一种吸波电磁膜及其制造方法转让专利

申请号 : CN201610145090.2

文献号 : CN105799261B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 李勃任帅王进刘卓任劲松周济

申请人 : 清华大学深圳研究生院

摘要 :

本发明公开了一种吸波电磁膜及制造方法,该方法包括:取铁粉体,加入树脂作为粘合剂,加入有机溶剂作为分散剂,在常温下球磨,然后采用流延工艺,将制得的浆料在薄膜基底上流延成20‑100µm厚的电磁膜;然后将该电磁膜单层或多层叠置后在100‑300℃进行真空固化。本方法通过湿法流延工艺和真空固化工艺制造吸波电磁膜,工艺简化,成本低,吸收剂含量高,易于与其它材料复合,适合工业生产。制得成品的吸波频带达2‑18GHz,不仅吸波性能好,本身有一定的承载能力,可以获得广泛的应用。

权利要求 :

1.一种吸波电磁膜制造方法,其特征在于包括以下步骤:

取一定量的氰酸酯树脂溶解于有机溶剂中,然后加入粒径为50-100目的铁粉,在常温下以球料比1:1-10:1球磨3-24小时得到流延浆料;该流延浆料中所述氰酸酯树脂和铁粉的质量比为1:1-1:19;所述有机溶剂采用四氢呋喃和丙酮1:1的混合溶液,或者采用四氢呋喃;

然后采用湿法流延工艺,将所述流延浆料在PVDF薄膜基底上流延成20-100µm厚的电磁膜;将该电磁膜单层或者多层叠置后,在130-300℃、0-0.1MPa真空条件下固化1-6小时,使同一层电磁膜中的铁粉紧密连接,不同层电磁膜之间的树脂和铁粉充分粘结,得到氰酸酯树脂基吸波电磁膜。

2.如权利要求1所述的吸波电磁膜制造方法,其特征在于,所述的铁粉为片状铁粉或球状铁粉。

3.如权利要求1所述的吸波电磁膜制造方法,其特征在于,所述流延浆料中所述氰酸酯树脂和铁粉的质量比为1:3-1:19。

4.如权利要求1或2或3所述的吸波电磁膜的制造方法,其特征在于,将所述电磁膜多层叠置时,中间层的电磁膜先去除PVDF薄膜基底再进行叠层。

5.采用权利要求1-4任何一项所述的制造方法制得的一种吸波电磁膜,其特征在于,该吸波电磁膜是单层结构或者数层电磁膜复合结构,所述电磁膜是均匀混合有铁粉的氰酸酯树脂通过湿法流延工艺形成的吸波材料,所述电磁膜中铁粉质量含量为50%-95%,铁粉粒径为50-100目; 所述电磁膜的层厚度为20-100µm。

6.采用权利要求1-4任何一项所述的制造方法制得的一种吸波电磁膜,其特征在于,该吸波电磁膜是5-50层电磁膜复合结构,所述电磁膜是均匀混合有铁粉的氰酸酯树脂通过湿法流延工艺形成的吸波材料,所述电磁膜中铁粉质量含量为75%-95%,铁粉粒径为50-100目;所述电磁膜的层厚度为20-100µm,所述吸波电磁膜的吸波频带为2-18GHz。

7.如权利要求6所述的吸波电磁膜,其特征在于,其中各电磁膜中铁粉的含量相同或不同。

说明书 :

一种吸波电磁膜及其制造方法

技术领域

[0001] 本发明涉及吸波电磁膜及其制造方法,尤其涉及一种通过湿法流延得到薄膜状吸波材料及其制造方法。

背景技术

[0002] 吸波材料是指能吸收投射到它表面的电磁波能量的一类材料,主要是能够将电磁波能量转化为其它形式的能量、并将其耗散掉,其在隐身技术、改善整机性能、安全保护、微波暗室、治理电磁污染等军民领域具有广泛的应用前景。吸波材料一般由电磁波吸收剂和基体材料复合而成,其中起主要作用的是电磁波吸收剂,目前导电短纤维、铁氧体、金属原子等树脂基复合吸波材料是应用主体。
[0003] Si-C导电短纤维与环氧树脂制成的复合材料,由Si-C短纤维与接枝酰亚胺基团与环氧树脂共聚改性为基体组成的结构材料,吸波性能都很优异。但是这种吸波材料的力学性能较差,需要跟其它承载能力好的材料复合,难以应用于对厚度要求较高的仪器。
[0004] 现有技术中,电磁波吸收剂一般采用普通的轧机轧制成膜,但是这种方法对树脂含量要求较高,吸收剂含量高时成膜困难,难以制得高吸收剂含量的电磁膜。

发明内容

[0005] 本发明需要解决的第一个技术问题是:针对现有技术的不足,提供一种成膜吸收剂含量高、具有一定承载能力、吸波性能好的吸波电磁膜的制造方法。
[0006] 本发明需要解决的第二个技术问题是:针对现有技术的不足,提供一种成膜吸收剂含量高、具有一定承载能力、吸波性能好的吸波电磁膜。
[0007] 本发明的技术方案如下:
[0008] 一种吸波电磁膜制造方法包括以下步骤:取一定量的树脂溶解于有机溶剂中,然后加入铁粉体,在常温下球磨得到流延浆料,该流延浆料中树脂和铁粉的质量比为1:1-1:19;
[0009] 然后采用湿法流延工艺,将所述流延浆料在薄膜基底上流延成20-100µm厚的电磁膜,将该电磁膜单层或者多层叠置后,在100-300℃、0-0.1MPa真空条件下固化,得到吸波电磁膜。
[0010] 其中,所述铁粉体的粒径为50-100目,铁粉体为片状铁粉或球状铁粉。
[0011] 通过球磨得到的所述流延浆料中树脂和铁粉的质量比最好为1:3-1:19。
[0012] 所述树脂为氰酸酯树脂,环氧树脂,丙烯酸酯,不饱和聚酯树脂中的任意一种或两种及以上的组合。所述的有机溶剂为四氢呋喃、丙酮、丁酮、酒精中的任意一种或两种及以上的组合。树脂作为粘合剂,有机溶剂作为分散剂。
[0013] 在常温下球磨物料(即铁粉体、树脂和有机溶剂)的时间为3-24小时,球料比为1:1-10:1。固化时的保温时间为1-6小时。
[0014] 所述的薄膜基底最好为PVDF膜(聚偏二氟乙烯膜)。
[0015] 将所述电磁薄膜多层叠置时,中间层的电磁薄膜先去除PVDF基底膜再进行叠层。
[0016] 采用上述制造方法制得的一种吸波电磁膜,该吸波电磁膜是单层结构或者数层电磁膜复合结构,所述电磁膜是均匀混合有铁粉的树脂通过湿法流延工艺形成的吸波材料,所述电磁膜中铁粉质量含量为50%-95%,铁粉粒径为50-100目。
[0017] 采用上述制造方法制得的另一种吸波电磁膜,该吸波电磁膜是5-50层电磁膜复合结构,所述电磁膜是均匀混合有铁粉的树脂通过湿法流延工艺形成的吸波材料,所述电磁膜中铁粉质量含量为75%-95%,铁粉粒径为50-100目;该吸波电磁膜的吸波频带为2-18GHz。
[0018] 其中,各层电磁膜中铁粉的含量相同或不同,电磁膜的层厚度为20-100µm。
[0019] 本发明通过湿法流延工艺流延成膜以及将叠层后的电磁膜进行固化,得到具有一定承载能力的薄膜状吸波材料;由于采用湿法流延工艺,流延时可以使用高吸收剂含量(50%-95%)的浆料,进而得到高吸收剂含量的吸波电磁膜;同时由于浆料与流延刀充分接触,因而能得到均匀平整的电磁膜;而通过叠层后在100-300℃真空固化,这一温度可以保证电磁膜中的树脂充分固化,同一电磁膜中的铁粉紧密连接,不同电磁膜之间的树脂和铁粉充分粘结,因而具有一定承载能力;同时在这一温度下,吸波材料的吸波性能不会被破坏,尤其是在真空条件下,铁粉颗粒不会被氧化,得到的吸波电磁膜吸波性能好,同时还具有一定的承载能力。
[0020] 本发明通过湿法流延工艺和真空固化工艺制造吸波电磁膜,成本低、工艺简单、操作方便,吸收剂含量高,易于与其它材料复合,适合用于工业生产。最终获得的吸波电磁膜的吸波频带达2-18GHz,不仅吸波性能好,还由于本身为树脂基,还具有一定的承载能力,可以获得广泛的应用。

附图说明

[0021] 图1为本发明实施例3获得的吸波电磁膜结构剖视图;
[0022] 图2为本发明采用的湿法流延装置结构示意图;
[0023] 图3为实施例2获得的20层结构吸波电磁膜在2-18GHz频率范围内的吸波性能(反射率)图;
[0024] 附图中标记:PVDF膜卷1、PVDF膜2、滚轮3、流延盒4、浆料5、流延刀6、干燥装置7、电磁膜8、转轴9、电磁膜卷10、PVDF基底11、电磁膜12、电磁膜13、吸波电磁膜14。

具体实施方式

[0025] 以下结合实施例、附图对本发明做进一步说明。
[0026] 实施例1
[0027] 首先,将氰酸酯树脂250克分散于500ml溶剂中,使氰酸酯树脂充分溶解;然后加入粒径50目的铁粉750g,放入球磨罐中于室温下球磨5小时,得到流延浆料,制备的流延浆料具有一定的粘稠性和流动性。其中溶剂为四氢呋喃和丙酮1:1的混合溶液。
[0028] 参照图2,将流延浆料5通过湿法流延工艺在PVDF膜2上流延成电磁膜8。所述的湿法流延工艺是将球磨后的流延浆料5贮存在流延盒4中,流延盒4的侧面是流延刀6,流延刀6下面有一滚轮3,流延浆料5由于滚轮3的转动带动PVDF膜2前进,在PVDF膜2上通过刀口形成电磁膜8,并在后续工序中烘干,烘干温度为80℃。通过调节流延中刀口的高度可以调节流延得到的电磁膜8的厚度,本实施例中刀口高度为100微米,得到厚度为50微米的电磁膜8。
[0029] 湿法流延之后,得到预定的吸波电磁膜需要达到的厚度以及吸波性能。
[0030] 最后将单层电磁膜8在0.1 MPa真空氛围下,在180℃保温4小时进行固化处理,使样品最终成型,得到吸波电磁膜,其中铁粉质量含量为75%。
[0031] 实施例2
[0032] 首先,将氰酸酯树脂100克分散于200ml溶剂中,使氰酸酯树脂充分溶解;然后加入粒径50目的铁粉900g,放入球磨罐中于室温下球磨4小时,得到流延浆料,制备的流延浆料具有一定的粘稠性和流动性。其中溶剂为四氢呋喃和丙酮1:1的混合溶液。
[0033] 参照图2,将流延浆料5(实施例2)通过湿法流延工艺在PVDF膜2上流延成电磁膜8。所述的湿法流延工艺是将流延浆料5贮存在流延盒4中,流延盒4的侧面是流延刀6,流延刀6下面有一滚轮3,流延浆料5由于滚轮3的转动带动PVDF膜2前进,在PVDF膜2上通过刀口形成电磁膜8,并在后续工序中烘干,烘干温度为85℃。通过调节流延中刀口的高度可以调节流延得到的电磁膜8的厚度,本实施例中刀口高度为100微米,得到厚度为50微米的电磁膜8。
湿法流延之后,得到预定的单层电磁膜需要达到的厚度(50微米)以及吸波性能。
[0034] 最后将20层该电磁膜进行叠层,在0.1 MPa真空氛围下,在200℃保温3小时进行固化处理,使样品最终成型,得到1mm厚的20层结构吸波电磁膜,铁粉质量含量为90%。将这种吸波电磁膜制成180mm x180mm的标准样品,用弓形法测试其在2-18GHz频率范围内的吸波性能(反射率),测试结果见图3。从图3中可见,标准样品在2-18GHz频率范围内均具有吸波性能,反射率优于-5dB,并且在4.7GHz时达到吸收峰(-32dB),具有良好的吸波性能。
[0035] 实施例3
[0036] 将氰酸酯树脂150克分散于300ml溶剂中,使氰酸酯树脂充分溶解,加入粒径50目的铁粉850g,放入球磨罐中于室温下球磨6小时得流延浆料31;再将氰酸酯树脂100克分散于200ml溶剂中,氰酸酯树脂充分溶解后加入粒径50目的铁粉900g,放入球磨罐中于室温下球磨6小时得流延浆料32;其中,溶剂均为四氢呋喃和丙酮1:1的混合溶液。
[0037] 参照图1、图2,将流延浆料31通过湿法流延工艺在一PVDF膜上流延成对应的电磁膜12(同实施例1);将流延浆料32也通过湿法流延工艺在另一PVDF膜上流延成对应的电磁膜13(同实施例1)。湿法流延之后,得到预定的两种单层电磁膜需要的厚度、吸波性能。
[0038] 最后将2层电磁膜12和2层电磁膜13进行叠层,位于中间层的电磁膜需要先去除PVDF基底膜,在0.1 MPa真空氛围下,在250℃保温5小时进行固化处理,使样品最终成型,得到四层结构吸波电磁膜14,电磁膜12中铁粉质量含量为85%,电磁膜13中铁粉质量含量为90%,图1中11为PVDF基底。
[0039] 实施例4
[0040] 制备三种流延浆料:将氰酸酯树脂100克分散于200ml溶剂中,氰酸酯树脂充分溶解后加入粒径50目的铁粉900g,放入球磨罐中于室温下球磨6小时得流延浆料41。将氰酸酯树脂200克分散于400ml溶剂中,氰酸酯树脂充分溶解后加入粒径50目的铁粉800g,放入球磨罐中于室温下球磨6小时得流延浆料42。再将氰酸酯树脂300克分散于600ml溶剂中,氰酸酯树脂充分溶解后加入粒径50目的铁粉700g,放入球磨罐中于室温下球磨6小时得流延浆料43。三种流延浆料中的溶剂均为四氢呋喃和丙酮1:1的混合溶液。
[0041] 参照图2和实施例1,分别将三种流延浆料41、42、43通过湿法流延工艺在PVDF膜2上流延成三种电磁膜41’、42’、43’。并在后续工序中烘干,烘干温度为85℃。本实施例4中刀口高度调节为90微米,三种电磁膜的厚度均为40微米。
[0042] 最后将6层电磁膜41’、6层电磁膜42’以及6层电磁膜43’进行叠层,在0.1 MPa真空氛围下,在130℃保温4小时进行固化处理,使样品最终成型,得到18层结构吸波电磁膜,其中铁粉质量含量90%、80%及70%的各6层。
[0043] 上述各实施例中,流延中通过调节流延刀6刀口的高度可以调节流延得到的电磁膜8的厚度。根据设计要求,电磁膜8的厚度可在20-100µm范围调节。
[0044] 在常温下球磨物料(即铁粉体、树脂和有机溶剂)的时间为3-24小时,球料比可为1:1-10:1。
[0045] 应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应不脱离本发明权利要求的保护范围。