用于计算结构的电磁散射性质及用于估计其几何和材料参数的方法和装置转让专利

申请号 : CN201480064504.8

文献号 : CN105765463B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : M·皮萨伦科I·D·塞蒂贾

申请人 : ASML荷兰有限公司

摘要 :

在散射测量中,在迭代过程中使用包括正则化参数的评价函数来寻找用于测量的目标的散射性质的值。针对每个测量目标并且在迭代过程的每次迭代中获得正则化参数的最优值。可以使用多种方法来寻找正则化参数的值,方法包括偏差原理、卡方分布方法以及包括评价函数的偏差原理和包括评价函数的卡方分布方法的创新性修改。

权利要求 :

1.一种计算结构的电磁散射性质的方法,所述结构包括不同性质的材料并且所述结构在至少一个横向方向上是周期性的并且在相对于所述至少一个横向方向正交的方向上延伸,所述方法包括:测量从所述结构散射的辐射以获得测量数据;

提供所述结构的所述电磁散射性质的先验估计;

从所述测量数据导出正则化系数;

通过在辐射由所述结构散射的数学模型中使用所述散射性质的试验值和所述正则化系数来获得所述散射性质的估计;

通过参考评价函数来确定是否满足终止条件,所述评价函数的参数包括所述正则化系数和所述先验估计和所述散射性质的所述估计;以及如果不满足所述终止条件,迭代地重复获得预测数据和导出正则化系数直到满足所述终止条件;其中由最终迭代提供的新的试验值代表计算的所述电磁散射性质。

2.根据权利要求1所述的方法,其中导出正则化系数包括寻找给出评价函数的预定值的所述正则化系数的值。

3.根据权利要求2所述的方法,其中寻找所述正则化系数的值与获得所述散射性质的估计使用相同的评价函数。

4.根据权利要求2所述的方法,其中简洁评价函数被用来寻找所述正则化系数的值。

5.根据权利要求2、3或4所述的方法,其中所述预定值与所述测量数据中的数据点的数量相等。

6.根据权利要求2、3或4所述的方法,其中所述预定值与散射性质的数量相等。

7.根据权利要求1所述的方法,其中使用从由偏差原理、广义偏差原理、修改的偏差原理、变形的偏差原理和卡方分布原理、L-曲线、广义交叉验证(GCV)、无偏预测风险估计器、Regińska规则和归一化累积周期图(NCP)构成的组中选择的方法获得所述正则化系数的值。

8.根据权利要求1-4和7中的任一项所述的方法,其中寻找正则化参数包括寻找每个散射性质的正则化参数。

9.一种用于估计物体的结构的电磁散射性质的检查装置,所述检查装置包括:照射系统,被配置成利用辐射来照射所述物体;

检测系统,被配置成检测由所述照射引起的电磁散射性质;以及处理器,被配置成:

使用根据权利要求1到8中的任一项所述的方法估计所述电磁散射性质。

10.一种计算结构的电磁散射性质的设备,所述结构包括不同性质的材料并且所述结构在至少一个横向方向上是周期性的并且在相对于所述至少一个横向方向正交的方向上延伸,所述设备包括:用于测量从所述结构散射的辐射以获得测量数据的装置;

用于提供所述结构的所述电磁散射性质的先验估计的装置;

用于从所述测量数据导出正则化系数的装置;

用于通过在辐射由所述结构散射的数学模型中使用所述散射性质的试验值和所述正则化系数来获得所述散射性质的估计的装置;

用于通过参考评价函数来确定是否满足终止条件的装置,所述评价函数的参数包括所述正则化系数和所述先验估计和所述散射性质的所述估计;以及用于如果不满足所述终止条件,迭代地重复获得预测数据和导出正则化系数直到满足所述终止条件的装置;其中由最终迭代提供的新的试验值代表计算的所述电磁散射性质。

11.根据权利要求10所述的设备,其中导出正则化系数包括寻找给出评价函数的预定值的所述正则化系数的值。

12.根据权利要求11所述的设备,其中寻找所述正则化系数的值与获得所述散射性质的估计使用相同的评价函数。

13.根据权利要求11所述的设备,其中简洁评价函数被用来寻找所述正则化系数的值。

14.根据权利要求11所述的设备,其中所述预定值与所述测量数据中的数据点的数量相等。

15.根据权利要求11所述的设备,其中所述预定值与散射性质的数量相等。

16.根据权利要求10所述的设备,其中使用从由偏差原理、广义偏差原理、修改的偏差原理、变形的偏差原理和卡方分布原理、L-曲线、广义交叉验证(GCV)、无偏预测风险估计器、Regińska规则和归一化累积周期图(NCP)构成的组中选择的方法获得所述正则化系数的值。

17.根据权利要求10-16中的任一项所述的设备,其中寻找正则化参数包括寻找每个散射性质的正则化参数。

说明书 :

用于计算结构的电磁散射性质及用于估计其几何和材料参数

的方法和装置

[0001] 相关申请的交叉引用
[0002] 本申请要求2013年11月26日提交的欧洲申请13194521的权益,该申请以整体内容通过引用并入本文。

技术领域

[0003] 本申请涉及结构的电磁散射性质的计算及其几何和材料参数的估计。
[0004] 本发明例如可以应用在显微结构的测量中,例如评估光刻装置的临界尺寸(CD)性能。

背景技术

[0005] 光刻装置是一种将所需图案应用到衬底上、通常到衬底的目标部分上的机器。例如,可以将光刻装置用在集成电路(IC)的制造中。在那种情况下,图案形成装置,备选地被称为掩模或掩模版,可以被用于生成在IC的个体层上待形成的电路图案。可以将该图案转移到衬底(例如,硅晶片)上的目标部分(例如,包括一部分裸片、一个或多个裸片)上。通常,图案的转移经由把图案成像到衬底上提供的辐射敏感材料(抗蚀剂)层上。通常,单个衬底将包含被连续图案化的相邻目标部分的网络。已知的光刻装置包括:所谓的步进机,其中通过将整个图案一次曝光到目标部分上来辐射每一个目标部分;和所谓的扫描器,其中通过沿给定方向(“扫描”方向)通过辐射束扫描所述图案同时沿与该方向平行或反平行的方向同步地扫描衬底来辐射每一个目标部分。也可能通过将图案压印到衬底上的方式将图案从图案形成装置转移到衬底上。
[0006] 为了监测光刻工艺,需要测量图案化衬底的参数,例如形成在衬底上或衬底中的连续层之间的重叠误差。有许多技术用于测量在光刻工艺中形成的显微结构,包括使用扫描电子显微镜以及多种专用的工具。专用检查工具的一种形式是散射仪,其中辐射束被引导到衬底表面上的目标上,并且测量散射或反射束的性质。通过比较在束已经被衬底反射或散射之前和之后的束的性质,可以确定衬底的性质。这可以例如通过将反射束和在与已知的衬底性质相关的已知测量值的库中存储的数据进行比较来实现。已知两种主要类型的散射仪。光谱散射仪引导宽带辐射束到衬底上,并且测量散射到特定窄角度范围中的辐射的光谱(强度作为波长的函数)。角分辨散射仪使用单色辐射束并且测量作为角度的函数的散射辐射的强度。
[0007] 更一般地,能够将散射辐射与从结构的模型中数学上预测的散射行为对比(这些模型可以自由地建立和变化),直到预测的行为与观察到的来自实际样品的散射匹配,这将是有用的。对于1D周期性结构或2D周期性结构(例如,光栅)的CD重构,体积积分方法(VIM)可以被用来有效地计算相关散射问题的答案,如已经在美国专利申请公开号US2011/0218789 A1和美国专利申请公开号US2011/0098992 A1中公开的那样,通过引用将它们并入本文。如已经在US专利申请公开号US2013/0144560 A1中公开的那样,可以针对有限周期性结构而使用非周期性的RCWA。

发明内容

[0008] 在半导体处理的领域中期望快速地执行电磁散射性质的精确计算。
[0009] 根据本发明的第一方面,提供了一种计算结构的电磁散射性质的方法,结构包括不同性质的材料并且结构在至少一个横向方向上是周期性的并且在相对于该至少一个横向方向正交的方向上延伸,方法包括:测量从结构散射的辐射以获得测量数据;提供结构的电磁散射性质的先验估计;从测量的数据中导出正则化系数;通过在辐射由结构散射的数学模型中使用散射性质的试验值和正则化系数来获得散射性质的估计;通过参考评价函数来确定是否满足终止条件,评价函数的参数包括正则化系数和先验估计和散射性质的估计;以及如果不满足终止条件,迭代地重复获得预测数据和导出正则化系数直到满足终止条件;其中由最终迭代提供的新的试验值代表计算的电磁散射性质。
[0010] 根据本发明的第二方面,提供了一种用于估计物体的结构的电磁散射性质的检查装置,检查装置包括:被配置成利用辐射来照射物体的照射系统;被配置成检测由照射引起的电磁散射性质的检测系统;被配置成估计电磁散射性质的处理器。
[0011] 根据本发明的第三方面,提供了一种计算机程序产品,包含用于计算结构的电磁散射性质的一个或多个机器可读指令序列,指令被适配为使一个或多个处理器执行根据第一方面的方法。
[0012] 下文中将参照附图详细地描述本发明更多的特征和优点以及本发明各种实施例的结构和操作。注意,本发明不限于本文描述的具体的实施例。本文呈现的这些实施例仅仅是用于解释的目的。基于本文包含的教导,附加的实施例对本领域技术人员来说是显而易见的。

附图说明

[0013] 并入本文并且形成说明书的一部分的附图图示了本发明并且和说明书一起进一步用来说明本发明的原理,以使相关领域技术人员能够制作和使用本发明。
[0014] 图1描绘了光刻装置。
[0015] 图2描绘了光刻单元或簇。
[0016] 图3描绘了第一散射仪。
[0017] 图4描绘了第二散射仪。
[0018] 图5描绘了使用用于从散射仪测量来重构结构的本发明的实施例的示例过程。
[0019] 图6描绘了在生成合成的数据时使用的结构的模型。
[0020] 图7A和图7B针对一些合成的测量数据绘制了作为正则化系数的函数的成本函数F。
[0021] 通过结合附图的下文中阐述的详细描述,本发明的特征和优点将变得更加明显,其中同样的附图标记通篇标识对应的元件。在附图中,同样的附图标记一般指示相同、功能相似和/或结构相似的元件。

具体实施方式

[0022] 本说明书公开了一个或多个包含本发明特征的实施例。所公开的实施例仅给出本发明的示例。本发明的范围不限于所公开的实施例。本发明由所附的权利要求限定。
[0023] 所描述的实施例和在说明书提到的“一个实施例”、“实施例”、“示例实施例”等指示描述的实施例可以包括特定特征、结构或性质,但是,每个实施例可以不必包括特定的特征、结构或性质。而且,这些短语不必指的是同一个实施例。此外,当特定特征、结构或性质与实施例结合进行描述时,应该理解,无论是否明确描述,本领域技术人员所知的知识可以实现将特征、结构或性质与其他实施例的结合。
[0024] 本发明实施例可以在硬件、固件、软件或其任意组合中实施。本发明实施例还可以被实施成存储在机器可读介质上的指令,其可以被一个或多个处理器读取和执行。机器可读介质可以包括任何用于以机器(例如,计算设备)可读形式存储或传送信息的机制。例如,机器可读介质可以包括:只读存储器(ROM)、随机存取存储器(RAM)、磁盘存储媒介、光学存储媒介、闪存设备、传播信号(例如,载波、红外信号、数字信号等)的电、光、声或其他形式等。此外,这里可以将固件、软件、程序、指令描述成执行某些操作。然而,应该认识到,这些描述仅为了方便并且这些操作实际上由计算设备、处理器、控制器或其他执行固件、软件、程序、指令等的设备来完成。然而,在详细描述这些实施例之前,作为指引,先给出本发明的实施例可以在其中实施的示例环境。
[0025] 图1示意性地描绘了一种光刻装置。装置包括:照射系统(照射器)IL,其被配置成调节辐射束B(例如,UV辐射或DUV辐射);支撑结构(例如,掩模台)MT,其被构造成支撑图案形成装置(例如掩模)MA,并与被配置成根据某些参数精确地定位图案形成装置MA的第一定位器PM相连;衬底台(例如晶片台)WT,其被构造成保持衬底(例如涂覆有抗蚀剂的晶片)W,并与被配置成根据确定的参数精确地定位衬底W的第二定位器PW相连;和投影系统(例如,折射式投影透镜系统)PL,其被配置成将由图案形成装置MA赋予辐射束B的图案投影到衬底W的目标部分C(例如包括一个或多个裸片)上。
[0026] 照射系统可以包括各种类型的光学部件,诸如折射型、反射型、磁性型、电磁型、静电型或其他类型的光学部件或其任意组合,以引导、成形、或控制辐射。
[0027] 支撑结构支撑,即承载图案形成装置的重量。支撑结构以依赖于图案形成装置的方位、光刻装置的设计以及诸如例如图案形成装置是否保持在真空环境中的其他条件的方式保持图案形成装置。所述支撑结构可以采用机械的、真空的、静电的或其他夹持技术来保持图案形成装置。支撑结构可以是框架或台,例如,其可以根据需要成为固定的或可移动的。支撑结构可以确保图案形成装置位于所需的位置上(例如,相对于投影系统)。本文中术语“掩模版”或“掩模”的任意使用可以被认为与更一般的术语“图案形成装置”同义。
[0028] 本文所使用的术语“图案形成装置”应该被广义地理解为表示能够用于将图案在辐射束的横截面上赋予辐射束、以便在衬底的目标部分上形成图案的任何设备。应当注意,被赋予辐射束的图案可能不与在衬底的目标部分上的所需图案完全相符(例如,如果该图案包括相移特征或所谓的辅助特征)。通常,被赋予辐射束的图案将与在目标部分上产生的器件中的特定的功能层相对应,诸如集成电路。
[0029] 图案形成装置可以是透射式的或反射式的。图案形成装置的示例包括掩模、可编程反射镜阵列以及可编程LCD面板。掩模在光刻术中是公知的,并且包括诸如二元掩模类型、交替型相移掩模类型、衰减型相移掩模类型和各种混合掩模类型之类的掩模类型。可编程反射镜阵列的示例采用小反射镜的矩阵布置,每一个小反射镜可以独立地倾斜,以便沿不同方向反射入射的辐射束。倾斜的反射镜将图案赋予由反射镜矩阵反射的辐射束。
[0030] 本文使用的术语“投影系统”应该广义地解释为涵盖任意类型的投影系统,包括折射型、反射型、反射折射型、磁性型、电磁型和静电型光学系统、或其任意组合,如适于所使用的曝光辐射的、或适于诸如使用浸没液或使用真空之类的其他因素的。本文使用的术语“投影透镜”可以认为是与更一般的术语“投影系统”同义。
[0031] 如这里所示的,设备是透射型的(例如,采用透射式掩模)。替代地,设备可以是反射型的(例如,采用上文提到的类型的可编程反射镜阵列,或采用反射式掩模)。
[0032] 光刻装置可以是具有两个(双台)或更多衬底台(和/或两个或更多的掩模台)的类型。在这种“多台”机器中,可以并行地使用附加的台,或可以在一个或多个台上执行预备步骤的同时,将一个或多个其他台用于曝光。
[0033] 光刻装置还可以是这种类型,其中衬底的至少一部分可以由具有相对高的折射率的液体覆盖(例如水),以便填满投影系统和衬底之间的空间。浸没液体还可以施加到光刻装置中的其他空间,例如掩模和投影系统之间的空间。用于提高投影系统的数值孔径的浸没技术在本领域是熟知的。这里使用的术语“浸没”并不意味着必须将结构(诸如衬底)浸入到液体中,而仅意味着在曝光过程中液体位于投影系统和该衬底之间。
[0034] 参照图1,照射器IL接收来自辐射源SO的辐射束。该源和光刻装置可以是分立的实体(例如当该源为准分子激光器时)。在这种情况下,不会将该源SO看成形成光刻装置的一部分,并且通过包括例如合适的定向反射镜和/或扩束器的光束传递系统BD的帮助,辐射束从源SO传到照射器IL。在其他情况下,源SO可以是光刻装置的组成部分(例如当源SO是汞灯时)。可以将源SO和照射器IL、以及如果需要时设置的光束传递系统BD一起称作辐射系统。
[0035] 照射器IL可以包括用于调整辐射束的角强度分布的调整器AD。通常,可以对照射器的光瞳平面中的强度分布的至少外部和/或内部径向范围(一般分别称为σ-外部和σ-内部)进行调整。此外,照射器IL可以包括各种其他部件,诸如积分器IN和聚光器CO。可以将照射器用于调节辐射束,以在其横截面中具有所需的均匀性和强度分布。
[0036] 辐射束B入射到保持在支撑结构(例如,掩模台MT)上的图案形成装置(例如,掩模MA)上,并且通过图案形成装置MA被图案化。已经穿过掩模MA之后,辐射束B通过投影系统PL,投影系统将辐射束聚焦到衬底W的目标部分C上。通过第二定位装置PW和位置传感器IF(例如,干涉仪器件、线性编码器、2-D编码器或电容传感器)的帮助,可以精确地移动衬底台WT,例如以便将不同的目标部分C定位于辐射束B的路径中。类似地,例如在从掩模库的机械获取之后,或在扫描期间,可以将第一定位器PM和另一个位置传感器(图1中未明确示出)用于相对于辐射束B的路径精确地定位掩模MA。通常,可以通过形成第一定位器PM的一部分的长行程模块(粗定位)和短行程模块(精定位)的帮助来实现掩模台MT的移动。类似地,可以采用形成第二定位器PW的一部分的长行程模块和短行程模块来实现衬底台WT的移动。在步进机的情况下(与扫描器相反),掩模台MT可以仅与短行程致动器相连,或可以是固定的。可以使用掩模对准标记M1、M2和衬底对准标记P1、P2来对准掩模MA和衬底W。尽管所示的衬底对准标记占据了专用目标部分,但是它们可以位于目标部分C之间的空间(这些公知为划线对齐标记)中。类似地,在将多于一个的裸片设置在掩模MA上的情况下,掩模对准标记可以位于裸片之间。
[0037] 可以将描绘的设备用于以下模式中的至少一种中:
[0038] 1.在步进模式中,在将掩模台MT和衬底台WT保持为基本静止的同时,将赋予辐射束的整个图案一次投影到目标部分C上(即,单一的静态曝光)。然后将衬底台WT沿X和/或Y方向移动,使得可以对不同目标部分C曝光。在步进模式中,曝光场的最大尺寸限制了在单次的静态曝光中成像的目标部分C的尺寸。
[0039] 2.在扫描模式中,在对掩模台MT和衬底台WT同步地进行扫描的同时,将赋予辐射束B的图案投影到目标部分C上(即,单次动态曝光)。衬底台WT相对于掩模台MT的速度和方向可以通过投影系统PS的放大(缩小)和图像反转特征来确定。在扫描模式中,曝光场的最大尺寸限制了单次动态曝光中目标部分的宽度(沿非扫描方向),而扫描运动的长度确定了目标部分的高度(沿扫描方向)。
[0040] 3.在另一个模式中,将用于保持可编程图案形成装置的掩模台MT保持为基本静止,并且在对衬底台WT进行移动或扫描的同时,将赋予辐射束的图案投影到目标部分C上。在这种模式中,通常采用脉冲辐射源,并且在衬底台WT的每一次移动之后、或在扫描期间的连续辐射脉冲之间,根据需要更新可编程图案形成装置。这种操作模式可易于应用于利用可编程图案形成装置(例如,如上文提到的类型的可编程反射镜阵列)的无掩模光刻术中。
[0041] 也可以采用上文使用模式的组合和/或变体或完全不同的使用模式。
[0042] 如图2所示,光刻装置LA形成光刻单元LC的一部分(有时也称为光刻元或簇),光刻单元LC还包括用以在衬底上执行曝光前或曝光后处理的设备。通常,这些包括用以沉积抗蚀剂层的旋涂器SC、用以显影曝光后的抗蚀剂的显影器DE、激冷板CH和烘焙板BK。衬底处理器或机器人RO从输入/输出口I/O1、I/O2拾取衬底,在不同的处理设备之间移动衬底,并且将衬底传送到光刻装置的进料台LB。这些设备通常统称为轨道,受轨道控制单元TCU控制,而轨道控制单元本身由管理控制系统SCS控制,管理控制系统SCS还经由光刻控制单元LACU控制光刻装置。因而,可以运行不同的设备以最大化产量和加工效率。
[0043] 为了由光刻装置曝光的衬底被正确地并且一致地曝光,期望检查曝光后的衬底以便测量诸如连续的层之间的重叠误差、线厚度、临界尺寸(CD)等性质。如果检测到误差,可以对连续衬底的曝光进行调整(尤其是如果检验能够即刻完成或足够迅速到使同一批次的其他衬底仍处于将被曝光状态时)。已经曝光过的衬底也可能被剥离并被重新加工(以提高产率),或被遗弃,由此避免在已知存在缺陷的衬底上进行曝光。在衬底的仅仅一些目标部分存在缺陷的情况下,可以仅在完好的那些目标部分上执行进一步曝光。
[0044] 检查装置被用来确定衬底的性质,并且具体地,被用来确定不同的衬底的性质或相同的衬底的不同层的性质如何逐层地变化。检查装置可以被集成到光刻装置LA或光刻单元LC中,或可以是独立的装置。为了实现最迅速地测量,需要检查装置在曝光后立即测量在经过曝光的抗蚀剂层中的性质。然而,抗蚀剂中的潜像具有很低的对比度(在经过辐射曝光的抗蚀剂部分和没有经过辐射曝光的抗蚀剂部分之间仅有很小的折射率差),且并非所有的检查装置都具有足够的灵敏度来做出潜像的有效测量。因此,测量可以在曝光后的烘焙步骤(PEB)之后进行,曝光后的烘焙步骤通常是在经过曝光的衬底上进行的第一步骤并且增加抗蚀剂的经过曝光和未经曝光的部分之间的对比度。在该阶段,抗蚀剂中的图像可以被称为半潜的。也能够在抗蚀剂的已曝光部分或者未曝光部分已经被去除的点上,或者在诸如刻蚀等图案转移步骤之后,对经过显影的抗蚀剂图像进行测量。后一种可能性限制了对有缺陷的衬底的重新加工的可能性,但是仍然可以提供有用的信息。
[0045] 图3描绘了可以用在本发明的一个实施例中的散射仪。散射仪包括宽带(白光)辐射投影器2,投影器2将辐射投影到衬底W上。反射的辐射被传送到光谱仪检测器4,光谱仪检测器测量镜像反射的辐射的光谱10(强度作为波长的函数)。从该数据,引发检测到的光谱的结构或轮廓可以通过处理单元PU进行重构,例如,通常通过严格耦合波分析(RCWA)和非线性回归或者通过与如图3的下面所示的仿真光谱的库的对比来完成。通常,对于重构,结构的一般形式是已知的,并且一些参数从制作结构的工艺的知识来假定,仅留下一些结构参数从散射测量数据确定。这种散射仪可以被配置成作为正入射散射仪或斜入射散射仪。
[0046] 图4中示出可以用于本发明的实施例中的另一散射仪。在该设备中,由辐射源2发射的辐射使用透镜系统12通过干涉滤光片13和偏振器17聚焦,由部分反射表面16反射并经由具有高数值孔径(NA)(优选为至少0.9或更优选为至少0.95)的显微物镜15被聚焦到衬底W上。浸没散射仪甚至可以具有数值孔径大于1的透镜。随后,被反射的辐射透射通过部分反射表面16进入检测器18以便使散射光谱被检测。检测器可以位于背投影光瞳平面11中,其位于透镜系统15的焦距上,然而,光瞳平面可以替代地用辅助光学元件(未示出)重新成像到检测器上。光瞳平面是其中辐射的径向位置限定入射角并且角位置限定辐射的方位角的平面。检测器优选为二维检测器,使得可以测量衬底目标30的二维角散射光谱。检测器18可以是例如CCD或CMOS传感器的阵列,并且可以使用例如40毫秒每帧的积分时间。
[0047] 参考束通常例如被用于测量入射辐射的强度。为此,当辐射束入射到分束器16上时,辐射束的一部分透射通过分束器作为朝向参考反射镜14的参考束。随后参考束被投影到相同的检测器18的不同部分上。
[0048] 一组干涉滤光片13可用于选择在例如405-790nm甚至更短的(诸如,200-300nm)范围内的感兴趣的波长。干涉滤光片可以是可调的,而不是包括一组不同的滤光片。可以使用光栅代替干涉滤光片。
[0049] 检测器18可以测量单波长(或窄的波长范围)下的散射光的强度、分别在多个波长下的强度或者在波长范围上的积分强度。此外,检测器可以单独地测量横磁偏振光和横电偏振光的强度和/或横磁偏振光和横电偏振光之间的相位差。
[0050] 使用宽带光源(即,具有宽的光频率范围或光波长范围的光源并且因而是彩色的)是可能的,这种光源给出大的集光率,这允许多个波长的混合。优选地,宽带中的多个波长每一个具有Δλ的带宽和至少2Δλ的间隔(即带宽的两倍)。几个辐射的“源”可以是已经使用光纤束被分离开的扩展辐射源的不同部分。以该方式,可以并行地测量多个波长处的角分辨散射光谱。可以测量比2D光谱包含更多信息的3D光谱(波长和两个不同的角度)。这允许测量更多的信息,提高测量工艺的鲁棒性。这在EP1,628,164A中进行了详细描述。
[0051] 衬底W上的目标30可以是光栅,其被印刷使得在显影后,由实心抗蚀剂线形成栅条。备选地,这些栅条可以被蚀刻到衬底中。该图案对光刻投影设备中的色差敏感,尤其是投影系统PL中的色差敏感,并且照射对称性和这种像差的存在将在印刷的光栅中的变化中显示出来。因此,印刷的光栅的散射测量数据被用来重构光栅。来自印刷步骤和/或其他散射测量工艺的知识的光栅的参数,例如线宽和形状,可以被输入到由处理单元PU执行的重构工艺中。
[0052] 建模
[0053] 如上文所描述的,目标在衬底的表面上。该目标将通常形成为光栅中一系列线的形状或二维阵列中的基本上矩形结构。严格的光学衍射理论在测量中的目的在于有效地计算由目标反射的衍射光谱。换句话说,针对CD(临界尺寸)一致性和重叠测量而获得目标形状信息。重叠测量是一种测量系统,其中测量两个目标的重叠以便确定衬底上的两个层是否对准。CD一致性仅是光栅在光谱上的一致性的测量以确定光刻装置的曝光系统是如何工作的。具体地,CD或临界尺寸是被“写入”在衬底上的物体的宽度并且是光刻装置物理上能够写入在衬底上的极限。
[0054] 使用与诸如目标30的目标结构及其衍射性质的建模相结合的上文描述的散射仪中的一个散射仪,可以以众多的方式执行结构的形状和其他参数的测量。在第一种类型的过程中,基于目标形状的第一估计的衍射图案(第一候选结构)被计算并且与观测的衍射图案相比较。然后,模型的参数被系统地变化并且以一系列的迭代重计算衍射,以生成新的候选结构并且因此达到最佳的匹配。在第二种类型的过程中,提前计算用于许多不同候选结构的衍射光谱以产生衍射光谱的“库”。然后,从测量目标观测的衍射图案与计算的光谱的库相比较以找到最佳的匹配。可以一起使用两个方法:可以从库中获得粗匹配,随后通过迭代过程找到最佳匹配。
[0055] 在结构的重构的实际实施例中,结构由诸如尺寸和光学性质的有限数量的参数限定。例如,结构可能被限定成多个层(也被称为堆叠)并且参数包括每层的厚度、宽度、折射率和消光系数。这些参数中的一些(例如,光学参数)可能是公知的并且在模型中被当作常数。其他参数待定并且被当作变量。这些变量有时也被称为“浮数”(float)。变量的数量可能是5到10的数量级。正则化方法允许浮数的数量增加到20及以上。
[0056] 同时,散射仪捕捉的图像可能具有大量的像素,例如2000或更多,像素中的每个是数据点,通过数据点,预测的光谱或光瞳图像可以与测量的光谱或光瞳图像相比较。匹配问题(寻找与测量的信号相匹配的预测的信号)因此是超定的。存在匹配过程将拟合信号中的噪声而不是潜在的参数的危险。因此,期望正则化匹配问题。术语“正则化”指引入附加的信息以便解决不适定的问题或防止过拟合的过程。
[0057] 作为正则化的示例,正则化系数α和先验估计pa被引入到非线性评价函数 中,如下:
[0058]
[0059] 其中G是前向衍射模型、p是浮动参数的向量、f是测量的信号、 指利用噪声协方差矩阵对数据残差加权以及pa是先验参数向量,即,参数的可能值的先验估计。操作符||..||代表欧几里德范数。评价函数也可以被称作成本函数。在本发明的实施例中,该评价函数被用来寻找最小化F的值的参数p的估计值。
[0060] 然而,对于这种被称为Tikhonov正则化的正则化方法,为了获得改善的结果,必须使用正则化系数α和先验估计的合适的值。在之前提出的方法中,基于用来制作被测量的结构的光刻工艺的知识提前估计先验估计以及在它周围的值的可能范围。然后,从先验估计和范围中导出正则化参数。该过程需要来自熟练的操作员的手动输入和显著的计算资源。方法在离线(例如,提前)执行,并且结果被应用到从一个或多个衬底取得的一组测量。
[0061] 在本发明的实施例中,对每个测量计算了正则化系数α的值。需要解n阶多项式来计算α。在本发明的实施例中可以使用几种不同的方法来确定正则化系数的合适的值。它们之中有偏差原理[1]、广义偏差原理[2,P.52]、修改的偏差原理[3]、变形的偏差原理[4]和卡方分布原理[5]。所有这些方法都依赖关于噪声模型ΔfN的一些信息。不需要该信息的其他参数选择方法有L-曲线[6,7]、广义交叉验证(GCV)[8,9]、无偏预测风险估计器(UPRE)[10]、Regińska规则[11]和归一化累积周期图(NCP)[12,13]。在下文更详细地描述了在本发明的实施例中使用偏差原理、卡方分布原理方法和这些方法的创新修改。
[0062] 图5图示了本发明的实施例。对该描述,将假定目标是一维(1-D)结构。实际上,它可能是二维的并且处理将相应地被适配。
[0063] 在步骤501中,建立了定义目标结构关于多个参数pi(p1、p2、p3等等)的参数化模型的模型菜单G。这些参数代表结构的散射性质,例如在1D周期性结构中的侧壁的角度、特征的高度或深度、特征的宽度。目标材料和下面的层的性质也由诸如折射率(在散射测量辐射束中的特定波长出现)代表。重要地,虽然目标结构可以通过描述它的形状和材料性质的许多参数定义,然而模型菜单将这些中的许多参数定义成具有固定值,而为了以下过程步骤,其他参数将是变量或‘浮动’参数。浮动参数被统称为向量p。
[0064] 在步骤502中,基于用来产生结构的工艺的知识获得参数的值的初始估计。惯例通(k) (0)过上标表示迭代次数:p =p 。将在预定的范围内生成对浮动参数的每个初始估计。这些统称为pa。
[0065] 在步骤503中,做出关于正则化是否被应用在参数值的确定中的决定。如果是,那么在步骤504,做出关于一组正则化系数α的设置值是否将被使用的进一步决定,如果是,在步骤505,执行本领域公知的离线计算。如果否,在步骤506中设置标记以指示正则化系数α将在参数值的确定期间被计算,这在下文中被称为在线正则化。
[0066] 在步骤507中,使用散射仪(诸如,上文描述的那些中的一个)测量衍射图案来给出测量结果f。该测量的衍射图案被转发到诸如计算机的计算系统。计算系统可以是上文提及的处理单元PU或者它可以是分离的装置。
[0067] 在步骤508中,确定标记是否被设置以指示将使用在线正则化,以及如果是,那么在步骤509中计算正则化系数α的值。在下文描述用于计算正则化系数α的方法。如将在下文描述的,用来确定参数值的过程是迭代的过程并且步骤508和步骤509在迭代的循环内使得当执行在线正则化时,在每次迭代中计算正则化系数α的值。
[0068] 在步骤510中,使用G、α、f和pa获得用于评价函数F的值。如果正在执行在线正则化,那么使用在步骤509的最近迭代中计算的正则化系数α的值。如果使用离线正则化,那么在每次迭代中使用在步骤505中确定正则化系数α的值。如果没有正则化将被使用,那么正则化系数α被设置成0。为了获得用于评价函数F的值,代表估计的形状的参数与模型的不同的元件的光学性质一起被用来计算散射性质,例如,使用诸如RCWA或麦克斯韦方程的任何其他求解器的严格光学衍射方法。这给出了估计的目标形状的估计或模型衍射图案,该衍射图案通过评价函数与测量的衍射图案相比较。
[0069] 可以以多种形式表达在510处计算的估计或模型衍射图案。如果以与测量的图案相同的形式表达计算的图案,那么比较是实际的。例如,模型化的光谱可以轻易地与通过图3的装置测量的光谱相比较,模型化的光瞳图案可以轻易地与通过图4的装置测量的光瞳图案相比较。基于该比较,设置用于估计的形状的新值并且在迭代过程中重复评价函数的计算。为了帮助搜索,在步骤510中的计算可以进一步生成评价函数的偏导,该偏导指示在参数空间的该特定区域中增加或降低参数将增加或降低评价函数的敏感度。评价函数的计算和导数的使用在本领域中是公知的,并且在这里将不详细地描述。
[0070] 如果在步骤511中确定满足终止条件,该终止条件指示迭代过程已经收敛在具有期望精度的解上,例如,评价函数的值或者评价函数的导数低于阈值,那么 被输出为浮动参数的确定的值。如果否,执行另一迭代。该迭代过程的计算时间很大程度上由所使用的前向衍射模型确定,即从估计的目标结构出发、使用严格光学衍射理论的估计的模型衍射图案的计算。如果需要更多的参数,那么会有更多的自由度。原理上,计算时间与浮动参数的数量或者与谐波的数量的三次方成比例地增加。
[0071] 可以如上文提到的那样使用用于确定正则化系数α的值的各种方法。下文描述了偏差原理、卡方分布方法以及对其的创新性变化(在本文中被称为简洁偏差原理和简洁卡方分布方法)的使用。
[0072] 在用来确定参数的迭代高斯-牛顿过程中,方程(1)中的非线性运算符G通过它的导数、雅克比行列式JG近似,并且因此解出了以下线性方程:
[0073]
[0074] 其中
[0075] Δf=f-G(p(k))+JG(p(k))p(k)    (3)
[0076] 除正则化系数α以外,该评价函数中的一切是已知的。我们求解作为未知α的函数的浮动参数,给出:
[0077]
[0078] 鉴于该解,偏差原理声明最优的正则化系数α是满足如下等式的值:
[0079]
[0080] 其中m是数据点的数量,例如,由散射仪捕获的光谱或者光瞳图像中的像素的数量。
[0081] 卡方分布方法给出略微不同的值,如下:
[0082]
[0083] 方程(5)和方程(6)是非线性方程,可以使用标准牛顿方法求解。作为正则化系数α的开始值,可以使用来自之前迭代的值或者对于第一次迭代,可以从10-1到103的宽范围中选择。方程(5)和方程(6)的求解不是计算昂贵的。在本发明的实施例中可以使用两个方程中的任一种。在步骤510中的评价函数F的计算中使用正则化系数α的值。
[0084] 在m>>n(n是浮动参数的数量)的情况中(这对散射测量通常是真实的),测量中的噪声意味着曲线 和 具有随机的性质。在 变化并且在一些情况中,方程5和方程6可能没有解。在那种情况下,可以使用简洁偏差原理和简洁卡方分布方法。
[0085] 根据简洁偏差原理和简洁卡方分布方法,奇异值分解(SVD)被用来减少数据点m的数量。
[0086] 使用该方法,方程(1)的评价函数的最小化的解,即 的α的值可以被写成:
[0087]
[0088] 其中 是JG的转置并且I是单位矩阵。如果我们使用散射运算符的SVD[0089] JG=USVT   (8)
[0090] 其中U是在像素空间中的奇异向量的矩阵(m×m),S是奇异值矩阵以及VT是参数空间中的奇异向量的矩阵(n×n)的转置,我们可以将方程(7)改写成
[0091]
[0092] 其中我们引入了归一化变量
[0093] x≡VTp   (10)
[0094] 因为方程(9)的左手边处的矩阵是对角矩阵,所以我们对 的分量可以分别求解,使得
[0095]
[0096] 其中V-,i是V的列向量。
[0097] 我们现在具有方程(1)关于已知的测量的信号f和已知的先验向量pa和未知的正则化系数α的最小化的解。
[0098] 使用方程(11)中的解,导出作为α的函数的数据残差的表达式:
[0099]
[0100] 在信号空间的本征模式的正交性导出对数据剩余的范数的表达式:
[0101]
[0102] 噪声被包含在模式(n+1)→m中。随着α变到0,具有模式1→n的项变到0。因此,正则化系数的最优值可以从分别代表简洁偏差原理和简洁卡方分布方法的以下方程中的任一方程获得:
[0103]
[0104]
[0105] 在实施例中,可以针对每个浮动参数导出正则化系数α。在这种情况中,正则化系数α被以上方程中的对角矩阵代替。
[0106] 现在参考着图6和图7描述简洁偏差原理或简洁卡方分布方法的使用是合适的情况的示例。图6描绘了待使用散射测量来测量的光栅结构的线的模型。图6中的阴影的不同样式代表如在符号说明中指示的不同的折射率。光栅由在底部抗反射涂层(BARC)上的抗蚀剂线形成,底部抗反射涂层之下是Si衬底上的SiN层。在结构的数学模型中,允许浮动的参数是抗蚀剂线的高度、抗蚀剂线在其基底的宽度(底部CD)、抗蚀剂线在其顶部的宽度(顶部CD)、底部抗反射涂层的高度、SiN层的高度和SiN层的折射率。在一些情况中也可以允许硅层的折射率和消光系数k浮动。为了评估本发明的有效性,生成合成数据组,其包括基于具有添加的噪声的正确的预测的50个仿真测量。
[0107] 图7A和图7B(图7B是具有增加的垂直刻度的图7A的部分放大)针对作为α的函数的评价函数F(方程1)的每个测量而绘制。如可以从图7B中看出的,针对很多情况,评价函数S曲线与指示数据点(2208)的数量的线不交叉,并且对于该级别的所施加的噪声,优选使用简洁偏差原理和简洁卡方分布方法的方法。
[0108] 可以通过在参考着图3和图4描述的处理单元PU上实施本文描述的方法来实施本发明的实施例,以提供用于重构物体的近似结构的检查装置。
[0109] 参考着图3和图4描述的处理器可以受包括用于计算结构的电磁散射性质的机器可读指令的一个或多个计算机程序的序列控制下操作,指令被适配以使一个或多个处理器来执行本文描述的方法。
[0110] 虽然在本文中对在制造IC(集成电路)中的检查装置使用做出了参考,但是应该理解到本文描述的检查装置可以有其他应用,诸如集成光学系统的制造、磁畴存储器的引导和检测图案、平板显示器、液晶显示器(LCD)、薄膜磁头等。本领域技术人员应该认识到,在这种替代应用的情况中,可以将这里使用的任何术语“晶片”或“裸片”分别认为是与更上位的术语“衬底”或“目标部分”同义。本文所指的衬底可以在曝光之前或之后进行处理,例如在轨道(一种典型地将抗蚀剂层施加到衬底上,并且对已曝光的抗蚀剂进行显影的工具)、测量工具和/或检验工具中。在可应用的情况下,可以将公开内容应用于这种和其他衬底处理工具中。另外,衬底可以处理一次以上,例如为产生多层IC,使得这里使用的术语“衬底”也可以表示已经包含多个已处理层的衬底。
[0111] 虽然上面对在光学光刻的情况中的本发明的实施例的应用做出了参考,但是应该理解,本发明可以在其他的应用中使用,例如压印光刻,并且只要情况允许,不局限于光学光刻。在压印光刻中,图案形成装置中的拓扑限定了在衬底上产生的图案。可以将图案形成装置的拓扑印刷到提供给衬底的抗蚀剂层中,在其上通过施加电磁辐射、热、压力或其组合来使抗蚀剂固化。在抗蚀剂固化之后,图案形成装置从抗蚀剂上移走,并在抗蚀剂中留下图案。
[0112] 这里使用的术语“辐射”和“束”涵盖全部类型的电磁辐射,包括:紫外(UV)辐射(例如,具有约365、355、248、193、157或126nm的波长)和极紫外(EUV)辐射(例如具有5-20nm范围的波长),以及粒子束,例如离子束或电子束。
[0113] 在允许的情况下,术语“透镜”可以表示不同类型的光学部件中的任何一种或其组合,包括折射式的、反射式的、磁性的、电磁的以及静电的光学部件。
[0114] 术语“电磁”涵盖电和磁。
[0115] 术语“电磁散射性质”涵盖反射和透射系数并且散射测量参数包括光谱(例如强度作为波长的函数)、衍射图案(强度作为位置/角度的函数)以及横磁偏振光和横电偏振光的相对强度和/或横磁偏振和横电偏振光之间的相差。衍射图案本身可以例如使用反射系数计算。
[0116] 因此,虽然本发明的实施例描述了反射散射的情形,但是本发明还可以应用于透射散射。
[0117] 尽管以上已经描述了本发明的具体实施例,但应该认识到,本发明可以以与上述不同的方式来实现。例如,本发明可以采用包含用于描述一种如上文公开的方法的一个或多个机器可读指令的序列的计算机程序的形式,或具有存储其中的计算机程序的数据存储介质(例如半导体存储器、磁盘或光盘)的形式。
[0118] 应该认识到,具体实施例部分而不是发明内容和摘要部分旨在用于解释权利要求。发明内容和摘要部分可以阐述一个或多个、但并不是发明人预期的所有的本发明的示例性实施例,并且因此并不旨在以任何方式限制本发明和所附的权利要求。
[0119] 本发明已经借助示出其具体的功能和关系的功能构造块进行了描述。为了便于描述,这些功能性构造模块的边界在本文被随意地限定。可以限定替换的边界,只要正确地执行其具体的功能和关系。
[0120] 具体实施例的上述描述将充分反映本发明总的构思,使得通过应用本领域技术人员所掌握的常识,不需要过度的试验,在不脱离本发明的总的构思的情况下,可以容易地修改和/或适应这些具体实施例的不同应用。因此,基于本公开的教导和指导,这些适应和修改应该在所公开的实施例的等同物的意义和范围内。应该理解,这里的措辞和术语是为了描述而不是为了限制,使得本发明说明书的措辞和术语由本领域技术人员根据教导和指导进行解释。
[0121] 本发明的宽度和范围不应当由上面的示例性实施例任一个限制,而应当仅根据权利要求以及等价物限定。
[0122] 参考文献
[0123] [1]V.A.Morozov.On the solution of functional equations by the method of regularization.Soviet Math.Dokl.,7:414–417,1966.
[0124] [2]V.A.Morozov.Methods for  Solving  Incorrectly  Posed Problems.Springer,softcover reprint of the original 1st ed.1984 edition,November 1984.
[0125] [3]Heinz W.Engl and Helmut Gfrerer.A posteriori parameter choice for general regularization methods for solving linear ill-posed problems.Applied Numerical Mathematics,4(5):395–417,July 1988.
[0126] [4]U. and T.Raus.On  the choice of the regularization parameter in ill-posed problems with approximately given noise level of data.Journal of Inverse and Ill-posed Problems,14(3):251–266,May 2006.[0127] [5]J.L.Mead.A priori weighting for parameter estimation.Journal of Inverse and Ill-posed Problems,16(2):175–193,January 2008.
[0128] [6]Charles L.Lawson and Richard J.Hanson.Solving Least Squares Problems(Classics in Applied Mathematics).Society for Industrial and Applied Mathematics,January 1987.
[0129] [7]P.C.Hansen.The L-Curve and its Use in the Numerical Treatment of Inverse Problems.
[0130] In  in Computational Inverse Problems in Electrocardiology,ed.P.Johnston,Advances in Computational Bioengineering,volume 4,pages 119–142,2000.
[0131] [8]G.Wahba.Practical Approximate Solutions to Linear Operator Equations When the Data are Noisy.SIAM Journal on Numerical Analysis,14:651–667,September 1977.
[0132] [9]Gene H.Golub,Michael Heath,and Grace Wahba.Generalized Cross-Validation as a Method for Choosing a Good Ridge Parameter.Technometrics,21(2):215–223,1979.
[0133] [10]C.L.Mallows.Some Comments on C p.Technometrics,15(4):661–675,November 1973.
[0134] [11]Teresa Regińska.A Regularization Parameter in Discrete Ill-Posed Problems.SIAM Journal on Scientific Computing,17(3):740–749,May 1996.[0135] [12]P.C.Hansen,M.E.Kilmer,and R.H.Kjeldsen.Exploiting Residual Information in the Parameter Choice for Discrete Ill-Posed Problems.BIT Numerical Mathematics,46(1):41–59,2006.
[0136] [13]Bert W.Rust and Dianne P.O’Leary.Residual periodograms for choosing regularization parameters for ill-posed problems.Inverse Problems,24(3):034005+,June 2008.