过程流中阴离子电荷的光学测定转让专利

申请号 : CN201480063983.1

文献号 : CN105723206B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : L.维赫萨洛I.乔恩苏尤M.皮伊龙恩

申请人 : 凯米罗总公司

摘要 :

本发明涉及光学检测含水流和处理检测结果以测定流的阴离子电荷的方法,所述方法通过检测流的光吸收并用数学处理(例如,数学计算)预测流中阴离子基团的量来进行。具体地讲,该方法包括以下步骤:将一定量阳离子染料加到含水流,检测所得含染料流的光吸收光谱,并用所述数学处理处理所得光吸收光谱以得到阴离子电荷。本发明也涉及所得光谱用于测定流的浊度的用途和适用于进行该方法的装置。

权利要求 :

1.一种光学检测含水流和处理检测结果以测定所述流的阴离子电荷的方法,所述方法通过检测流的光吸收或透射并预测所述流中阴离子基团的总量来进行,其特征在于- 将固定量阳离子染料加到所述含水流,- 检测所得含染料流的光吸收或透射光谱,和

- 用求导的数学处理步骤来处理所得光吸收光谱,以得到所述含水流的阴离子电荷,由此,在染料最大吸光度区域的导数的最小或最大值用于计算,以使其与流的总电荷相关,其中所述含水流包含至少溶解和胶态的物质中的至少一种。

2.权利要求1的方法,其特征在于所述含水流选自纤维流、纸浆、原水、网水、造纸工业的循环水流及废水流的至少一种。

3.权利要求1或2的方法,其特征在于得到主过程流的侧取流。

4.权利要求1或2的方法,其特征在于在加入阳离子染料之前稀释该流。

5.权利要求1或2的方法,其特征在于所述阳离子染料选自吸收400-700nm波长的光的水溶性杂环芳族阳离子化合物。

6.权利要求5的方法,其特征在于所述阳离子染料选自亚甲绿和亚甲蓝。

7.权利要求1或2的方法,其特征在于向所述流加入足够量阳离子染料,以使所述流的所需部分为阳离子性。

8.权利要求7的方法,其特征在于所述所需部分是侧取流。

9.权利要求7的方法,其特征在于所述足够量基于相同或类似流的较早电荷检测来估算。

10.权利要求9的方法,其特征在于该量为60-120µmol/l。

11.权利要求1或2的方法,其特征在于在检测光吸收之前使所述阳离子染料在流中反应至少1秒。

12.权利要求11的方法,其特征在于在检测光吸收之前使所述阳离子染料在流中反应3至10秒。

13.权利要求11的方法,其特征在于在检测光吸收之前使所述阳离子染料在流中反应至少1分钟。

14.权利要求11的方法,其特征在于在检测光吸收之前使所述阳离子染料在流中反应3至10分钟。

15.权利要求1或2的方法,其特征在于根据其中所含物质的颗粒尺寸或质量或二者将所述流分级,然后对一个或多个所得级分进行光吸收检测。

16.权利要求1或2的方法,其特征在于对450nm至800nm波长范围检测所述流的光吸收光谱。

17.权利要求16的方法,其特征在于对整个250nm至900nm范围检测所述流的光吸收光谱。

18.权利要求1或2的方法,其特征在于计算所得吸收光谱的一阶导数。

19.权利要求1或2的方法,其特征在于通过检测一些校准样品的阴离子电荷确定校准模型。

20.权利要求19的方法,其特征在于通过样品的流动电位滴定或电泳迁移率检测。

21.权利要求1或2的方法,其特征在于如下确定校准模型:以变量浊度和阴离子电荷检测一些不同校准样品的阴离子电荷,检测对应于所得电荷的吸光度,并通过与参比值比较消除由样品中浊度导致的背景吸收的影响。

22.权利要求19的方法,其特征在于校准模型为多变量校准模型。

23.权利要求22的方法,其特征在于校准模型为选自利用偏最小二乘法(PLS)或求导或二者的模型。

24.权利要求1或2的方法,其特征在于所有方法步骤线上(online)或线内(in-line)进行。

25.权利要求24的方法,其特征在于所有方法步骤连续或半连续。

26.在权利要求1至25中任一项的方法中得到的光吸收结果用于测定含水流浊度的用途。

27.权利要求26的用途,其中通过分析光吸收光谱的背景吸收来测定浊度。

28.一种用于光学检测容纳含水流的容器(1)中该含水流的阴离子电荷的装置,所述装置包括:- 与容器(1)连接的染料供应单元(2),

- 用于检测流的光吸收或透射光谱的工具(3),和- 用于处理所得光吸收或透射结果的工具(4),

其特征在于所述用于处理的工具已选自求导的数学处理步骤,由此,所述用于处理的工具适于将在染料最大吸光度区域的导数的最小或最大值用于计算,以使其与流的总电荷相关,其中用于检测光吸收的工具适于从容纳流的容器中的流直接检测所述含水流的阴离子电荷,其中所述含水流包含溶解和胶态的物质中的至少一种,其中所述装置还包括用于根据其中所含任何物质的颗粒尺寸使流分离成级分的流分级单元。

29.权利要求28的装置,其特征在于用于处理的工具(4)包括用于得到校准模型的工具(5)。

30.权利要求29的装置,其特征在于用于得到校准模型的工具(5)已选自用于流动电位滴定或用于电泳迁移率检测的工具。

31.权利要求29的装置,其特征在于用于得到校准模型的工具(5)选自用于得到多变量校准模型的工具。

32.权利要求31的装置,其特征在于用于得到校准模型的工具(5)选自PLS模型或校准模型或其组合。

33.权利要求1至25中任一项的方法或权利要求28至32中任一项的装置的用途,所述装置或方法用于确定加到流的阳离子聚合物或其它化学物质是否如所预期那样表现,还用于监测化学物质不过量使用。

34.权利要求1至25中任一项的方法或权利要求28至32中任一项的装置用于监测和/或控制和/或优化化学性能和过程性能的用途。

说明书 :

过程流中阴离子电荷的光学测定

[0001] 发明背景。发明领域
[0002] 本发明涉及用于测定流中阴离子基团和任选用于测定流浊度的光学方法。如果需要,可在测定前根据其中任何物质的颗粒尺寸或质量或尺寸和质量二者使流分级。
[0003] 相关技术描述
[0004] 源于纸浆悬浮体和其它浆料的带电基团可对化学反应中浆料的性质具有重要影响。这些带电基团可与加到浆料的各种添加剂和颗粒反应并结合,并导致絮凝。因此,在确定要使用的添加剂的量和确定是否这些带电基团需要分别去除时,测定这些带电基团的含量是重要的。
[0005] 传统用于检测样品中阴离子基团含量的一些方法耗时耗力。较简单的供选方案包括浆料实验室样品的滴定(电导或电位)。然而,这些方法不能直接在流动的流中进行,且它们需要阴离子基团处于其质子化形式。
[0006] 供选的光学方法描述于WO2004063724和F1991963中。在WO2004063724中,为了从纸浆纤维去除溶解和小的颗粒,首先洗涤样品。加入染料,过滤样品,并检测未吸附染料的量。在F1991963中,作为由其构建校准曲线的所加阴离子或阳离子聚合物的函数检测吸光度变化。这种方法需要单独实验室样品的耗时滴定,并且需要为各不同类型样品构建校准曲线。因此,这两种方法均需要另外的步骤,例如样品洗涤和滴定,并且两种方法中的检测都对实验室样品进行,并且不允许在流动的流中直接检测。
[0007] 这些方法基于检测单一波长,使它们对干扰敏感。因此,它们不提供电荷的可靠结果。这些方法还需要校准。
[0008] 因此,需要测定流或其颗粒群总电荷的方法,所述方法应快速、简单并且可直接对流动的流进行,由此可避免单独样品收集。
[0009] 发明概述
[0010] 因此,本发明的一个目的是提供测定流(例如,过程流的侧取流)总阴离子电荷的新方法和装置。
[0011] 具体地讲,本发明的一个目的是提供测定阴离子电荷的方法和装置,其中检测可直接从流进行,而不需要单独样品收集。
[0012] 本发明的另一个特别目的是提供测定流的不同颗粒级分或群的不同阴离子电荷的方法和装置。这些不同颗粒级分应优选可用单一校准曲线分析。
[0013] 这些和其它目的与其比起已知方法和装置的优点通过下述和要求保护的本发明实现。
[0014] 该方法基于根据比尔-朗伯定律对加到流的阳离子染料的光吸收检测,随后估算(例如计算)流中阴离子基团数。然而,检测光透射同样有用。可用该方法测定流中所含物质(例如,溶解的聚合物、胶态颗粒和甚至分散颗粒)中阴离子基团的总量。例如,对于造纸机样品,也可用该方法测定滤液的阳离子需量和纤维的ζ电位,特别在与流分级系统组合使用时,因为这种系统分离溶解和胶态的物质与较大颗粒和所述纤维。颗粒可根据其尺寸和/或质量分离成一个或多个颗粒群,例如,通过分离成胶体、胶粘物、树脂(pitch)、细屑、填料和附聚物。
[0015] 另外,本发明方法和装置允许从相同检测的吸收光谱计算流的浊度。
[0016] 因此,本发明涉及光学检测含水流和处理检测结果以测定流的阴离子电荷的方法,所述方法通过检测流的光吸收并用数学处理(例如,数学计算)预测流中阴离子基团的量来进行。
[0017] 更具体地讲,本发明的方法特征在于权利要求1的特征部分所述。
[0018] 另外,用本发明测定流的浊度特征在于权利要求15所述,本发明的装置特征在于权利要求17特征部分所述。
[0019] 由本发明取得显著的优点。因此,本发明提供测定流中阴离子基团的简单分光光度方法。
[0020] 方法便利且快速,除了在加入染料前和检测光吸收光谱之前可能稀释样品或流以外,不需要任何预处理。因此,可分析任何含水流。样品或流可以为只包含溶解和胶态物质或分散颗粒的稀释流,也可包含例如木纤维。可分析从溶解分子到大聚集体的任何物质。
[0021] 检测可直接对流动的流线上进行,即,没有单独的样品收集步骤和实验室检测。然而,关于流动或静止样品,该方法可线内(inline)和线上(online)或在实验室中使用。
[0022] 可从相同吸收光谱按染料量(或阴离子基团量)测定浊度,且浊度变化不导致阴离子基团含量估算的问题。
[0023] 也可用本发明确定加到过程流的阳离子聚合物或其它化学物质是否如所预期那样表现,并监控化学物质不过量使用(过量使用可导致不需要的、通常昂贵的运行能力问题或聚集)。
[0024] 根据本发明的一个实施方案,只需要构建一个通用校准模型,而不需要对各检测进行新校准。如果流根据例如颗粒尺寸或质量分级,将例如在检测阴离子群中得到颗粒尺寸和阴离子电荷之间关系的新信息类型。
[0025] 下面将参考附图和详述更密切地描述本发明。
[0026] 附图简述
[0027] 图1为说明要根据本发明分析的流的任选分级的功能的绘图。
[0028] 图2为显示用PCT/FI2013/050572中所述连续分级方法从网水(wire water)收集的级分的浊度分布的图解,各级分包含与其它级分相比不同尺寸的颗粒,垂线表示十个收集级分,X轴表示体积(mL)。
[0029] 图3为显示具有不同量阴离子基团和不同浊度的五个网水样品的五个光吸收光谱的图解。
[0030] 图4为显示通过滴定检测的网水级分的浊度(左轴)和阳离子需量(右轴)的图解。
[0031] 图5为显示预测样品中阴离子基团量的模型中两个分量的负载量的图解,分量M1给出几乎直的线,表示浊度基线,分量M2给出吸收。
[0032] 图6为显示网水样品中预测和检测的阴离子基团的图解。
[0033] 图7为显示使用吸收曲线一阶导数的纸浆样品中预测和检测的阴离子基团的图解。
[0034] 图8为显示使用线内方法得到的三个纸过程样品的阴离子电荷分布的图解。
[0035] 发明实施方案详述
[0036] 本发明涉及光学检测含水流和处理检测结果以测定流的阴离子电荷的方法。
[0037] 该方法如下进行:通过检测流的光吸收或光透射,并用数学处理(优选数学计算)预测流中阴离子基团量,以得到与流电荷相关的结果。
[0038] 根据一个选项,数学处理或计算可包括求导或优选由求导组成,由此,在染料最大吸光度区域的导数的最小或最大值与流的总电荷相关。最小或最大值的选择取决于求导的方向。
[0039] 根据另一个选项,数学处理或计算可包括用与所得光谱的光吸收值比较的预定校准模型处理结果或优选由其组成。该结果为对应于流电荷的值(一般为SI单位)。
[0040] 因此,在方法中进行以下主要步骤:
[0041] - 将固定量阳离子染料加到含水流,
[0042] - 检测所得含染料流的光吸收或透射光谱,和
[0043] - 用数学计算处理所得光吸收光谱。
[0044] 因此,本文所用术语“流”是指流动或静止流,例如过程的含水主流、其侧取流或这些之一的样品。在本发明中,优选得到过程主流的侧取流,并在流动状态对该侧取流线上进行该方法的步骤。
[0045] 该流选自例如包含溶解或胶态的物质或颗粒或二者的流。具体地讲,本发明适合用于包含纤维物质(例如,木纤维)的纤维流。这些流的实例包括纸浆、原水、造纸工业的网水和循环水流及各种废水流。
[0046] 术语“胶态物质”旨在包括由具有2至500nm颗粒尺寸且一般根据本发明分析的流中以分散形式存在的颗粒形成的物质。
[0047] 流的阴离子特征由其中所含物质造成,该物质包含阳离子和阴离子官能团二者。由于通常大部分这些带电官能团为阴离子性,因此,该物质具有总体阴离子电荷。
[0048] 由于检测可如上所述直接从流进行,而不用单独样品收集和进一步样品预处理,因此,可有利在加阳离子染料之前稀释该流。优选在未溶解颗粒的含量高于5g/L时稀释该流。
[0049] 阳离子染料优选选自至少在450-700nm波长吸收光的水溶性杂环芳族阳离子化合物,更优选选自在所述波长范围显示所需吸收的亚甲绿和亚甲蓝。
[0050] 一般调节加到流的阳离子染料的量,以使流的所需部分为阳离子性。用于此目的所需的量也可称为“阳离子需量”。在加到流时,阳离子染料几乎立即吸附到流中任何物质的阴离子基团,例如羧基,由此,染料的可见颜色也将消失。这由经反应(吸附)染料吸收光的能力减小导致。由此,该流只通过加入过量染料(与流中阴离子基团的量比较)就可提供有持久颜色。
[0051] 因此,使流的整个染料处理部分为阳离子性的染料的足够量一般>1eq(与流中阴离子基团的估算量比较)。由于流的颜色,可目视检测该过量染料。
[0052] 所述染料足够量优选基于相同或类似流的较早电荷检测来估算,该量最适合为60–120µmol/l。
[0053] 为了保证流的所有阴离子基团均已反应,使染料在流中反应。所需的时间可以很短,例如1秒或数秒(例如,3至10秒),但优选使用至少1分钟时间,更优选3至10分钟。随后检测光吸收。
[0054] 在染料加入和吸附后进行的本发明的光吸收检测提供光吸收光谱结果,其中基线表示要分析的流的浊度,且其中吸收峰高度对应于未反应(即,未吸附)阳离子染料或已反应(即,已吸附)染料的量。一般光谱在两个或更多个波长得到,优选在数个相等分布的波长,例如10至20个波长,例如间隔1至2nm。
[0055] 由于加入过量染料和由于流中的阴离子基团结合到染料,强吸收表示在流中有大量游离染料。这还表明流中有少量阴离子基团。
[0056] 光谱优选为UV-Vis光谱(紫光-可见光谱)。具体地讲,在光谱中包括在450nm至700nm波长范围内的吸收结果,优选400至800nm,更优选对整个250nm至900nm范围。
[0057] 因此,该方法基于以下事实:当阳离子染料加到包含阴离子基团的流或样品时,流或样品的光吸收光谱为游离光吸收染料的量、阴离子基团的量或流或样品浊度的函数。
[0058] 随后,可用一个或多个数学处理步骤处理如此得到的光吸收光谱。根据一个实施方案,该处理基于校准结果。为了校准,收集校准样品,但这可在检测待处理吸收光谱之前良好进行。这些校准样品,应具有高的多变量变化,至少包括其浊度和阴离子电荷,可包含水、阳离子染料、溶解或胶态的物质或颗粒或任何这些的混合物。样品的浊度具体对应于其中未溶解颗粒的含量。
[0059] 然后,从这些校准样品检测吸收光谱,并消除由样品浊度引起的背景吸收(或基线)的影响,优选通过将其与参比值比较,参比值可例如从水样品得到。然而,在数学处理包括求导时,不必得到参比值。该求导从结果去除背景影响,即,浊度。
[0060] 其它数学处理步骤可选自例如平滑(例如,通过使用数据过滤器或平均)和求导,优选至少一个求导步骤,最适合通过计算所得吸收光谱的一阶导数。所述和所述其它数学处理步骤(和任选消除背景吸收的影响)形成所用的“校准模型”。
[0061] 数学处理模型,例如,利用求导,将得到作为相对于样品中阴离子基团数的量度的结果。
[0062] 根据本发明的一个供选实施方案,数学处理模型进而由从一系列校准样品得到的结果构成,其含量应涵盖未知样品阴离子基团量和浊度的预期变化。
[0063] 校准模型优选预定,并且可例如通过聚合电解质滴定方法得到,例如,流动电位法,或者通过校准样品的电泳迁移率检测,这些方法得到这些校准样品的阴离子电荷。
[0064] 校准结果也取决于所用染料,例如,亚甲绿得到250nm至900nm波长范围的足够明确的吸收光谱,但也可用450nm至800nm的更窄范围得到所需结果。
[0065] 通过多变量校准,可用校准样品的检测吸收光谱计算阴离子基团量和这些样品的浊度二者。多变量校准方法可例如为偏最小二乘法(PLS)或更复杂的多变量校准方法。
[0066] 偏最小二乘法(PLS)是一种统计方法,可用该方法使用两个不同变量使预测结果(例如,校准结果)和可观察结果(例如,从吸收光谱得到的待分析结果)表现为指示这些变量之间关系的线性图。多变量方法自然利用更多不同变量。
[0067] 根据本发明的一个优选实施方案,在进行光吸收检测前,基于其中所含任何物质的颗粒尺寸或质量使流分级。然后对各所得级分分别检测光吸收光谱。以此方式,可分别测定不同级分的阴离子特牲,这些级分包含不同类型颗粒,一般具有不同电荷特征。
[0068] 根据其质量或电荷或二者,流中颗粒分级或分离成颗粒群可用PCT/FI2013/050572中所述的方法进行,即,通过样品传导到分化通道,该通道设计使得液体流使样品中的潜在群分化,并进一步用液体流逐渐携带样品的颗粒。
[0069] 或者,可通过过滤、离心或沉降或任何其它适合分级方法进行分级或分离。因此得到的颗粒群优选包括以下两种或更多种:胶体、纤维和附聚物,它们均可具有不同电荷。
[0070] 优选线内进行所有这些方法步骤。由于可直接从流进行检测,而不用单独收集样品,因此,可以连续或半连续方式使用该方法,由此,连续方式反映直接从流动的流检测光吸收光谱,而半连续方式主要反映光谱检测的特征(即,经常重复检测,而不是基本上持续检测)。
[0071] 除为了测定流的阴离子电荷处理光吸收光谱外,还可用相同结果测定相同含水流的浊度。具体地讲,浊度通过分析光吸收光谱的背景吸收来测定。
[0072] 本发明也涉及用于光学检测容纳含水流的容器1中含水流阴离子电荷的装置。这种装置包括至少以下单元:
[0073] 2 与容器1连接的染料供应单元,
[0074] 3 用于检测流的光吸收或透射光谱的工具,和
[0075] 4 用于处理所得光吸收结果的工具,和
[0076] 根据本发明的一个具体实施方案,装置也可任选包括用于得到校准模型的工具5。
[0077] 所述装置适用于进行本发明的上述方法。
[0078] 该装置的表现特征是,用于检测光吸收的工具3适于直接从容纳流的容器1中的流检测阴离子电荷,而无中间样品容纳单元存在,且不需要将任何样品输送到单独的实验室设施或甚至单独的设备实体。
[0079] 用于处理的工具4可选自例如平滑、平均和求导的数学处理步骤。
[0080] 用于得到校准模型的工具5又可选自例如用于流动电位滴定或用于电泳迁移率检测的工具。优选用于得到校准模型的工具5选自用于得到多变量校准模型的工具,更优选选自用于得到PLS模型或校准模型的工具。
[0081] 除了这些单元外,装置还可包括用于根据其中所含任何物质的颗粒尺寸或质量使流分离成级分的流分级单元6。使用该流分级单元6,可分别对要分析的流的不同级分确定阴离子特牲,这些级分一般包含具有不同电荷特征的不同类型颗粒。
[0082] 要根据本发明分析的流通常包含相对大的颗粒,例如纤维或颜料,并且可用本发明的方法和装置提供必要的信息,以能够例如估算可加到流的阳离子聚合物的量,以便例如选择性絮凝其中溶解和胶态的颗粒。
[0083] 也可用本发明的方法和装置确定这些阳离子聚合物或其它化学物质是否如所预期那样表现,并监控化学物质不过量使用(过量使用可导致不需要的、通常昂贵的运行能力问题或聚集)。
[0084] 因此,可用所述方法和装置监测和/或控制和/或优化化学性能和过程性能。
[0085] 其中可发现此方法特别有用的技术领域包括造纸工业(包括纸浆、纸和板制造)、水净化技术、环境分析、生物燃料工业和甚至医药工业。
[0086] 以下非限制实施例只用于说明用本发明的实施方案得到的优点。实施例
[0087] 在以下实施例中使用所谓的分级系统。这是专利申请PCT/FI2013/050572中所述的分级器,它基于其中所含颗粒的颗粒尺寸使分散体、悬浮体和浆料分级。
[0088] 实施例1 网水的分级和浊度检测
[0089] 从不同造纸过程收集四个不同的网水样品,并标为网水1、2、3和4。各样品(10mL)通过分级器系统分级,其中颗粒根据其质量分级(见图1),并记录浊度曲线(见图2)。较大颗粒迟于小颗粒离开分级器,因此显示在图2曲线图的右面。
[0090] 在各50mL级分期间,通过取来自检测器(在此为从流动通过分级器的流直接检测浊度的线内检测器)的记录浊度的平均值计算各级分的浊度。
[0091] 供选方法是用与分级器分开的置于网水流的检测器检测浊度。
[0092] 实施例2 含染料的网水的吸收分析
[0093] 在此使用实施例1中得到的级分,不经进一步修改。
[0094] 由于所需的洗脱,以上级分也在样品稀释中得到。因此,在从分级开始330s时开始从稀释分级流收集10个50mL级分。
[0095] 为了分析,将3mL各样品放入石英比色皿,并加入40µL的100µg/mL亚甲绿。用2nm狭缝和960nm/min扫描速度检测900-250nm之间的UV-Vis光谱。五个样品的光吸收光谱显示于图3中。亚甲绿吸收550-700nm之间范围的光。吸收越强,样品中未反应的亚甲绿越多,因此,样品的阴离子电荷越低。
[0096] 为了比较,使用Mütek流动电位滴定仪系统分析10mL各收集稀释级分的阳离子需量,并用0.0005N阳离子聚凝胺滴定。为了得到可靠结果,分析各级分三次。结果显示于图4中,其中样品1-10为网水1的级分,样品11-20为网水2的级分,样品21-30为网水3的级分,样品31-40为网水4的级分。
[0097] 利用所述方法在检测的阳离子需量(通过Mütek检测)和计算阴离子电荷之间的所得相关性高于95%。
[0098] 从分析清楚地看到,比起目前已知方法(对于Mütek,在20小时内60个样品),可用本发明的方法可靠和更快地(在1小时内60个样品)检测流的阴离子电荷。
[0099] 实施例3 通过PLS校准
[0100] 对于偏最小二乘法(PLS)校准使用SIMCA-P软件。只用两个分量(隐变量,在此为浊度和吸光度)得到最佳校准模型。用于建模的Q2为0.90,换句话讲,模型具有极佳预测能力。
[0101] 图5显示用于预测样品中阴离子基团量的模型的两个分量(隐变量)的负载量。从图中明显看出,第一分量获得基线偏移的影响,换句话讲,样品的浊度,而第二分量给出在亚甲绿指示样品中高量阴离子基团的波长的强负响应。
[0102] 通过关于数个已知样品(例如,水和染料溶液)得到图5的曲线图,得到校准结果。图6显示具有98%相关性的预测和检测的阴离子基团。
[0103] 实施例4 通过求导校准
[0104] 收集从涂布损纸到全漂白的松木和桦木纤维素纸浆的五个不同样品。如实施例3中所述进行吸收检测。包含纤维的样品具有在吸收检测期间沉降的倾向,这导致在吸收扫描期间样品浊度改变,造成较低预测能力(88%相关性)。然而,这一影响通过取吸收曲线的一阶导数消除,得到提高的相关性(95%)。结果显示于图7中。
[0105] 实施例5 线内检测
[0106] 在用台式实验室光谱仪初始试验后,将光纤光谱仪连接到分级系统。在进入检测流动池之前,向样品流加入亚甲绿溶液恒定流。如先前实施例中所述进行检测。
[0107] 分析数个不同样品,包括网水和纤维样品(来自纸机浆池和流浆箱)。在图8中显示所述三个示例性纸过程样品的阴离子电荷分布。
[0108] 这些结果清楚地表明,连接到系统的光纤光谱仪非常适用于根据本发明线内分析。
[0109] 从这些结果也可看到,流浆箱样品的总阴离子电荷与纸机浆池样品相比低得多。原因是对后者加入阳离子湿部淀粉和保留助剂。在包含纤维的级分中出现峰阴离子电荷。
在网水样品中,阴离子电荷浓缩到最大颗粒,流浆箱样品中不存在所述最大颗粒。这表明在网水中形成的聚集体仍具有一些阴离子电荷。