一种同步去除废水氨氮和磷酸根的沸石改性方法转让专利

申请号 : CN201610174765.6

文献号 : CN105797679B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 吴智仁徐畅陈园园谢菁蒋素英

申请人 : 江苏艾特克环境工程设计研究院有限公司艾特克控股集团股份有限公司江苏大学

摘要 :

本发明提供了一种同步去除废水氨氮和磷酸根的沸石改性方法,其具体步骤如下:先用蒸馏水将适量粒径为30~50μm的待改性天然沸石进行3~4次冲洗,并烘干;用NaOH溶液和MgCl2溶液依次对步骤1)所得的沸石进行恒温浸泡、烘干,放入马弗炉进行焙烧,冷却备用;将聚乙烯吡咯烷酮、聚醚砜、二甲基乙酰胺混合搅拌,待完全溶解,加入步骤2)所得沸石,继续搅拌使其分散均匀,其中,聚乙烯吡咯烷酮占混合液总质量的1~4%,聚醚砜占混合液总质量的3~5%,二甲基乙酰胺占混合液总质量的25~35%,沸石占混合液总质量的60~70%;将步骤3)所得混合液缓慢滴入自来水或蒸馏水中,固化形成胶态状颗粒,100~200°C烘干得改性沸石颗粒产品。本发明制备的改性沸石对氨氮及磷酸根的吸附能力得到了提升。

权利要求 :

1.一种同步去除废水氨氮和磷酸根的沸石改性方法,其特征在于,所述的方法的具体步骤如下:

1)先用蒸馏水将适量粒径为30 50μm的待改性天然沸石进行3 4次冲洗,并烘干;

~ ~

2)用NaOH溶液和MgCl2溶液依次对步骤1)所得的沸石进行恒温浸泡、烘干,放入马弗炉进行焙烧,冷却备用;

3)将聚乙烯吡咯烷酮、聚醚砜、二甲基乙酰胺混合搅拌,待完全溶解,加入步骤2)所得沸石,继续搅拌使其分散均匀,得到混合液;其中,聚乙烯吡咯烷酮的重量占混合液总重量的1 4%,聚醚砜的重量占混合液总重量的3 5%,二甲基乙酰胺的重量占混合液总重量的25~ ~ ~

35%,沸石的重量占混合液总质量的60 70%;

~

4)将步骤3)所得混合液缓慢滴入自来水或蒸馏水中,固化形成胶态状颗粒,100 200℃ ~烘干得改性沸石颗粒产品。

2.根据权利要求1所述的同步去除废水氨氮和磷酸根的沸石改性方法,其特征在于,所述的步骤1)中,烘干温度为40 50℃ 。

~

3.根据权利要求1所述的同步去除废水氨氮和磷酸根的沸石改性方法,其特征在于,所述的步骤2)中,NaOH溶液的浓度为0.5~3mol/L,MgCl2溶液的浓度为1~2mol/L,浸泡温度为

60 120℃ ,浸泡时间5 8h,烘干温度为100-110℃ 。

~ ~

4.根据权利要求1所述的同步去除废水氨氮和磷酸根的沸石改性方法,其特征在于,所述的步骤2)中,马弗炉焙烧温度为400 600℃ ,焙烧时间为0.5 2h。

~ ~

5.根据权利要求1所述的同步去除废水中氨氮和磷酸根的沸石改性方法,其特征在于,改性沸石颗粒产品粒径为2-5mm。

说明书 :

一种同步去除废水氨氮和磷酸根的沸石改性方法

技术领域

[0001] 本发明属于废水处理技术领域,具体涉及一种同步去除废水氨氮及磷酸根的沸石改性方法。本发明中涉及的沸石改性技术,能够使改性后的沸石同时具有高效去除废水中氨氮、磷酸根的作用,对提升生物脱氮除磷效果具有十分重要的意义。

背景技术

[0002] 经济的快速发展给人类带来巨大经济效益的同时,大量生活污水、工业废水的排放给环境造成了严重的污染,其中氮磷超标成为最突出的问题之一,如何实现废水同步脱氮除磷已成为废水处理领域亟待解决的问题。废水中氮的形态主要为氨氮、硝态氮,磷的形态主要是磷酸盐,因此脱氮除磷的关键是去除以上三种形式的氮、磷。目前,脱氮除磷的方法以生化处理方法为首,这种方法最为经济,但其周期较长,对环境依赖性强,且生物脱氮除磷工艺较为繁琐。近几年,开始出现将吸附材料与生化处理工艺结合的处理方法,利用不同吸附材料对氨氮、磷酸根吸附能力,增强生物脱氮除磷效果。
[0003] 目前,天然沸石因成本低、比表面积大成为最常用的氨氮吸附材料,但由于沸石结构表面带负电荷,不能有效吸附阴离子污染物。据相关专利文献报道,将沸石与镁、铝盐以一定的比例混合搅拌,并用氢氧化钠溶液调节其pH值为10左右,搅拌改性并进行高温焙烧可明显提高其对磷酸根吸附性能,或者先用氢氧化钠溶液和镁盐溶液分别在80 100°C浸泡~天然沸石3 5h,再烘干进行高温焙烧可提高对磷酸根吸附性能,但同时氨氮吸附性能受到~
负面影响,可见现有的改性方法无法同时兼顾氨氮、磷酸根的高效吸附性能。
[0004] 针对以上情况,本发明提出一种同步去除废水氨氮和磷酸根的沸石改性方法,并将得到的改性沸石材料用于深度脱氮除磷工艺中进行了氨氮及磷污染物吸附试验,验证了该改性材料的高效吸附性,为生物工艺进行同步脱氮除磷及其工程应用奠定了良好的基础。

发明内容

[0005] 本发明的目的在于克服现有沸石改性方法的不足,提供一种同步去除废水氨氮和磷酸根的沸石改性方法,能够使改性后的沸石同时具有高效去除废水中氨氮、磷酸根的效能,增强生物脱氮除磷效果,简化现有生化脱氮除磷技术的工艺设备,节省运行成本,对废水脱氮除磷治理具有十分重要的意义。
[0006] 具体来说,本发明采用了以下技术方案:
[0007] 一种同步去除废水氨氮和磷酸根的沸石改性方法,其具体步骤如下:
[0008] 1)先用蒸馏水将适量粒径为30 50μm的待改性天然沸石进行3 4次冲洗,并烘干;~ ~
[0009] 2)用NaOH溶液和MgCl2溶液依次对步骤1)所得的沸石进行恒温浸泡、烘干,放入马弗炉进行焙烧,冷却备用;
[0010] 3)将聚乙烯吡咯烷酮、聚醚砜、二甲基乙酰胺混合搅拌,待完全溶解,加入步骤2)所得沸石,继续搅拌使其分散均匀,得到混合液;其中,聚乙烯吡咯烷酮的重量占混合液总重量的1 4%,聚醚砜的重量占混合液总重量的3 5%,二甲基乙酰胺的重量占混合液总重量~ ~的25 35%,沸石的重量占混合液总质量的60 70%;
~ ~
[0011] 4)将步骤3)所得混合液缓慢滴入自来水或蒸馏水中,固化形成胶态状颗粒,100~200°C烘干得改性沸石颗粒产品;
[0012] 优选地,
[0013] 所述的步骤1)中,蒸馏水水洗烘干温度40 50°C。~
[0014] 所述的步骤2)中,NaOH溶液的浓度为0.5 3mol/L,MgCl2溶液的浓度为1 2mol/L,~ ~浸泡温度为60 120°C,浸泡时间5 8h,烘干处理温度100 110°C。马弗炉焙烧温度为400~ ~ ~ ~
600°C,焙烧时间为0.5 2h。
~
[0015] 所述的步骤4)中,改性沸石颗粒产品粒径2 5mm。~
[0016] 本发明所制备的改性沸石对废水中氨氮及磷污染物的去除效果很好。研究结果表明,在待处理废水中氨氮浓度约为25mg/L、总磷浓度约8mg/L,改性沸石浓度为10g/L,磁力搅拌吸附时间1.5h的条件下,氨氮和总磷的剩余浓度分别为3 5mg/L、0.03 0.1mg/L。此外,~ ~该改性沸石在深度脱氮除磷工艺应用中具有良好的再生效果,高效协同去除总氮。
[0017] 本发明的技术原理是:
[0018] 天然沸石本身具有强吸附、强离子交换性、耐高温腐蚀等特性,但其吸附对象局限性大。一般沸石只对氨氮吸附效果较佳,大量文献验证了沸石经有效途径改性后可提高其对磷酸根的去除,但同时会大幅降低氨氮的吸附效果。如果利用沸石的强吸附性能,将镁离子牢固吸附在沸石粉末表面并水解形成水合镁,并进行适当的高温焙烧,去除孔道杂质,增加对磷酸根的吸附效果。再将改性后的沸石粉通过相转化的方法形成沸石颗粒球,该方法可使沸石球呈不规则多孔结构,同时提高其对氨氮和磷酸根的吸附效果。此外,多孔沸石颗粒球结构,在脱氮除磷工艺沉淀阶段易于沉降,不易流失,可回收进行氨氮吸附脱附应用,明显降低水处理工艺的运行成本,对提升废水生物脱氮除磷效果具有十分重要的意义。
[0019] 本发明的方法具有如下技术效果:利用本发明的方法得到的改性沸石颗粒制备过程较简单且环保,在充分考虑沸石的反复利用问题上,降低了在实际工程运用中的成本,且相较于一般沸石,改性沸石对氨氮及磷酸根的吸附能力得到了大大的提升,在废水深度脱氮除磷工艺应用中表现出以下几种优势:(1)对氨氮和磷酸根吸附效果好,相较于原有的天然沸石,该沸石对氨氮及磷污染物的吸附能力大大增强;(2)分散性及沉降性均较好,因沸石粉形成的颗粒球为多孔结构,既可在整个工艺系统中流动,对氨氮和磷酸根进行充分吸附去除,在沉降阶段也易于沉降;(3)沸石成本低,因该沸石颗粒球不易随着出水流失,可回收再进行吸附脱附,有效利用率高,大大降低了材料成本。

附图说明

[0020] 图1为本发明的工艺和技术路线图。

具体实施方式

[0021] 下面结合实施例对本发明作更进一步的说明,这些实施例和附图仅起说明性作用,并不局限于本发明的应用范围。
[0022] 实施例1
[0023] 本实施例的同步去除废水氨氮和磷酸根的沸石改性方法,包括以
[0024] 下具体步骤:
[0025] 1)先用蒸馏水将适量粒径为45μm的待改性天然沸石进行3 4次冲洗,45°C烘干;~
[0026] 2)用浓度为0.5mol/L的NaOH溶液和浓度为1.0mol/L的MgCl2溶液依次对步骤1)所得的沸石在80°C条件下浸泡5h,105°C烘干,并放入马弗炉在400°C下保温1h,冷却备用;
[0027] 3)将4g聚乙烯吡咯烷酮、6g聚醚砜、70g二甲基乙酰胺混合搅拌,待完全溶解,加入120g 步骤2)所得沸石,继续搅拌使其分散均匀;得到的混合液中,聚乙烯吡咯烷酮占混合液总重量的2%,聚醚砜占混合液总重量的3%;二甲基乙酰胺占混合液总重量的35%,沸石占混合液总重量的60%。
[0028] 4)将步骤3)所得混合液缓慢滴入自来水或蒸馏水中,固化形成胶态状颗粒,并于150°C烘干。
[0029] 所得改性沸石颗粒粒径为2-5mm。将该沸石用于处理氨氮浓度约为25mg/L、总磷浓度约8mg/L的化工废水二级生化不达标水,改性沸石浓度约为10g/L,磁力搅拌吸附时间1.5h,处理后的废水氨氮和总磷的剩余浓度分别为3.21mg/L、0.035mg/L,其去除率高达
87.2%、99.6%。
[0030] 实施例2
[0031] 本实施例的同步去除废水氨氮和磷酸根的沸石改性方法,包括以
[0032] 下具体步骤:
[0033] 1)先用蒸馏水将适量粒径为30μm的待改性天然沸石进行3 4~
[0034] 次冲洗,50°C烘干;
[0035] 2)用浓度为1mol/L的NaOH溶液和浓度为2mol/L的MgCl2溶液依次对步骤1)所得的沸石在60°C条件下浸泡6.5h,100°C烘干,并放入马弗炉在600°C下保温0.5h,冷却备用;
[0036] 3)将8g聚乙烯吡咯烷酮、10g聚醚砜、56g二甲基乙酰胺混合搅拌,待完全溶解,加入126g步骤2)所得沸石,继续搅拌使其分散均匀;得到的混合液中,聚乙烯吡咯烷酮占混合液总重量的4%,聚醚砜占混合液总重量的5%;二甲基乙酰胺占混合液总重量的28%,沸石占混合液总重量的63%。
[0037] 4)将步骤3)所得混合液缓慢滴入自来水或蒸馏水中,固化形成胶态状颗粒,并于100°C烘干。
[0038] 所得改性沸石颗粒粒径为2-5mm。将该沸石用于处理氨氮浓度约
[0039] 为25mg/L、总磷浓度约8mg/L的化工废水二级生化不达标水,沸石浓度约为10g/L,磁力搅拌吸附时间1.5h,处理后的废水氨氮和总磷的剩余浓度分别为3.08mg/L、0.031mg/L,其去除率高达87.7%、99.6%。
[0040] 实施例3
[0041] 本实施例的同步去除废水氨氮和磷酸根的沸石改性方法,包括以
[0042] 下具体步骤:
[0043] 1)先用蒸馏水将适量粒径为50μm的待改性天然沸石进行3 4~
[0044] 次冲洗,40°C烘干;
[0045] 2)用浓度为3mol/L的NaOH溶液和浓度为1.5mol/L的MgCl2溶液依次对步骤1)所得的沸石在120°C条件下浸泡8h,110°C烘干,并放入马弗炉在500°C下保温2h,冷却备用;
[0046] 3)将2g聚乙烯吡咯烷酮、8g聚醚砜、50g二甲基乙酰胺混合搅拌,待完全溶解,加入140g步骤2)所得沸石,继续搅拌使其分散均匀;得到的混合液中,聚乙烯吡咯烷酮占混合液总重量的1%,聚醚砜占混合液总重量的4%;二甲基乙酰胺占混合液总重量的25%,沸石占混合液总重量的70%。
[0047] 4)将步骤3)所得混合液缓慢滴入自来水或蒸馏水中,固化形成胶态状颗粒,并于200°C烘干。
[0048] 所得改性沸石颗粒粒径为2-5mm。将该沸石用于处理氨氮浓度约
[0049] 为25mg/L、总磷浓度约8mg/L的印染废水二级生化不达标水,沸石浓度约为10g/L,磁力搅拌吸附时间1.5h,处理后的废水氨氮和总磷的剩余浓度分别为2.98mg/L、0.028mg/L,其去除率高达88.1%、99.65%。
[0050] 上面结合附图和具体实例对本发明的实施方式作了详细的说明,但是本发明不限于上述实施方式,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。