基于三端口全桥DC/DC变换器的零功率电流控制系统及方法转让专利

申请号 : CN201610333944.X

文献号 : CN105763066B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 王辉凌志翔

申请人 : 山东大学

摘要 :

本发明公开了种基于三端口全桥DC/DC变换器的零功率电流控制系统及方法,包括三端口全桥变换器,其包括变压器和位于变压器原边的第端口变换器和位于变压器副边的第二端口变换器和第三端口变换器,三个端口变换器的电路结构相同,均包括电源,电源两端并联有电容,通过全桥电路连接至变压器的线圈,第端口变换器的电源向第三端口变换器的电源传递功率,所述第二端口变换器的电源为隔离电源,所述控制器通过采集三个端口变换器电源的电压、电流信息,控制三个端口变换器的全桥电路的开、断及移相角,使三端口全桥变换器实现零功率恒流充电,能够满足三端口变换器对主电池进行恒流充电。

权利要求 :

1.基于三端口全桥DC/DC变换器的零功率电流控制系统的控制方法,所述控制系统包括三端口全桥变换器和控制器,其中:所述三端口全桥变换器,包括变压器和位于变压器原边的第一端口变换器和位于变压器副边的第二端口变换器和第三端口变换器,三个端口变换器的电路结构相同,均包括电源,电源两端并联有电容,通过全桥电路连接至变压器的线圈;

所述第一端口变换器的电源向第三端口变换器的电源传递功率,第二端口变换器的电源为隔离电源,所述控制器通过采集三个端口变换器电源的电压、电流信息,控制三个端口变换器的全桥电路的开、断及移相角,使三端口全桥变换器实现零功率恒流充电,当第一端口变换器和第二端口变换器、第二端口变换器和第三端口变换器的传输功率相等时,第二端口变换器实现零功率;

其特征是:具体步骤包括:

(1)在第三端口变换器对充电电流进行采样,将其与电流给定值进行比较,偏差经过电流调节器,获取电流闭环控制器的移相角,送至第三端口变换器控制其开关管;

(2)采集第一端口变换器和第三端口变换器的端口电压,计算得到基波分量,结合第三端口变换器的移相角,计算使得第二端口变换器传输功率等于零的参考电压;

(3)采集第二端口变换器的端口电压,控制器将其与计算的参考电压进行比较,得到第二端口变换器的移相角,控制第二端口变换器开关管的导通。

2.如权利要求1所述的控制方法,其特征是:所述步骤(2)中,利用基波分量代替交流信号,确定三端口全桥变换器等效到原边的基波量。

3.如权利要求1所述的控制方法,其特征是:所述步骤(2)中,根据漏感电流在各个时刻都连续,得到任一端口变换器的电流的边界条件。

4.如权利要求1所述的控制方法,其特征是:所述步骤(2)中,对变压器交流侧的高频电压信号进行傅里叶变换。

5.如权利要求1所述的控制方法,其特征是:所述步骤(3)中,当第一端口变换器和第二端口变换器、第二端口变换器和第三端口变换器的传输功率相等时,第二端口变换器实现零功率。

说明书 :

基于三端口全桥DC/DC变换器的零功率电流控制系统及方法

技术领域

[0001] 本发明涉及一种基于三端口全桥DC/DC变换器的零功率电流控制系统及方法。

背景技术

[0002] 三端口DC/DC整合了给主电源供电的充电器和主电源给辅助电源供电的DC/DC变换器。在充电模式下辅助电源是被隔离的。在主电源给辅助电源供电下,充电端口是隔离的。移相控制技术运用于三端口DC/DC变换器上,能够方便的管理能量的传输,且易于实现功率器件的软开关。因为主电池充电有恒流充电和恒压充电过程,零功率控制下的恒流充电第一次被提出。主电源恒流充电不同于普通的直流电源,它的工作负载范围非常宽,随着恒流充电过程的进行,电池端口电压是变换的。为了在较宽的负载范围内保证辅助电源一直处于零功率,这里对恒流充电下的零功率条件进行分析,并且通过实时采样实现零功率下的恒流充电。
[0003] 关于三端口全桥DC/DC变换器的零功率控制,一些文献给出了相关说明,如期刊《IEEE TRANSACTIONS ON POWER ELECTRONICS》2008年,第23卷,第五期,2443-2453页刊登题为“An Isolated Three-Port Bidirectional DC-DCConverter With Decoupled Power Flow Management”的论文(作者Chuanhong Zhao,Simon D.Round等人)首次给出了在不同储能元件之间,三端口不同端口之间的能量只在两个端口流动这种现象。
[0004] 关于三端口DC/DC变换器下的零功率电压控制,一些文献给出了相关说明,如期刊《IEEE TRANSACTIONS ON POWER ELECTRONICS》2012年,第27卷,第五期,2495-2506页刊登题为“Idling Port Isolation Control ofThree-PortBidirectional Converter for EVs”的论文(作者Sung Young Kim,Hong-Seok Song等人)首次给出了零功率控制下恒压充电的控制框图,并且进行建模和理论分析,提出将三端口DC/DC变换器作为电动汽车一体化充电器的想法,最后通过实验进行验证。
[0005] 南京航空航天大学的2014年硕士毕业论文,题为“三端口全桥变换器的优化零功率流”(作者蒋永福)的论文以三端口全桥为拓扑,提出了电压电流闭环的单移相控制方法,该方法是对零功率流端口采用电流闭环,输出端口仍然采用电压闭环。
[0006] 上述三种方法都是对输出端口采用电压闭环,对主电池进行恒压充电。但是典型的三段式充电需要进行恒流充电,在充电电流固定的情况下,主电池的电压是变换的,并不能对主电池采用电压闭环的控制方式。

发明内容

[0007] 本发明为了解决上述问题,提出了一种基于三端口全桥DC/DC变换器的零功率电流控制系统及方法,本发明通过实时采集主电池的输出电流得到主电池的移相角,通过实时采集主电源和主电池的电压,根据推导出的零功率公式实时计算隔离端口的移相角,能够满足三端口变换器对主电池进行恒流充电。
[0008] 为了实现上述目的,本发明采用如下技术方案:
[0009] 一种基于三端口全桥DC/DC变换器的零功率电流控制系统,包括三端口全桥变换器和控制器,其中:
[0010] 所述三端口全桥变换器,包括变压器和位于变压器原边的第一端口变换器和位于变压器副边的第二端口变换器和第三端口变换器,三个端口变换器的电路结构相同,均包括电源,电源两端并联有电容,通过全桥电路连接至变压器的线圈;
[0011] 所述第一端口变换器的电源向第三端口变换器的电源传递功率,所述第二端口变换器的电源为隔离电源,所述控制器通过采集三个端口变换器电源的电压、电流信息,控制三个端口变换器的全桥电路的开、断及移相角,使三端口全桥变换器实现零功率恒流充电。
[0012] 所述控制器通过电压调节器连接第二端口变换器,通过电流调节器连接第三端口变换器。
[0013] 所述第三端口变换器还连接有低通滤波器。
[0014] 基于上述系统的控制方法,具体步骤包括:
[0015] (1)在第三端口变换器对充电电流进行采样,将其与电流给定值进行比较,偏差经过电流调节器,获取电流闭环控制器的移相角,送至第三端口变换器控制其开关管;
[0016] (2)采集第一端口变换器和第三端口变换器的端口电压,计算得到基波分量,结合第三端口变换器的移相角,计算使得第二端口变换器传输功率等于零的参考电压;
[0017] (3)采集第二端口变换器的端口电压,控制器将其与计算的参考电压进行比较,得到第二端口变换器的移相角,控制第二端口变换器开关管的导通。
[0018] 所述步骤(2)中,因为基波功率近似于有功功率,为了便于分析,利用基波分量代替交流信号,确定三端口全桥变换器等效到原边的基波量。
[0019] 所述步骤(2)中,根据漏感电流在各个时刻都连续,得到任一端口变换器的电流的边界条件。
[0020] 所述步骤(2)中,对变压器交流侧的高频电压信号进行傅里叶变换。
[0021] 所述步骤(3)中,当第一端口变换器和第二端口变换器、第二端口变换器和第三端口变换器的传输功率相等时,第二端口变换器实现零功率。
[0022] 一种储能系统,包括如上述所述的基于三端口全桥DC/DC变换器的零功率电流控制系统。
[0023] 本发明的有益效果为:
[0024] (1)本发明通过实时采集主电池的输出电流得到主电池的移相角,通过实时采集主电源和主电池的电压,根据推导出的零功率公式实时计算隔离端口的移相角;
[0025] (2)本发明可用于航空航天、光伏发电等多储能系统中需要某一储能原件输出功率是零的同时对其余原件采用恒流充电。

附图说明

[0026] 图1为本发明的三端口全桥变换器的拓扑示意图;
[0027] 图2为本发明的稳态工作情况下的波形示意图;
[0028] 图3为本发明的充电模式下的零功率向量图;
[0029] 图4(a)为本发明的三端口全桥电路等效到原边的三角形简化电路图;
[0030] 图4(b)为本发明的三端口全桥电路等效到原边的星形电路图;
[0031] 图5为本发明的零功率下的恒流充电控制框图。具体实施方式:
[0032] 下面结合附图与实施例对本发明作进一步说明。
[0033] 为了满足三端口变换器对主电池进行恒流充电,本发明提出一种零功率下恒流充电控制策略,该控制策略用于三端口全桥DC/DC变换器,以图1给出了的拓扑为例。
[0034] 本发明通过实时采集主电池的输出电流得到主电池的移相角,通过实时采集主电源和主电池的电压,根据推导出的零功率公式实时计算隔离端口的移相角。
[0035] 三端口全桥变换器的拓扑以图1为例,C1-C3为端口1-3的电容。V1DC是主电源,可以是交流电源经过不控整流或功率因数校正(PFC)得到,V’2DC是辅助电源,V’3DC是主电池;L1,L’2,L’3代表了高频变压器的漏感电流;变压器三个端口之间的变比是1:n1:n2;v1,v'2,v'3代表了变压器交流侧的电压。下面的分析以端口1电源向端口3主电池传递功率,端口2辅助电源是隔离控制为例说明零功率电流控制。
[0036] 图2为稳态工作情况下的波形。v1-v3是变压器交流侧电压折算到原边的电压,v1=V1DC,v2=V’2DC/n2,v3=V’3DC/n3。vf1-vf3是v1-v3的基波分量。
[0037] 在图1给出了三端口的基本拓扑。基波功率约等于有功功率,为了便于分析,我们用基波量代替交流信号。图2给出了三端口全桥变换器等效到原边的基波量。如图4(a)、图4(b)所示,Y型等效电路便于建模分析,△型等效电路便于电路分析。其中,L2=L’2/n22,L3=L’3/n32和L△12=L1+L2+L1L2/L3,L△23=L2+L3+L2L3/L1,L△13=L1+L3+L1L3/L2。我们把基波分量用下式来表示
[0038]
[0039] 为了得到零功率控制,我们根据公式(1)可以得到图3的向量图
[0040]
[0041] 根据(1),使if2=0,我们得到零功率下端口2的矢量条件
[0042] 单移相控制被用来实现零功率控制,零 等于0, 和 代表了vf2和vf1与vf3和vf1之间的移相角。通过对变压器交流侧的高频电压信号进行傅里叶变换,我们可以得到各个端口间的传输功率见公式(2)。
[0043]
[0044] 只有在P21=P32的时候,端口2才会实现零功率。
[0045] 电路稳态工作状态下的工作波形见图2。根据电感每个周期内正负半周的安秒值平衡,可知通过漏感L△12,L△32,L△13的电流iL21,iL32,iL13在半个周期内是关于坐标轴对称的。所以我们只用分析图2中的I-III模式。在模式I:
[0046]
[0047] 模式I在 终止,在模式II:
[0048]
[0049] 模式II在 终止,在模式III:
[0050]
[0051] 根据漏感电流iL在各个时刻都是连续的,可得到任一组电流的边界条件。
[0052] 根据上述公式和图3,可以得到在移相控制下的端口2零功率的幅值和相位条件:
[0053]
[0054]
[0055] 根据公式(6),得到了零功率控制下的恒流充电控制框图以及零功率控制条件,如图5所示。
[0056] 该控制策略可用于三端口全桥变换器,变换器可以用于由输入直流源、输出端口辅助电源、主电源和高频变压器构成的多储能元件系统。该控制方法也可用于航空航天、光伏发电等多储能系统中需要某一储能原件输出功率是零的同时对其余原件采用恒流充电。
[0057] 2)采用单移相控制时,电路的控制信号的作用量是两个移相角,如图1所示,即端口2和端口1之间的移相角 端口3和端口1之间的移相角 为了与其他文章三端口的分析统一,我们令
[0058] 如图5所示,,零功率控制下的恒流充电的实现步骤如下:
[0059] 1)在端口3对充电电流I’3DC采样,通过低通滤波器LPF反馈,与电流给定值进行比较,偏差经过电流调节器,获取电流闭环控制器的移相角 送到端口3控制开关管。
[0060] 2)实时采集端口1和端口3的端口电压V1DC,V’3DC得出vf1,vf3。同时也采集移相角根据推导出的公式(6)实时计算使端口2传输功率等于零的电压参考。
[0061] 3)在端口2对电压V’2DC采样后经过调理电路,与端口2的参考电压进行比较,偏差通过电压调节器,得到端口2的移相角 控制开关管的导通。
[0062] 上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。