 第一类型的喷嘴121可与受控的冷冻区壁46直接相邻。具体来说,第一类型的喷嘴121可与受控的冷冻区壁46的受控的冷冻区内部表面31直接相邻。第一类型的喷嘴121可在中间受控的冷冻区工段108的边缘处。第一类型的喷嘴121可比第二类型的喷嘴221更接近受控的冷冻区壁46。换句话说,第二类型的喷嘴221可比第一类型的喷嘴121更远离受控的冷冻区壁46。
[0082] 第一类型的喷嘴121的轴可处于与受控的冷冻区壁46形成的第一角度122。第一角度122可由第一长轴向喷嘴轴112-112和长轴向受控的冷冻区壁轴111-111限定。换句话说,第一角度122的边界可为第一长轴向喷嘴轴112-112和长轴向受控的冷冻区壁轴111-111。第一角度122可为任何合适的角度,例如但不限于,0到60度的任何角度。例如,第一角度122可为0度、15度、30度或45度。
[0083] 第一类型的喷嘴121,506的轴的第一角度122可构造和布置成引导冷冻区液体料流最外围部分131从而保持喷射的冷冻区液体料流远离受控的冷冻区壁46,例如从而减少、消除和/或最小化喷射液体撞击到受控的冷冻区壁46上(即长轴向受控的冷冻区壁轴111-111)。在一些实施方案中,减少和/或最小化喷射液体对受控的冷冻区壁46的撞击可能不能消除喷射液体对受控的冷冻区壁46的撞击。第一角度122可在这样的引导冷冻区液体料流离开受控的冷冻区壁46的位置处构造和布置。如图6中的顶视图所示,第一角度122可带来延长的椭圆形喷射投影。
[0084] 当从第一类型的喷射头121喷射的液体130的最内部部分131、231与受控的冷冻区壁46呈角度离开时,喷射的液体不会明显地撞击到受控的冷冻区壁46,从而导致固体在受控的冷冻区壁46上的可能的积聚。因此,固体,例如结晶固体、绒毛雪般的和/或淤浆状的固体,不太可能在受控的冷冻区壁46上积聚。这与蒸馏塔内的喷射的液体撞击到蒸馏塔壁上的常规喷射组件是相反的。
[0085] 第二类型的喷嘴221可处于相对于受控的冷冻区壁46的第二角度222。第二角度222可通过第二长轴向喷嘴轴212-212和长轴向受控的冷冻区壁轴111-111限定。换句话说,第二角度222的边缘可为第二长轴向喷嘴轴212-212和长轴向受控的冷冻区壁轴111-111。
第二角度222可为任何合适的角度,例如但不限于,0到60度的任何角度。例如,第二角度222可为0度、15度、30度或45度。
[0086] 第二角度222可与第二类型的喷嘴221构造和布置或不构造和布置成相对于受控的冷冻区壁46(即长轴向受控的冷冻区壁轴111-111)以约0度角度或0度角度(即基本上平行)引导冷冻区液体料流最外围部分232。通常,第二角度222不必与第二类型的喷嘴221构造和布置成相对于受控的冷冻区壁46(即长轴向受控的冷冻区壁轴111-111)以约0度角度或0度角度(即基本上平行)引导冷冻区液体料流最外围部分232,因为第二类型的喷嘴221距受控的冷冻区壁46足够远,从而来自第二类型的喷嘴221的冷冻区液体料流230的轨迹不容易撞击到受控的冷冻区壁46上。如图6中的顶视图所示,第二角度122喷射投影可形成圆圈。
[0087] 本领域技术人员将理解,喷嘴121、221类型的液体分布151、251可根据需要调节为对称或不对称图案,从而优化受控的冷冻区工段108的截面区域的开放空间内的喷射覆盖,并仍然限制在受控的冷冻区塔壁上的喷射撞击。如上所述,改变喷嘴121、221的类型的液体分布151、251将改变喷射图案的中央喷射轴。
[0088] 第一类型的喷嘴121可包含多个喷嘴121和/或第二类型的喷嘴221可包含多个喷嘴221。每个第一类型的喷嘴121可处于与第一类型的喷嘴中另一个相同角度。每个第一类型的喷嘴121可处于与第一类型的喷嘴中的另一个不同的角度。每个第二类型的喷嘴221可可处于与第二类型的喷嘴中另一个相同角度。每个第二类型的喷嘴221可处于与第二类型的喷嘴中的另一个不同的角度。
[0089] 喷射组件129可包含一个或多个头部123(图5-6)。每个头部123可接收单一或多个第一和第二类型的喷嘴121、221。每个头部可为任何合适的头部并且不限于图6中所示的头部。例如,头部可为从受控的冷冻区壁46延伸的管道,使得该头部的长轴向轴垂直于长轴向受控的冷冻区壁轴111-111(即该头部从例如中间受控的冷冻区工段的侧面延伸)。另一示例头部可在受控的冷冻区工段的椭圆形头部进入受控的冷冻区工段。
[0090] 喷射组件129还可包含喷射泵128(图1-4)。喷射泵128泵送液体到喷嘴121、221。代替喷射泵128,重力也可引起液体流动。
[0091] 中间受控的冷冻区工段108中形成的固体落向熔化塔盘组件139。虽然不是全部、但大多数的固体不会落向受控的冷冻区壁46,这是因为上述喷射组件120的布置。为了应对固体仍落向并粘附到受控的冷冻区壁46的情况,中间受控的冷冻区工段108还可包括(a)加热机构和(b)通过处理机构处理的表面中的至少一个,例如名称为“利用加热机构分离烃和杂质的方法和装置从而去稳定化和/或防止固体粘结”(美国申请No.61/912,986)和“利用表面处理机构分离烃和杂质的方法和装置”(美国申请No.61/912,987)的专利申请中所述的那些,每个申请都是Jaime Valencia等人的,并且在与本申请相同的日期提交的。采用(a)和(b)可对固体积聚的机会最小化比使用少于所有三种这些机构更好。
[0092] 中间受控的冷冻区工段108中形成的固体在熔化塔盘组件139中形成液体/淤浆混合物。液体/淤浆混合物从中间受控的冷冻区工段108流到低工段106。液体/淤浆混合物从中间受控的冷冻区工段108的底部经由线路22流到低工段106(图1-4)。线路22可为外部线路。线路22可从蒸馏塔104、204延伸。线路22可从中间受控的冷冻区工段108延伸。线路可从低工段106延伸。线路22可从蒸馏塔104、204的外围表面延伸。
[0093] 中间受控的冷冻区工段108中的温度随着蒸气料流从中间受控的冷冻区工段108的底部行进到中间受控的冷冻区工段108的顶部而冷却。蒸气料流中的甲烷从中间受控的冷冻区工段108上升到上工段110。一些杂质可保留在甲烷中并且也上升。蒸气料流中的杂质往往会在较冷的温度下凝结或凝固,并且落到中间受控的冷冻区工段108的底部。
[0094] 固体当在液体130中时形成液体和/或淤浆混合物。液体和/或淤浆混合物从中间受控的冷冻区工段108流到较低的蒸馏工段106。液体和/或淤浆混合物从中间受控的冷冻区工段108的底部经由线路22流到低工段106的顶部(图1-4)。线路22可为外部线路。线路22可从蒸馏塔104、204延伸。线路22可从中间受控的冷冻区工段108延伸。线路可延伸到低工段106。
[0095] 在中间受控的冷冻区工段108中上升并且不形成固体或以其它方式落到中间受控的冷冻区工段108的底部的蒸气料流,上升到上工段110。上工段110在没有固体形成的温度和压力和杂质浓度下操作。上工段110构造和布置成冷却蒸气料流以将甲烷与杂质分离。上工段110中的回流冷却蒸气料流。回流经由线路18引入到上工段110。线路18可延伸到上工段110。线路18可从蒸馏塔104、204的外围表面延伸。
[0096] 在与上工段110中的回流接触后,进料料流形成蒸气料流和液体料流。蒸气料流主要包含甲烷。液体料流包含相对多的杂质。蒸气料流在上工段110中上升并且液体落到上工段110的底部。
[0097] 为了当料流接触回流时便于甲烷与杂质分离,上工段110可包含一个或多个传质装置176。每个传质装置176帮助甲烷与杂质分离。每个传质装置176可包含任何合适的分离装置,例如具有穿孔的塔盘、随机或结构化填充的工段等,从而便于蒸气与液体相接触。
[0098] 上升后,蒸气料流可通过线路14离开蒸馏塔104、204。线路14可从上工段110的上部分发散。线路14可从上工段110的外围表面延伸。
[0099] 从线路14,蒸气料流可进入冷凝器122。冷凝器122冷却蒸气料流以形成冷却的料流。冷凝器122至少部分冷凝该料流。
[0100] 在离开冷凝器122后,冷却的料流可进入分离器124。分离器124将蒸气料流分离成液体和蒸气料流。分离器可为可以将料流分离成液体和蒸气料流的任何合适的分离器,例如回流鼓。
[0101] 一旦分离,蒸气料流可离开分离器124作为销售产品。销售产品可通过线路16行进到接下来的销售管道和/或凝聚成液化天然气。
[0102] 一旦分离,液体料流可作为回流通过线路18返回到上工段110。回流可经由任何合适的机构,例如回流泵150(图1和3)或重力(图2和4)行进到上工段110。
[0103] 落到上工段110底部的液体料流(即冷冻区液体料流)在上工段110的底部收集。液体可在塔盘183上收集(图1和3)或在上工段110的最底部分收集(图2和4)。收集的液体可通过线路20或出口260(图2和4)离开蒸馏塔104、204(图1和3)。线路20可从上工段110发出。线路20可从上工段110底端发出。线路20可从上工段110的外围表面延伸。
[0104] 线路20和/或出口260连接到线路41。线路41引导中间受控的冷冻区工段108中的喷射组件129。线路41从保持容器126发出。线路41可延伸到中间受控的冷冻区工段110的外围表面。
[0105] 线路20和/或出口260可直接或间接(图1-4)连接到线路41。当线路20和/或出口260直接连接到线路41时,液体喷射可经由任何合适的机构,例如喷射泵128或重力泵送到喷嘴120。当线路20和/或出口260间接连接到线路41时,线路20、41和/或出口260和线路41可直接连接到保持容器126(图1和3)。保持容器126可在液体通过喷嘴喷射前容纳至少一些所述液体。液体可从保持容器126经由任何合适的机构,例如喷射泵128(图1-4)或重力泵送到喷嘴120。当在上工段110底部没有足量的液体料流来供料喷嘴120时,保持容器126可能是需要的。
[0106] 所述方法可包括保持上工段110。上工段110如前所述那样操作。方法还可包括如前所述那样分离上工段110中的进料料流。
[0107] 注意,重要的是,图7中所示的步骤仅是为了说明的目的提供的,并且可能不需要特定的步骤来实施本发明的方法。此外,图7可能没有显示所有会进行的步骤。权利要求书,并且只能是权利要求书,才限定了本发明的系统和方法。
[0108] 所披露的方面可用于烃管理活动。如本文中使用的,“烃管理”或“管理烃”包括烃提取,烃生产,烃开采,寻找潜在的烃资源,寻找井位置,确定井注射和/或提取速率,寻找储层连接,获取、处置和/或放弃烃资源,审视之前的烃管理决定,以及任何其它烃相关的行动或活动。术语“烃管理”也用于烃或CO2的注射或储存,例如CO2的封存,例如储层评估、开发规划和储层管理。所披露的方法技术可用于从地下区域提取烃以及处理烃。烃和杂质可从储层提取并处理。烃和杂质可例如在之前所述的蒸馏塔中处理。在烃和杂质被处理后,可将烃从处理器,例如蒸馏塔中取出,并产出。杂质可排放到地球。例如,如图7中所示,生产烃的方法可包括生产509从蒸馏塔提取的富含烃的蒸气料流。方法还可包括从蒸馏去除塔富含烃的蒸气料流,然后生产509富含烃的蒸气料流。从储层的最初烃提取可通过使用烃钻探设备钻井来完成。用于钻井和/或提取这些烃的设备和技术是本领域技术人员熟知的。其它烃提取活动,以及更概括来说,其它烃管理活动,可根据已知的原理进行。
[0109] 如本文中使用的,术语“大约”、“约”、“基本上”和类似的术语意图具有本公开所涉及领域的本领域普通技术人员的一般和能接受的含义一致的宽泛含义。看到本公开的本领域技术人员应理解,这些术语意图允许在不将某些描述并要求保护的特征限制到所提供的精确数值范围内的情况下来描述这些特征。因此,这些术语应被解释为表示,对所描述的主题的非实质性的或无关紧要的调整或改变被视为在本公开的范围内。
[0110] 应理解的是,前述公开的数值范围、调整和备选方式可以在不背离本公开范围的情况下实施。因此,前述说明不表示限制本公开的范围。相反,本公开的范围仅由所附权利要求和它们的等同方式来确定。还能想到的是,本申请实例中的结构和特征可以被改变、重排、替换、删除、复制、组合或彼此叠加。
[0111] 冠词“该”、“一个”和“一种”不限制为只表示数量一,而是包容性的和开放式的,从而包括任选地多种所修饰的要素的情况。