用于电磁能量生成的多元件耦合器转让专利

申请号 : CN201480062678.0

文献号 : CN105744986B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : A·S·Y·鹏A·J·耶Y·田辺S·金J·霍

申请人 : 斯坦福大学董事会

摘要 :

可植入式装置和/或传感器,可以通过在患者的组织内控制并且传播电磁波来无线供电。这种可植入式装置/传感器可以植入患者体内的目标位置,以刺激例如心脏、大脑、脊髓或肌组织区域,和/或感测血液、组织以及其他患者参数的生物、生理、化学属性。利用次波长结构可以生成传播电磁波,所述次波长结构配置为操纵在组织外面的消散场,以在所述组织内部生成传播波。还描述了使用方法。

权利要求 :

1.一种无线功率系统,包括:

外部模块,其包含多个次波长结构,所述次波长结构配置为通过操纵在患者的组织外面的消散场,以在患者的组织内部生成传播场并且从而在组织内生成空间聚焦场,来响应于相应的激励信号发送相应的无线射频功率信号,所述激励信号提供给所述次波长结构;

控制器,其配置为调整提供给所述多个次波长结构的一个或多个激励信号的相位和/或幅度,以调整组织内的空间聚焦场的焦点;以及可植入式模块,其配置为通过所发送的功率信号从所述外部模块中无线地接收功率,所述可植入式模块包括至少一个传感器或刺激器,所述传感器或刺激器配置为感测所述组织的参数或者施加给所述组织的刺激。

2.根据权利要求1所述的系统,其中,所述至少一个传感器选自由热传感器、化学传感器、压力传感器、氧传感器、PH传感器、流量传感器、电气传感器、应变传感器、磁传感器以及成像传感器构成的组。

3.根据权利要求1所述的系统,其中,所述至少一个刺激器选自由电刺激器、光学刺激器、化学刺激器以及机械刺激器构成的组。

4.根据权利要求1所述的系统,其中,所述多个次波长结构选自由贴片、PIFA、在接地面内的插槽、在接地面内的横槽、在接地面内的孔径耦合的环槽以及在接地面内的半插槽构成的组。

5.根据权利要求1所述的系统,其中,所述外部模块进一步包括:多个激励端口,其分别地耦合至所述多个次波长结构;以及至少一个电压源,其耦合至所述多个激励端口且配置为提供所述激励信号。

6.根据权利要求5所述的系统,其中,所述控制器配置为检测从所述可植入式模块中接收的无线能量的功率电平,并且配置为提供反馈,以自动调整所述焦点的位置,来优化无线功率传输。

7.根据权利要求1所述的系统,其中,所述可植入式模块配置为在心脏上、内或者附近植入,以给心脏施加无引线起搏。

8.根据权利要求1所述的系统,其中,所述可植入式模块配置为在大脑上、内或者附近植入,以给大脑施加深部脑刺激。

9.根据权利要求1所述的系统,其中,所述可植入式模块配置为在脊髓上、内或者附近植入,以给脊髓施加刺激。

10.根据权利要求1所述的系统,其中,所述可植入式模块配置为在舌头的肌组织上、内或者附近植入,以给舌头施加刺激,来治疗阻塞性睡眠呼吸暂停。

11.一种用于产生和接收空间适配的电磁场的方法,包括:响应于提供给组织外的次波长结构的激励信号,通过在组织内部产生传播场而发射无线射频功率信号;

通过使用控制器调整一个或多个激励信号的幅度和/或相位来将所述传播场聚焦对准可植入式无线功率接收模块;以及经由所发送的功率信号在可植入式无线功率接收模块处接收功率,可植入式模块包括至少一个传感器或刺激器,所述至少一个传感器或刺激器被配置为感测参数或施加刺激。

12.根据权利要求11所述的方法,其中,所述发送步骤进一步包括操纵在组织外面的消散场,以在组织内部生成所述传播场并且从而在组织内生成空间聚焦场。

13.根据权利要求11所述的方法,进一步包括调整所述传播波的焦点,以优化到所述模块的无线功率传输。

14.根据权利要求11所述的方法,其中,所述发送步骤进一步包括利用次波长结构发送波,所述次波长结构产生与所述波垂直并且与组织界面平行的磁场。

15.一种配置为通过组织传输无线功率的设备,包括:衬底;

至少一个次波长结构,其设置在所述衬底上;

至少一个射频端口,其耦合至所述至少一个次波长结构;

电压或电流源,其耦合至所述至少一个射频端口;以及

控制器,其配置为通过所述电压或电流源管理所述至少一个射频端口和次波长结构的激励,以操纵在组织外面的消散场,以在组织内部生成传播场并且从而在组织内生成空间聚焦场。

16.根据权利要求15所述的设备,其中,所述至少一个次波长结构中的每个耦合至相应的独立射频端口。

17.一种配置为通过组织传输无线功率的设备,包括:多个次波长结构,其配置并且设置为在组织内部生成传播场并且从而在组织内生成空间适配的电磁场;

多个独立馈送口,其配置并且设置为单独激励所述多个次波长结构中相应的一个,从而生成空间适配的电磁场;以及控制器,其配置为重新分配峰值表面电磁场,以增大容许的射频输出功率。

18.根据权利要求17所述的设备,其中,所述多个次波长结构进一步配置并且设置为在组织内生成自适应转向场。

19.根据权利要求17所述的设备,其中,所述空间适配的电磁场具有在300MHz与

3000MHz之间的频率。

说明书 :

用于电磁能量生成的多元件耦合器

[0001] 相关申请
[0002] 本申请要求于2013年9月16日提交的题为“Multi-Element Coupler”的美国临时申请号61/878,436以及于2013年12月6日提交的题为“Power Management and Conversion for Medical Implants”的美国临时申请号61/913,164的权益,这两个申请的全文通过引用结合至本文中。
[0003] 援引并入
[0004] 在本说明书中提及的所有出版物和专利申请在相同的程度上通过引用结合至本文中,就像每个单独出版物或专利申请具体并且单独指示为通过引用结合至本文中。

技术领域

[0005] 本公开总体上涉及无线功率传输。更具体而言,本公开涉及通过组织将无线功率传送到植入在人类或动物体内的装置内。

背景技术

[0006] 无需电线来供电的系统和方法有时称为无线能量传输(WET)。无线能量传输大幅扩大电动装置的应用类型。可植入式医疗装置通常需要能够为装置的合理使用期供应充足的功率的内部电源,或需要横穿皮肤的电力电缆。
[0007] 进来,强调无需使用经皮布线给植入装置供电的系统,有时称为经皮能量传输系统(TETS)。通常,使用与变压器一样设立的两个磁耦合的线圈,实现能量传输,因此,在皮肤上磁性传输功率。传统的系统对线圈的位置和对准的变化比较敏感,通常要求线圈在物理上靠近并且良好对准。
[0008] 基于磁场无线发送功率的现有系统通常仅仅在近场内操作,其中,发送器和接收器线圈的间隔小于或者等于线圈的尺寸。
[0009] 无线供电长期对增强可植入式电子设备的功能感兴趣,在20世纪60年代早期,以在胸壁上输送电磁能量的实验开始。在概念上利用通过在近场内耦合的对象空中传输功率的方案,早期表现涉及到对在体内长期操作造成严重挑战的真空管电源或电池的庞大线圈系绳。半导体技术的进步早已启用在蜂窝规模尺寸内包含感测和刺激功能的复杂装置。然而,几乎所有现有系统继续要求大型结构来储存或收集能量,通常考虑到总体尺寸、重量以及效率特征的最大尺寸为几厘米,这会限制集成在主体内的机会。
[0010] 近场方法依赖于在具有匹配的电气特征(例如,谐振和阻抗)的对象之间发生的强耦合。这些近场方法不容易推广到具有极端的尺寸不对称性的几何形状,同时在主体的表面之上的吸收限制远场传输。
[0011] 本公开描述了克服先前无线功率传输方法的限制的用于无线功率传输的方法和设备。本公开提供了一种中间场方法,其中,结构的消散和辐射元件耦合至在远离源连续输送能量的组织内的模式。由在这些元件之间的相位差造成的干扰在组织内部为空间聚焦的和动态可调的场图案提供了额外的机会。从在本公开中描述的方法中可获得的性能等级可以超过医学、神经科学或者人机界面中应用的先进的检测和控制能力的要求。

发明内容

[0012] 在一个实施方式中,提供了一种无线功率系统,包括:外部模块,其具有一个或多个次波长结构,所述次波长结构配置为通过操纵在组织外面的消散场,以在患者的组织内部生成传播场并且从而在组织内生成空间聚焦场,来发送无线功率;以及可植入式模块,其配置为从所述外部模块中接收无线功率,所述可植入式模块包括至少一个传感器或刺激器,所述传感器或刺激器配置为感测所述组织的参数或者给所述组织施加刺激。
[0013] 在一些实施方式中,所述至少一个传感器选自由热传感器、化学传感器、压力传感器、氧传感器、PH传感器、流量传感器、电气传感器、应变传感器、磁传感器以及成像传感器构成的组。
[0014] 在其他实施方式中,所述至少一个刺激器选自由电刺激器、光学刺激器、化学刺激器以及机械刺激器构成的组。
[0015] 在一个实施方式中,所述可植入式装置包括允许可互换的传感器和/或刺激器的模块化设计。
[0016] 在一些实施方式中,所述一个或多个次波长结构选自由贴片、PIFA、在接地面内的插槽、在接地面内的横槽、在接地面内的孔径耦合的环槽以及在接地面内的半插槽构成的组。
[0017] 在另一个实施方式中,所述外部模块进一步包括:一个或多个激励端口,其耦合至所述一个或多个次波长结构;至少一个电压源,其耦合至所述一个或多个激励端口;以及控制器,其配置为调整传送给所述一个或多个次波长结构的相位和/或幅度,以调整在组织内的空间聚焦场的焦点的位置。
[0018] 在一个实施方式中,所述控制器配置为检测从所述植入模块中接收的无线能量的功率电平,并且配置为提供反馈,以自动调整所述焦点的位置,来优化无线功率传输。
[0019] 在另一个实施方式中,所述可植入式模块配置为在心脏上、内或者附近植入,以给心脏施加无引线起搏。
[0020] 在一些实施方式中,所述可植入式模块配置为在大脑上、内或者附近植入,以给大脑施加深部脑刺激。在另一个实施方式中,所述可植入式模块配置为在脊髓上、内或者附近植入,以给脊髓施加刺激。在另一个实施方式中,所述可植入式模块配置为在舌头的肌组织上、内或者附近植入,以给舌头施加刺激,来治疗阻塞性睡眠呼吸暂停。
[0021] 提供了一种给患者提供治疗的方法,包括:在患者体内植入无线功率接收模块;将中场传播波发送给所述无线功率接收模块,以给该模块供电;通过所述无线功率接收模块感测患者的参数;并且基于所述感测的参数,通过无线功率接收模块给患者提供治疗。
[0022] 在一些实施方式中,所述发送步骤进一步包括操纵在患者的组织外面的消散场,以在患者的组织内部生成传播场并且从而在组织内生成空间聚焦场。
[0023] 还提供了一种在患者体内的心脏起搏的方法,包括:在心脏上、内或者附近植入无线功率接收模块;将中场传播波发送给所述无线功率接收模块,以给该模块供电;通过所述无线功率接收模块感测心脏的参数;并且基于所述感测的参数,通过无线功率接收模块给心脏提供电起搏。
[0024] 在一些实施方式中,所述发送步骤进一步包括操纵在患者的组织外面的消散场,以在患者的组织内部生成传播场并且从而在组织内生成空间聚焦场。
[0025] 还提供了一种深部脑刺激的方法,包括:在大脑上、内或者附近植入无线功率接收模块;将中场传播波发送给所述无线功率接收模块,以给该模块供电;通过所述无线功率接收模块感测大脑的参数;并且基于所述感测的参数,通过无线功率接收模块给大脑提供刺激。
[0026] 在一些实施方式中,所述发送步骤进一步包括操纵在患者的组织外面的消散场,以在患者的组织内部生成传播场并且从而在组织内生成空间聚焦场。
[0027] 提供了一种刺激组织的方法,包括:将无线功率接收模块植入组织内;将中场传播波发送给所述无线功率接收模块,以给该模块供电;通过所述无线功率接收模块感测组织的参数;并且基于所述感测的参数,通过无线功率接收模块给组织提供刺激。
[0028] 在一些实施方式中,所述发送步骤进一步包括操纵在患者的组织外面的消散场,以在患者的组织内部生成传播场并且从而在组织内生成空间聚焦场。
[0029] 在另一个实施方式中,该方法进一步包括调整所述传播波的焦点,以优化到所述模块的无线功率传输。
[0030] 在另一个实施方式中,所述发送步骤进一步包括利用一次波长结构发送波,所述次波长结构产生与所述波垂直并且与组织界面平行的磁场。
[0031] 提供了一种配置为通过组织传输无线功率的设备,包括:衬底;至少一个次波长结构,其设置在所述衬底上;至少一个射频端口,其耦合至所述至少一个次波长结构;电压或电流源,其耦合至所述至少一个射频端口;以及控制器,其配置为通过所述电压或电流源管理所述至少一个射频端口和次波长结构的激励,以操纵在组织外面的消散场,以在组织内部生成传播场并且从而在组织内生成空间聚焦场。
[0032] 在一些实施方式中,所述至少一个次波长结构中的每个耦合至相应的独立射频端口。
[0033] 还提供了一种配置为通过组织传输无线功率的设备,包括:多个次波长结构,其配置并且设置为在组织内部生成传播场并且从而在组织内生成空间适配的电磁场;多个独立馈送口,其配置并且设置为单独激励所述多个次波长结构中相应的一个,从而生成空间适配的电磁场;以及控制器,其配置为重新分配峰值表面电磁场,以增大容许的射频输出功率。
[0034] 在一些实施方式中,所述多个次波长结构进一步配置并且设置为在组织内生成自适应转向场。
[0035] 在其他实施方式中,所述空间聚焦和自适应转向场/信号具有在300MHz与3000MHz之间的频率。

附图说明

[0036] 在以下权利要求中特别陈述本发明的新型特征。通过以下详细描述以及附图,参照在其中利用本发明原理的陈述说明性实施方式,可更好地理解本发明的特征和优点,在附图中:
[0037] 图1A-1N示出了外部无线功率发送模块的各种实施方式;
[0038] 图2示出了由传统的电感耦合的回路源造成的磁场;
[0039] 图3A示出了由贴片(patch)次波长结构造成的磁场;
[0040] 图3B示出了由PIFA次波长结构造成的磁场;
[0041] 图3C示出了由孔径耦合的圆槽次波长结构造成的磁场;
[0042] 图3D示出了由横槽次波长结构造成的磁场;
[0043] 图3E示出了由半插槽次波长结构造成的磁场;
[0044] 图4A示出了由中场传播波技术无线供电的在人类患者体内的植入装置;
[0045] 图4B-4C示出了通过电感耦合方法(图4B)和中场传播波方法(图4C)的无线功率传输;
[0046] 图5A-5B是图1A-1N的外部模块的控制器的架构的示意图;
[0047] 图6示出了配置为从图1A-1N的外部模块中接收无线功率的植入装置的一个实施方式;
[0048] 图7A-7C示出了图6的植入装置的控制器的架构的实施方式。

具体实施方式

[0049] 可以通过在患者的组织内控制并且传播电磁波来为可植入式装置和/或传感器无线供电。作为非限制性实例,这种可植入式装置/传感器可以植入到患者体内的目标位置,以刺激例如心脏区域,和/或感测血液、组织以及其他患者方面的生物、生理、化学属性。实现无线功率传输可能存在困难,在于可植入式装置/传感器的尺寸与功率传输源之间的失配、在患者体内的装置/传感器的深度,还在于装置/传感器相对于功率传输源的空间布置。
[0050] 本公开的各个方面涉及由上述描述/实施方式以及所附附录的描述/实施方式的方面例证或支持的设备或方法。例如,本公开的某些实施方式涉及操纵在患者的组织外面的消散场,以在患者的组织内部激励/控制传播场并且从而在组织内生成空间聚焦和自适应转向(adaptive steering)场/信号。
[0051] 每个上述次波长结构可以连接至相应端口,以便操纵消散场,以在患者的组织内部激励/控制传播场。可以进一步操纵这些传播场,以在组织内生成空间聚焦和自适应转向场/信号。主要在源附近产生横向磁场的任何次波长结构,将最小化所述组织加热效应。这些次波长结构可以配置为生成与组织界面平行并且与发送无线能量的传播波垂直的磁性近场。在某些实施方式中,如上所示,设置可以包括用于操纵消散场的1个、2个、3个或4个或更多的次波长结构。在其他实施方式中,上面显示的2个或多个设置可以组合,以便甚至更多的次波长结构(例如,6个、8个、12个)用于操纵消散场。
[0052] 在某些实施方式中,设置可以包括可配置为操纵消散场的2个、3个、4个或更多的次波长结构。在其他实施方式中,上面显示的两个或多个设置可以组合,以便甚至更多的次波长结构(例如,6个、8个、12个或更多)用于操纵消散场。
[0053] 本公开的各个方面包括涉及多个次波长结构的设备和方法,所述次波长结构配置为在患者的组织内生成空间适配的电磁场/信号(例如,中场电磁场)。每个次波长结构均可以连接至独立馈送口,所述独立馈送口单独激励所述次波长结构中相应的一个,从而生成空间适配的电磁场/信号。独立馈送口和次波长结构适合于重新分配峰值表面电磁场,以便根据该设备的规则,增大容许的射频输出功率。
[0054] 在某些实施方式中,次波长结构操纵消散场,以激励/控制传播场并且从而在组织内生成空间聚焦和自适应转向场/信号。
[0055] 本公开的各个方面包括涉及生成和接收空间适配的电磁场/信号的多个次波长结构的设备和方法,所述电磁场/信号可包括功率信号和通信数据信号。此外,本公开的方面还可包括多个次波长结构,所述次波长结构生成空间适配的电磁场/信号并且在多个频带中提供和接收空间适配的电磁信号。
[0056] 本公开的某些方面还涉及可植入式装置,其接收经由次波长结构发送的功率,其中次波长结构发送空间适配的电磁场。与本公开的各个方面一致,可植入式装置可以具有某个尺寸,以便所述装置可以通过导管、套管或针传送。此外,可植入式装置可以包括从空间适配的电磁场中接收能量的线圈。在这种实施方式中,接收的空间适配的电磁场/信号为,线圈内的电流所造成的磁化。进一步,在某些情况下,可植入式装置还可以包括接收空间适配的电磁信号的多匝式线圈、使用AC-DC功率转换来转换空间适配的电磁信号的整流电路、以及调节脉冲幅度、持续时间以及频率的控制电路。
[0057] 此外,在某些实施方式中,与本公开的各个方面一致,次波长结构调整空间适配的电磁信号的工作频率,以调整可植入式装置或传感器的功率。在一些实施方式中,空间适配的电磁信号可以具有在300MHz与3000MHz之间的频率。
[0058] 本公开的各个方面涉及使用单个电源给一个或多个有源可植入式传感器或装置供电。与本公开的各个方面一致,可以使用单个电源供电的可植入式装置/传感器的类型很多。例如,可植入式装置可以用于肌肉刺激、用于调节患者的心跳的刺激/感测、多位点深部脑刺激、给药和/或生物、生理以及化学感测。
[0059] 在此处公开的装置可以单独可寻址并且单独控制。因此,所述装置(例如,用于肌肉刺激的装置)可以放在对应于不同肌肉群的不同位置,并且通过同步的方式执行刺激。同样,大脑刺激装置可以放在大脑内的不同位置,并且可以通过同步的方式执行刺激。可以说给药装置同样如此。而且,由于所述装置可以单独可寻址并且单独控制,所以所述装置可以异步以及同步激活和/或供电。在某些情况下,所述装置可以具有的尺寸特征在于所述装置比其在组织内的深度小得多(例如,1个、2个或者3个数量级)。同样,在某些情况下,所述装置可以具有的尺寸特征在于所述装置比给所述装置提供功率的源小得多(例如,1个、2个或者3个数量级)。
[0060] 涉及设备、装置以及方法的本公开的方面可以单独或者与各种其他方面相结合使用。
[0061] 在本文中描述的结构可以用于包括至次波长结构的反馈的传感器/装置。例如,这些类型的传感器可以包括可植入式温度传感器或成像装置。通过这方式,所述装置响应于上述的生成空间适配的电磁场/信号的结构。反馈型装置响应于由空间适配的电磁场/信号提供的信号的功率和/或数据部分,并且提示所述反馈型装置响应。例如,位于患者体内的温度传感器响应于由空间适配的电磁场/信号提供的信号的功率和/或数据部分,将广播/报告组织的温度。此外,植入组织内的成像装置可以响应于由空间适配的电磁场/信号提供的信号的功率和/或数据部分,广播/报告捕捉到的图像。而且,可以模式化并且控制空间适配的电磁场/信号的穿透深度。因此,在某些实施方式中,反馈装置可以响应于空间适配的电磁场/信号,指示并且标记数据,以记录所述装置操作的深度。通过在储存装置内逐个患者地储存该数据,计算机可以访问并且分析该数据,用于统计用途。
[0062] 通过可编程计算机在存储器电路内储存反馈型装置的位置或标记,还可以实现各种患者反馈跟踪方法。例如,通过分析周围组织,可以优化可植入式成像装置的深度。通过这种方式,如果确定可能具有更优的位置,那么可以调整可植入式成像装置的深度。同样,可植入式刺激装置的深度可以用于确定包围刺激装置的组织区域的健康,并且响应于空间适配的电磁场/信号,确定装置的最佳位置。此外,反馈型装置可以响应于空间适配的电磁场/信号并且广播储存在存储器电路内的数据。因此,反馈型装置可以为医生连续更新该装置正在跟踪的数据。这允许无线实时监控、诊断和/或治疗患者。
[0063] 可以通过在组织内控制并且传播电磁波来对可植入式装置/传感器无线供电。可植入式装置可以植入人类体内或者其他动物(例如,宠物、牲畜或者实验动物,例如,老鼠、耗子以及其他啮齿动物)体内。作为非限制性实例,这种可植入式装置/传感器可以植入患者体内的目标位置,以刺激例如心脏区域,和/或感测血液、组织以及其他患者方面的生物、生理、化学属性。实现无线功率传输可能存在的困难在于,可植入式装置/传感器的尺寸与功率传输源之间的失配、在患者体内的装置/传感器的深度,以及装置/传感器相对于所述功率传输源的空间设置。
[0064] 本公开的各个方面涉及由上述描述/实施方式以及所附附录的描述/实施方式的方面例证或支持的设备或方法。例如,本公开的某些实施方式涉及通过次波长结构操纵在患者的组织外面的消散场,以在患者的组织内部激励/控制传播场并且从而在组织内生成空间聚焦和自适应转向场/信号。次波长结构生成本质上在源附近消散的场。相比之下,在使用电感耦合的传统无线方法中,在组织外面(在源附近)的消散元件依然在组织内部消散,这不允许有效的深度穿透。
[0065] 本公开提供次波长结构和用于控制这些结构的激励的方法的实施方式,以从在组织外面的消散模式中激励在组织内部的传播模式。结果,该方法在将能量输送至组织内部的限制吸收的深度时非常有效。在本文中公开的设计包括将组织用作介质波导以使能量穿入主体内的结构。该能量可以由下面讨论的植入模块接收,以允许为植入装置传输无线功率,至到使用传统的电感耦合技术难以达到的深度。
[0066] 本公开提供中场无线供电方法,该方法集成了外部模块和一个或多个植入模块,所述外部模块配置为发送无线功率,并且所述植入模块配置为接收无线功率,植入模块与脉冲发生器和至少一个刺激电极共同组合成小型无引线的可植入式装置。在一些实施方式中,植入模块可以足够小,以通过导管或皮下注射针传送。例如,植入模块的直径可以小到几毫米(2-3mm),直到具有大约100微米或更小的直径。该植入模块允许以远远超过复杂电子设备和生理刺激的要求的性能水平将无线功率传输给主体内的几乎任何位置。由于植入模块小,所以可以直接注入目标神经或肌肉区域内,无需引线和延伸,以给目标神经、肌肉或组织区域提供感测和刺激。
[0067] 为了说明的目的,图1A-1N示出了与本公开的各个方面一致的包括一个或多个次波长结构102的无线功率发送模块100的各种实施方式和示图。相对于在患者的组织外面或者在空中的场的波长,限定次波长。次波长结构可以具有小于在空中的波长的尺寸,但是可能比得上在组织中的波长。例如,1.6GHz时,在肌肉中的波长比在空中的波长小大约7.3倍。具有大约在肌肉或组织中的波长量级的尺寸的任何源结构可以是次波长结构。图1C-1E示出了无线功率发送模块的3个具体实施方式的透视图,并且图1F-1H分别示出了那些模块的侧视图。同样,图1I-1K示出了一些无线功率发送模块的透视图,并且图1L-1N分别示出了那些模块的侧视图。
[0068] 图1A-1N的次波长结构可以配置为操纵在患者的组织外面的消散场,以在患者的组织内部激励/控制传播场,从而在组织内生成空间聚焦和自适应转向场/信号。在图1A-1N中示出的无线功率发送模块100可以包括设置在衬底104之上的次波长结构102和一个或多个接地面106(在图1F-1H和1L-1N的侧视图中示出)。在一些实施方式中,次波长结构102可以包括导电材料,例如,铜。衬底可以包括绝缘材料,例如,环氧树脂或陶瓷。衬底可以是固体的刚性衬底,或者可替换地可以是配置为符合患者的皮肤表面的弹性衬底。在一些实施方式中,次波长结构102可以进一步包括粘合至衬底或者设置在衬底上的接地面。接地面可以设置在衬底的顶面(图1H、1L、1N)、底面(图1F、1G)或者顶面和底面(图1M)上。
[0069] 根据具体应用的设计要求,每个次波长结构的设计可以变化。图1A-1B均示出了具有多个次波长结构102的无线功率发送模块,其中,次波长结构与弯曲的或者突出的条带或特征相似X'。在这两个实施方式中,每个次波长结构102可以由连接至电压和/或电流源的一个或多个独立的射频端口103激励。在一些实施方式中,次波长结构可以由在从0.1V到10V的范围内的电压激励,或者可以由在从0.1A到10A的范围内的电流激励。所述电源的频率范围可以在从300MHz到3GHz的范围内。对于在端口信号之间的适当相位,次波长结构可以生成模仿(mimic)理想电流密度的环电流路径。位于组织之上时,所述结构以高效率(>
90%)将来自外部电路的功率耦合到组织体积内,该高效率由低电平的背面辐射和在散射参数光谱内的声称极小值所证明。
[0070] 由输入端口信号的相位提供的自由度,使各种干涉图样能够合成,包括具有空间移动聚焦区域的干涉图样。这些相位的软件控制可以重新聚焦场,而无需机械重新配置,这可以对在有节律的器官上插入的植入装置或者对运动的装置有用。在一些实施方式中,可以基于获得聚焦增强的功率传输的闭环反馈,以实时实现“贪婪式”相位搜索算法。在其他实施方式中,可以将反馈信号从植入装置中无线发送到中场源。
[0071] 图1C和1F示出了贴片次波长结构102c,该结构设置在衬底104之上,在衬底的底面上具有接地面106。在图1F中还示出了馈送器108,该馈送器用于给次波长结构馈送或者从次波长结构发送电信号。图1D和1G示出了PIFA次波长结构102d,该结构设置在衬底104之上,在衬底的底面上具有接地面106。在图1G中示出了馈送器108以及连接至结构102d的短路110。图1E和1H示出了在设置在衬底104之上的接地面106内的插槽次波长结构102e。在图1H中示出了馈送器108。图1I和1L示出了在设置在衬底104之上的接地面106内的横槽次波长结构102i。在图1L中示出了馈送器108。图1J和1M示出了在设置在衬底104之上的接地面
106内的孔径耦合(aperture coupled)的环槽次波长结构102j。该实施方式可以进一步包括在衬底的底面上的接地面106。在图1M中示出了馈送器108。最后,图1K和1N示出了半插槽次波长结构102k,该结构设置在衬底104之上,在衬底的顶面上具有接地面106。在图1N中示出了馈送器108。在上面描述的并且说明的所有实施方式中,一个或多个电源和放大器可以通过馈送器(或端口)连接至次波长结构,以操纵消散场。而且,在一些实施方式中,每个次波长结构可以包括一个或多个馈送器或端口。
[0072] 上面描述的无线功率发送模块100通常包括一个或多个次波长结构、一个或多个激励端口、衬底以及一个或多个接地面。模块100可以由控制器(硬件和软件)控制,以动态移动电磁场的聚焦区域。
[0073] 现在描述关于用于传输无线功率的各种技术的一些讨论。图2示出了在yz和xz平面中由传统的电感耦合的回路源214生成的磁场212。可以看出,磁场与组织界面216垂直地生成,并且与传输到设置在组织内回路源之下的植入物(例如,植入装置218)的期望的无线功率的方向平行。
[0074] 相比之下,图3A-3E示出了由本公开的各种次波长结构产生的磁场312。这些结构生成与组织界面316平行并且与在组织内生成的将无线功率发送给植入装置318的传播波垂直的磁场312。图3A示出了在yz和xz平面中由贴片次波长结构302c(图1C和1F)生成的磁场。图3B示出了在yz和xz平面中由PIFA次波长结构302d(图1D和1G)生成的磁场。图3C示出了在yz和xz平面中由横槽次波长结构302i(图1I和1L)生成的磁场。图3D示出了在yz和xz平面中由孔径耦合的圆槽次波长结构302j(图1J和1M)生成的磁场。图3E示出了在yz和xz平面中由半插槽次波长结构302k(图1K和1N)生成的磁场。
[0075] 图4A示出了无线功率发送系统,包括无线功率发送模块400以及在人体内的植入装置418。在图4A中,该装置显示为植入患者的胸腔内,例如,在心脏内或者附近。通过该图,应理解的是,植入装置可以放在主体内的任何地方,例如,在心脏、大脑、肺、脊髓、骨骼、神经、鼻窦、鼻腔、嘴、耳朵、腹膜腔、臂、腿、胃、肠、消化道、肾脏、膀胱、泌尿道、或者可以受益于由在本文中描述的系统提供的感测和/或刺激特征的主体的任何其他器官或部分。
[0076] 在图4A中,发送模块400可以放在患者的皮肤之上,并且包括接收线圈的植入模块可以植入患者体内。当源场与线圈结构的互相作用,造成植入模块内的负载做功(work extruded)时,发生功率传输。对于次波长线圈,仅仅最低次模式是重要的,并且传输机构可以描述为具有动态磁场互相作用的电磁感应特征。通过将电流密度分解成其空间频率分量,可以解决由位于源导体的表面上的时谐电流密度JS生成的电场和磁场。每个分量对应于一平面波,具有由相位匹配条件确定的传播,用于在平面边界之上折射和反射,通过在光源光谱之上整合,可以在每个深度z上从平面边界中恢复在组织中的总场。
[0077] 中场区域的性能是理想供电的关键。次波长结构操纵消散场,以激励/控制传播波(交替的电场和磁场)并且从而在组织内生成集中于植入装置的空间聚焦和自适应转向(steering)场/信号。所述场在焦平面上至皮肤表面的反向传播显示了源高度振荡并且由仅仅在近场中重要的明显消散元件构成。然而,与传统的近场供电相比,这些消散元件在将能量输送给限制吸收的深度的组织中激励传播模式。
[0078] 图4B-4C示出了与本公开的近场设计(图4C)相比的在近场或电感耦合的无线功率传输系统(图4B)将功率传输到组织深度内的能力之间的差异。如图4C中所示,本公开的近场设计允许将无线功率传输至电感耦合的系统所不可获得的组织深度。
[0079] 在一些实施方式中,可以调整本公开的无线功率传输系统的焦点,以改变传播波的方向。图4C示出了沿着线路419a的在直接位于外部模块之下的方向的传播波的形成。然而,在一些实施方式中,可以调整焦点,以促使传播波在转向方向运行穿过组织,例如,沿着线路419b或419c。通过调整外部模块的一个或多个次波长结构的相位和/或幅度,可以获得该调整。
[0080] 图5A-5B示出了在本文中描述的无线功率发送模块的控制器的架构的两个实施方式,用于激励次波长结构的端口。这些架构可以配置为控制无线功率发送模块的一个或多个次波长结构502a-502n。在每个架构中,RF信号可以源自振荡器520,并且可以通过功率分配器对称地分成多个RF信号。在图5A的架构中,然后,通过具有可变的可控衰减设置的衰减器522馈送信号。然后,所述信号可以通过具有可控相位的移相器524馈送,然后,通过放大器526放大。该架构在该模块的每个端口产生受控相位和幅度信号。在图5B中的架构配置为产生相同的受控相位和幅度信号,但是通过将放大器和幅度控制部件组合成单个元件528而具有更少的元件。
[0081] 植入模块:在图6中示出了用于接收无线功率的植入模块的一个实施方式。植入模块可以包括设置在集成芯片组(IC)632之上的线圈630。线圈630可以是导体的回路(或多个回路)。在一些实施方式中,线圈630具有小于2mm的直径。线圈可以配置为接收从在本文中描述的外部模块中发送的无线功率。模块可以可选地包括用于感测和/或刺激组织的特征634,例如,电极或传感器。例如,所述电极可以包括螺旋型电极、平面电极或卡肤(cuff)电极。在其他实施方式中,传感器可以包括生物电势传感器、压力传感器、O2传感器等。植入模块可以可选地包括用于储存能量的电气元件,例如,电容或电池636。由于植入模块具有小尺寸(直径是2mm或更小),所以植入模块可以通过微创技术传送到并且植入患者体内,例如,通过导管638、套管、针等。
[0082] 由于中场无线供电方法支持的功率电平远远超过微电子技术的要求(例如,在一个实施方式中,来自外部模块的500mW的输入功率电平可以传送大约200uW的功率经过5cm的组织到2mm直径的植入线圈),所以可以实现更复杂的功能,例如,由植入模块实时监控慢性病状态或者进行闭环生物感测和控制。因此,在一些实施方式中,植入模块可以包括一个或多个以下构件:
[0083] 功率管理:为了提高在电磁弱耦合状态中操作的无线供电植入物的整流和功率管理的效率,在植入模块中的AC-DC转换电路可以分成低电压和高电压域。图7A示出了可以包含在植入模块的IC内以处理植入物的功率管理特征的架构。图7A示出了电气连接至一个或多个电容(或可变电容)740、多级整流器742以及稳压器744的线圈730,以将AC-DC转换电路分成低压和高电压域。
[0084] 电池储存:可充电电池(例如,薄膜电池)可以包含在植入模块内,用于暂时能量储存并且用作功率管理电路的有效电荷泵。在一些实施方式中,薄膜电池可以堆叠,以增大能量密度。
[0085] 功率检测:可以检测由植入模块接收的瞬时功率电平并且通过数据发送器将该瞬时功率电平发送给外部模块,用于在中场内在植入模块上自适应聚集。可以通过无线链路在植入模块与外部模块之间发送数据。在一些实施方式中,无线链路可以在功率传输的频率范围内操作,或者在其他实施方式中,无线链路可以在不同的频率范围内操作。检测的功率电平可以通过系统的控制器用于闭环反馈控制中,以调整和聚集外部模块,用于最佳无线功率传输。
[0086] 脉冲RF调制:由于植入天线的低质量因数,所以传统的负荷调制不在中场中运转,造成差信噪比和大量链路余量波动。为了克服该问题,植入模块的数据发送器可以使用脉冲RF调制。为了在外部模块上容易检测,数据和功率载波可以通过不同的中心频率操作。
[0087] 可编程电流驱动器:刺激应用的不同之处主要在于电脉冲的特征,例如,强度、持续时间、频率以及形状。用于刺激的电流驱动器设计为支持这些参数的宽范围并且可以通过无线数据链路进行编程。电流驱动器还可以配置为支持例如运动的致动。
[0088] 可编程数字核心:数字核心协调在植入模块内的各种块体之间的互相作用、在植入物与外部模块之间的通信以及多路存取协议。每个植入模块可以具有其自身的识别(ID),例如,储存在植入模块的存储器内的ID。
[0089] 数据接收器和发送器:外部模块可以通过数据接收器与每个植入模块远程通信,以编程或配置每个植入模块。图7B示出了基于包络检测的数据接收器和基于超宽带架构的数据发送器的一个实施方式。接收器和发送器可以由连接至功率接收线圈或者连接至单独天线的T/R开关746时分复用。每个植入模块可以具有其自身的ID748,用于多路存取。数字控制器750可以实现为处理多路存取协议752、来自外部模块的命令以及进入外部模块的反馈数据。
[0090] 感测前端:感测前端可以包括前置放大器、用于使来自前置放大器的信号离散的模数转换器(ADC)以及用于传感器的驱动器。来自ADC的输出的信号可以储存在植入模块的非易失性存储器内或者通过脉冲RF调制器发送给外部模块。此外,感测的信号可以提供生物反馈,用于调整电流驱动器的参数。图7C示出了用于一个或多个LED驱动器以及电气感测和刺激前端的架构。LED驱动器可以连接至LED,用于组织(神经)的光学刺激。电气感测和刺激前端还可以连接至电极,用于感测生物活动并且改变电气路径。
[0091] 非易失性存储器:例如,可以包括Flash存储器,以记录植入模块的使用模型,例如,激活的时间和电流驱动器的设置,和/或储存来自感测前端的测量。
[0092] 模块化结构:植入模块可以根据终端用户的特定需要或要求定制。例如,植入模块可以包括多个基础元件,包括无线功率接收线圈和IC,并且可以进一步包括可以接纳用户期望的任何类型的传感器或刺激器的接口。例如,植入模块可以配置为接收任何类型的传感器(例如,热、化学、压力、氧、PH、流量、电气、应变、磁、光或图像传感器)或者任何类型的刺激器(例如,电气、光学、化学或者机械刺激器)或者给药设备。因此,植入模块的模块化方法可以定制为适应用户的特定需要。
[0093] 在植入模块内的所有以上构件可以整合到作为片上系统(SoC)的单个芯片内或者作为系统级封装(SiP)封闭在单个模块内的多个芯片。
[0094] 外部模块:外部模块(上面描述的)可以配置为使植入模块通电并且控制植入模块,并且使用植入模块通过双向无线链路设置执行非侵入性读出。外部模块可以包括一个或多个以下构件:
[0095] 中场耦合器:图1A-1N示出了外部模块或中场耦合器的各种形状和模式,可以包括一个或多个次波长结构。可以在固体衬底上或者配置为符合患者的皮肤表面的弹性衬底上制造耦合器。
[0096] 动态中场聚集电路和算法:基于来自植入模块的功率测量反馈,外部模块可以运行算法,例如,贪婪搜索算法,以改变在中场耦合器的每个部件内的相位和/或幅度设置,以便将聚焦区域动态移动到单独的植入模块。例如,植入模块可以检测已接收的无线能量的功率电平,并且外部模块可以自动调整次波长结构的相位和/或幅度,以调整已传输的能量信号的焦点。该调整可以自动并且实时进行,以优化在外部模块与内部模块之间的无线功率传输。
[0097] 到植入模块的双向无线链路:无线链路可以激活植入模块,编程植入模块的设置,并且下载来自植入模块的感测前端的测量。从外部模块到植入模块的用于下行链路的数据速率可以是几Mbps或者更低,而从植入模块到外部模块的用于上行链路的数据速率应更高,可以在10Mbps或者甚至更高的范围内。
[0098] 多路存取协议:这些协议可以协调植入模块,以执行同步任务,例如,协调的多站点刺激。在一些实施方式中,多路存取方案可以时分复用和频分复用。
[0099] 患者/临床医生用户界面:包括显示器的外围装置可以与外部模块整合,以与患者/临床医生接合。在其他实施方式中,整合的外围装置可以由与智能电话或平板电脑通信的双向无线链路代替。在该实施方式中,患者和临床医生可以通过无线链路使用智能电话或平板电脑的显示器与外部模块接合。
[0100] 在一些实施方式中,整个外部模块可以整合到掌上装置内并且由患者持有,用于按需应用。还可以穿戴在主体身上或者粘附至皮肤表面。患者可以使用外部模块来根据需要给植入模块的电池充电。在一些实施方式中,植入模块可以每周/月无线充电仅仅几分钟。在充电期间,患者还可以从植入模块中下载使用记录并且将记录发送给临床医生,用于分析。
[0101] 本公开的各个方面涉及使用单个电源给多个有源可植入式传感器或装置供电。与本公开的各个方面一致,可以使用单个电源供电的可植入式装置/传感器的类型很多。例如,可植入式装置可以用于肌肉刺激、用于调节患者的心跳的刺激/感测、多位点深部脑刺激、给药和/或生物、生理以及化学感测。在本文中描述的系统还可以配置为用于以下应用中:
[0102] 心脏起搏器:植入模块可以通过脉管系统经由导管传送到患者的右心室内。单独的植入模块可以通过冠状窦传送到冠状静脉内并且放在左心室外膜上。这些植入模块可以包括刺激和感测电极,以给心脏应用无引线起搏。因此,可以通过仅仅微创手术,使用现有系统实现无引线双心室起搏。此外,手术时间可以大幅缩短,优于先有方法。这还可以消除在多个引线和延伸期间的任何并发症。
[0103] 深部脑刺激:当前手术涉及在颅骨中使用>1cm的直径钻孔,以插入引线以及从引线到刺激模块的延伸。由于该手术具有侵入性,所以仅仅选择有限数量的目标部位,用于放置电极。相比之下,本公开中非常小的植入模块可以通过其他侵入性更小的路线注入大脑内。由于在现有系统中没有引线和延伸线路,所以可以支持用于刺激的更多目标部位。这造成更少的感染以及更低的监管风险。
[0104] 脊髓刺激:由于具有高功率要求,所以在脊髓刺激器的较新模型内的电池是可充电式。然而,其供电方法仅仅基于电感耦合(或者近场耦合)。由于收集元件在这些系统中较大,所以仅能皮下放置。因此,在这些系统中的引线和延伸线路可能限制电极的用于有效刺激的位置。在本公开中,在植入模块中的功率获取元件比较微小。整个植入模块也容易放在脊髓内的目标神经区域旁边,并且不需要连接该植入模块和目标神经区域的引线。这造成更少的感染、对脊髓组织的更少损害以及更有效的刺激。
[0105] 外围神经刺激:由于远远更高的功率要求,所以大部分当前装置支持低频率刺激,并且仅仅一些装置支持高频率低强度刺激。本公开的系统可以支持这两种模式。此外,双向无线链路提供即时可编程性,在不同的模式之间切换。
[0106] 用于治疗阻塞性睡眠呼吸暂停(OSA)的刺激:本公开的植入模块可以注入并且直接嵌入在舌头附近的肌组织内,并且可以传送电刺激,以在睡眠期间打开患者的气道。多个植入模块可以注入不同的肌肉群内,以加强肌肉收缩。在需要时,患者可以用外部模块给植入模块充电并且同时下载每个OSA事件的时间戳。该信息可以发送给临床医生。所收集的数据还可以用于为植入模块重新编程。
[0107] 医用传感器:无需电池的植入传感器本质上通常是无源的,即,在装置内没有有源电路来调节感测的信号。为了补偿差信号质量,外部读取器需要非常复杂并且通常较大(不能装在手掌上)。此外,无源传感器可以检测不多的刺激。有源植入传感器的缺乏主要是由有效的无线供电方法的缺乏造成。例如,在可充电式脉冲发生器中用于脊髓刺激的电感耦合方法具有有限的渗透,并且接收器(植入装置)较大。本公开的系统允许将大量功率从掌上外部模块中传输给在主体内的几乎任何位置的小植入模块。这允许一系列用于医学领域中连续监控的新感测应用,例如,在心脏和大脑内的术后氧气感测。
[0108] 无线内窥镜:当前胶囊内窥镜具有有限的电池寿命,造成不完全的小肠检查,这是一个主要的临床失败。在本发明中的植入模块较小并且具有无限的电源,解决了当前内窥镜的缺点。此外,由于本植入模块比当前胶囊内窥镜小很多倍,所以患者可以同时吞下多个植入模块。期望植入模块在肠内不同地定向,因此,可以在相同的位置从不同的角度拍摄照片,提高了视场。从植入模块中收集的图像提高诊断。最后,滞留的概率预期可大幅减低,避免外科或内窥镜回收的需要。
[0109] 植入给药:当前植入给药系统较大并且通常不能放在需要药物的部位的本地。基于本公开,植入模块可以注入需要药物的目标组织区域(例如,肿瘤)内。植入模块可以包括多个药物贮库。药物贮库可以由外部模块通过患者/临床医生用户界面激活,以将药物释放到目标组织区域内。
[0110] 暂时性治疗:目前,在植入永久性脉冲发生器之前,通常执行筛选试验。在筛选试验期间,患者可以接收暂时的外部脉冲发生器。发生器可以连接至通过外科手术放在主体内的延伸和引线。在此期间,外部脉冲发生器收集患者使用数据和疗效。然而,根据本公开,具有电极和脉冲发生器的植入模块可以注入目标神经/肌肉区域内,不需要具有引线的暂时发生器。因此,不需要外部暂时脉冲发生器。此外,本公开还可以代替在心脏手术之后在患者体内使用的暂时感测和起搏引线。
[0111] 实验室实验:植入模块可以注入实验动物或啮齿动物(例如,老鼠、耗子等)内,以在实验设置中监控或感测动物的参数和/或给动物提供刺激。小尺寸的植入模块可以有利地提供监控先前不可用的动物的机会。例如,植入模块可以植入啮齿动物的大脑上或者附近,以监控大脑的电信号。植入物可以通过上面描述的外部模块无线供电,并且可以配置为将信息传回与动物相关的外部模块。
[0112] 装置单独可寻址并且单独控制。因此,所述装置(例如,用于肌肉刺激的装置)可以放在对应于不同肌肉群的不同位置,并且通过同步的方式执行刺激。
[0113] 同样,大脑刺激装置可以放在大脑内的不同位置,并且可以通过同步的方式执行刺激。可以说给药装置同样如此。而且,由于所述装置可以单独可寻址并且单独控制,所以所述装置可以异步以及同步激活和/或供电。在某些情况下,这些装置可以具有的尺寸特征在于所述装置比其在组织内的深度小得多(例如,1个、2个或者3个数量级)。同样,在某些情况下,所述装置可以具有的尺寸特征在于所述装置比给所述装置提供功率的源小得多(例如,1个、2个或者3个数量级)。
[0114] 涉及设备、装置以及方法的本公开的方面可以单独或者与各种其他方面相结合使用。
[0115] 对于关于可以在不同程度上与在本文中的教导内容组合的其他实施方式、实验以及应用的细节的信息,可参考实验教导内容以及在构成本专利文档的一部分并且通过引用完全结合至本文中的以下附件中提供的基础参考。在这些附件中讨论的实施方式无论如何都并非旨在限于总的技术公开或者限于所要求的公开的任何部分,除非特别注明。
[0116] 在这种背景下,这些块体和/或模块表示执行这些或其他相关操作/活动中的一个或多个的电路。例如,在上面讨论的某些实施方式中,一个或多个块体和/或模块是配置和设置为用于实现这些操作/活动的离散逻辑电路或者可编程逻辑电路,与在上面并且在附件中描述的电路模块/块体中一样。在某些实施方式中,可编程电路是编程为执行一组(或几组)指令(和/或配置数据)的一个或多个计算机电路。所述指令(和/或配置数据)可以具有储存在存储器(电路)内并且从存储器(电路)中可访问的固件或软件的形式。
[0117] 结合上面讨论的特征以及说明图,这种结构可以供包括反馈到次波长结构的传感器/装置使用。例如,这些类型的传感器可以包括植入式温度传感器或成像装置。
[0118] 通过这方式,所述装置响应于上述的生成空间适配的电磁场/信号的结构。反馈型装置响应于由空间适配的电磁场/信号提供的信号的功率和/或数据部分,并且提示所述反馈型装置响应。例如,位于患者体内的温度传感器响应于由空间适配的电磁场/信号提供的信号的功率和/或数据部分,广播/报告组织的温度。此外,植入组织内的成像装置可以响应于由空间适配的电磁场/信号提供的信号的功率和/或数据部分,广播/报告捕捉的图像。而且,可以模式化并且控制空间适配的电磁场/信号的穿透深度。因此,在某些实施方式中,反馈装置可以响应于空间适配的电磁场/信号,指示并且标记数据,以记录所述装置操作的深度。通过在储存装置内逐个患者地储存该数据,计算机可以访问并且分析该数据,用于统计用途。
[0119] 通过可编程计算机在存储器电路内储存反馈型装置的位置或标记,还可以实现各种患者反馈跟踪方法。例如,通过分析周围组织,可以优化可植入式成像装置的深度。通过这种方式,如果确定可能具有更优的位置,那么可以调整可植入式成像装置的深度。同样,植入式刺激装置的深度可以用于确定包围刺激装置的组织区域的健康,并且响应于空间适配的电磁场/信号,确定装置的最佳位置。此外,反馈型装置可以响应于空间适配的电磁场/信号并且广播储存在存储器电路内的数据。因此,反馈型装置可以向医生连续更新该装置正在跟踪的数据。这允许无线实时监控、诊断和/或治疗患者。
[0120] 本公开(包括附件)服从各种修改和替换形式,而其细节在图中通过实例显示并且进一步详细描述。应理解的是,其意图并非将本公开限于所描述的特定实施方式和/或应用。上面描述的并且在图和附件中显示的各种实施方式可以共同和/或通过其他方式实现。在附图/示图中描述的一个或多个物品还可以通过根据特定的应用有用的更单独的或者整合的方式实现。
[0121] 关于与本发明有关的额外细节,可以采用在相关技术中的技术人员的水平内的材料和制造技术。这在共同或者逻辑上使用的额外行动方面同样适用于本发明的基于材料的方面。而且,预计可以单独地或者与在本文中描述的任何一个或多个特征相结合地陈述并且要求所描述的发明变化的任何可选特征。同样,单个物品的参考包括存在多个相同物品的可能性。更具体而言,如在本文中并且在所附权利要求中所使用的,单数形式“一”、“和”、“所述”以及“该”包括多个参考对象除非上下文另有明确规定。进一步要注意的是,权利要求可以制定为排除任何可选的部件。同样,该陈述旨在用作结合权利要求部件的叙述的“唯一”、“仅仅”等这种专用术语的使用或者“消极”限制的使用的先行词基础。除非在本文中另行规定,否则在本文中使用的所有技术和科学术语具有与在本发明所属的领域中的技术人员通常理解的相同的意义。本发明的宽度不受到主题规格的限制,而是仅仅受到所使用的权利要求术语的明显意义限制。