一种汽车内饰用淋膜复合材料的制造方法转让专利

申请号 : CN201610141084.X

文献号 : CN105799294A

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 孙辉于斌韩建

申请人 : 浙江理工大学

摘要 :

本发明公开了纺织工业产业用纺织品制造业中汽车内饰用淋膜复合材料的制造方法,由底层针刺非织造基材和面层淋膜层复合加工而成,特征是底层非织造基材包含二层纤网层(上层和下层)复合而成,贴近淋膜层的上层纤网层为大纤度低熔点纤维、阻燃纤维和常规纤维混配复合纤网层。下层纤网层为可以是低纤度常规纤维和阻燃纤维也可以是低纤度常规纤维、阻燃纤维和低熔点纤维的复合纤网层。含有功能助剂的淋膜级聚乙烯树脂经过淋膜机头将一定幅宽的PE膜淋在双层针刺非织造底层上。经复合机的轧辊压轧成形并熔切成所需形状和尺寸的复合材料成品。成形的复合材料剥离强度高,材料中不合残余有害物质,工序短,环境污染少。

权利要求 :

1.一种汽车内饰用淋膜复合材料的制造方法,由底层针刺非织造基材和面层淋膜层复合加工而成,其特征在于:底层针刺非织造基材层由二层纤网层复合而成,贴近淋膜层的上层纤网层为大纤度低熔点纤维、阻燃纤维和常规纤维混配复合纤网层,下层纤网层为低纤度常规纤维和阻燃纤维或低纤度常规纤维、阻燃纤维和低熔点纤维的复合纤网层;所述复合纤网层经过复合针刺、轧光成布;含有功能助剂的淋膜级聚乙烯树脂经过淋膜机头将一定幅宽的PE膜淋在双层针刺轧光布上,经熔切成所需形状和尺寸的复合材料成品。

2.根据权利要求1所述的一种汽车内饰用淋膜复合材料的制造方法,其特征在于:所述

2 2

的底层针刺非织造纤维层克重在650-1200g/m ,中上层纤网层克重克重400-650 g/m ,下层纤网层克重克重250-550 g/m2。

3.根据权利要求1所述的一种汽车内饰用淋膜复合材料的制造方法,其特征在于:所述的上层纤网层中为4-6dtex 的大纤度的普通涤纶、阻燃涤纶和低熔点涤纶。

4.根据权利要求1所述的一种汽车内饰用淋膜复合材料的制造方法,特征在于:所述的下层纤网层中为1.4-2.2dtex 的小纤度的普通涤纶、阻燃涤纶和低熔点涤纶。

5.根据权利要求3或4所述的一种汽车内饰用淋膜复合材料的制造方法,其特征在于:所述低熔点涤纶纤维的熔点在110-130℃之间。

6.根据权利要求5所述的一种汽车内饰用淋膜复合材料的制造方法,其特征在于:所述低熔点涤纶纤维在上层纤网层中和下层纤网层中的含量分别为40-90%和0%-60%。

7.根据权利要求1所述的一种汽车内饰用淋膜复合材料的制造方法,其特征在于:制备的复合纤网的针刺刺密度600刺/cm2-1200刺/cm2。

8.根据权利要求1所述的一种汽车内饰用淋膜复合材料的制造方法,其特征在于:轧光机的轧辊温度100-110℃,轧辊压力300-600N/m2。

9.根据权利要求1所述的一种汽车内饰用淋膜复合材料的制造方法,其特征在于:所述的功能助剂在LDPE中总含量不超过5%,包含Tio2抗菌剂、Sio2气凝胶吸附剂和无卤磷系阻燃剂。

10.根据权利要求1所述的一种汽车内饰用淋膜复合材料的制造方法,其特征在于:所述淋膜厚度在0.3mm-1mm之间,克重在300-400g/m2。

说明书 :

一种汽车内饰用淋膜复合材料的制造方法

技术领域

[0001] 本发明属于纺织行业,具体涉及一种汽车内饰用淋膜复合材料的制造方法。

背景技术

[0002] 随着科学技术发展和国民经济的快速发展,各类产业用特种纺织材料应用领域越来越广,用量越来越大,尤其是汽车内饰材料除汽车顶棚面饰材料、地毯、坐套等外,汽车行李箱用及顶棚用热可塑复合非织造材料已随着科学技术发展,应用领域更加拓宽。据统计,每台汽车的内饰材料约20 m2,其中非织造材料11~13 m2。中国汽车工业协会发布数据显示,2008年我国汽车销量938万辆,已超过日本,成为全球第二大汽车市场,按每辆车车内饰2 2
非织造材料12 m/辆计算,年需约1.13亿m,约占全国非织造材料生产总量的20%。
[0003] 本发明涉及纺织工业产业用纺织品制造业中,汽车内饰用复合材料的制造方法。该复合材料广泛应用于轿车内饰及其他防潮铺面装饰地毯等。由于人们对轿车要求从原来仅考虑造型优美而转移到对其内部装饰材料的要求,同时要求材料具有隔热、消音、防震、阻燃以及美观实用等功能。单一组分材料已不能满足要求近年来,人们通常采用纺织材料与其它基材经复合加工成内饰材料,在复合加工过程中,需将两种或多种基材(如纺织材料+纺织材料或纺织材料+塑料+橡胶)经粘合剂复合而成。但所用溶剂型粘合剂含有大量易挥发的有害的有机溶剂,在生产加工过程中逸出而污染环境,若溶剂脱不净,残留在复合材料中也会污染使用的环境。
[0004] 20世纪80年代国外在汽车内饰材料的加工领域出现了压膜法和撒粉法。上述两种方法,虽均利用某些树脂熔体的粘弹性原理作粘合剂,无溶剂废气,但均需将粒状树脂先制成透气性薄膜或制成粉末,然后再用作复合基材的粘合剂,工序繁琐,流程长。专利CN1410246 A公开了一种直接用塑料级低熔点热塑性树脂作粘合剂加入螺杆挤出机挤出直接复合非织造基材上,经过热轧成型制备汽车内饰材料,但该工艺仅仅依靠热轧涂覆在针刺基材上,结合牢度差、易分层;同时表面膜材缺乏抗菌、吸附和阻燃性能会大大降低复合材料的综合性能和要求。

发明内容

[0005] 本发明为克服现有缺陷而提出,其目的是提供一种一种汽车内饰用淋膜复合材料的制造方法,其不仅有良好的可加工性能,产品具有尺寸稳定性好、剥离强度高、纵横向热缩率一致和强度异方性小,表面柔软度、蓬松度和平整度好,阻燃和抗菌性能好等优点,同时在加工制造和试样过程中都能达到环保、低毒的要求。
[0006] 为达到上述目的,本发明采用如下技术方案:一种汽车内饰用淋膜复合材料是由面层淋膜层和底层针刺纤维层复合而成。
[0007] 上述底层针刺纤维层由两层组成;下层纤网是小纤度的梳理纤维层,上层纤网是大纤度梳理纤维层高密度非织造层。
[0008] 上述下层纤网可以是常规涤纶纤维和阻燃涤纶纤维,也可以是常规纤维、阻燃纤维和低熔点涤纶纤维的复合纤维层,上层纤维层为普通涤纶、阻燃纤维和低熔点涤纶纤维混配构成纤网层。
[0009] 汽车内饰用淋膜复合材料通过如下步骤实现:1、将长度为51-65mm,线密度为5.2-6.6dtex的普通涤纶、阻燃纤维、低熔点纤维按设定的比例均匀混合,依次通过开松、梳理交叉铺网和牵伸制备复合纤网下层。
[0010] 2、将长度为38-65mm,线密度为1.2-4.4dtex的普通涤纶、阻燃纤维、低熔点纤维按设定的比例均匀混合,依次通过开松、梳理,形成复合纤网的上层,通过交叉铺网机,铺设在步骤1形成的复合纤网下层上,形成双层复合纤网层。
[0011] 3、将步骤一和步骤二所制备的非织造纤网层通过针刺加固制备双层纤维毡。
[0012] 4、底层复合纤维网通过弹性辊和加热金属辊组合的加热轧光辊,下层纤网层贴合无加热的弹性辊,上层纤网层贴合加热金属辊(如图1)。
[0013] 5、将功能助剂和淋膜聚乙烯母粒共混造粒,经过淋膜设备,淋在经过单面轧光的复合双层纤网毡的光面制得复合汽车内饰用淋膜复合材料。
[0014] 上述步骤1中,阻燃纤维在复合纤网下层中的含量百分比为1-5%,低熔点纤维含量在复合纤网底层中的含量百分比为0%–60%。
[0015] 上述步骤2中,阻燃纤维在复合纤网上层中的含量百分比为5-10%,低熔点纤维含量在复合纤网面层中的含量百分比为40%–90%。
[0016] 上述步骤1和二中所用低熔点涤纶均为一种皮芯双组份纤维,低熔点纤维的熔点为110℃-130℃。
[0017] 上述步骤1和2的梳理工序中,梳理机和工作辊的速比为16-28:1,梳理机的上下道夫输出端配有杂乱或凝聚罗拉,通过杂乱改善纤网材料的异方性。
[0018] 上述步骤2的铺网工序中,为了改善纤网材料力学性能的各向异性,采用新型的复合交叉铺网技术,摒弃传统单一的铺网方式,同时,通过复合交叉铺网实现双层纤网的复合叠加,并通过牵伸对纤网进行牵伸,牵伸比为1:0.1-0.3。
[0019] 上述步骤2的铺网工序中,通过交叉铺网的角度,实现纤网中纤维的纵横向排列控制,提高纤网材料力学性能的各向异性。针对不同的产品要求,铺网角度控制在30-60o之间。
[0020] 上述步骤3中,纤网的针刺密度600刺/cm2-1200刺/cm2。
[0021] 上述步骤4中,轧光机的加热钢辊温度100-110℃,轧辊压力400-600N/m2。
[0022] 上述步骤5中,所述的功能助剂在LDPE中的含量不超过5%,包含Tio2抗菌剂、Sio2气凝胶吸附剂和无卤磷系阻燃剂。
[0023] 比较现有技术本发明的优点如下:(1)通过淋膜大大增加了材料和物理机械性能,保证产品的结构稳定性。
[0024] (2)利用含有低熔点纤维的双层纤维设计实现了淋膜材料与复合纤维网间良好的结合性能,材料平整度高、剥离强度高、形态稳定性高,解决了覆膜材料结合牢度低、易分层和形态稳定差的难题。
[0025] (3)通过在淋膜材料中添加抗菌剂、阻燃剂以及吸附剂等材料,在进一步提高阻燃性能的同时,保证内饰材料良好抗菌性能和对甲醛等有害气体的吸收性能。

附图说明

[0026] 图1是底层纤网热轧处理图;图2是复合交叉铺网示意图;
图3是复合内饰材料结构示意图。

具体实施方式

[0027] 实施例一本发明的汽车内饰用淋膜复合材料,通过以下步骤实现:
一、复合纤网的制备
1、混合、开松:分别将长度为51mm,线密度为5.2的较粗普通涤纶(77%)、阻燃纤维(3%)、低熔点纤维(20%)作为下层纤网原料和长度为38mm,线密度为3.5dtex较细普通涤(34%)纶、阻燃纤维(6%)、低熔点纤维(60%)作为下层纤网原料通过粗、精两道开松,和在精开松前增加混棉箱,以及“假和”技术,实现了不同规格的纤维的均匀混合。
[0028] 2、梳理:将混合好的面层纤维和底层纤维分别通过喂棉系统输送到梳理机,梳理机采用双锡林双道夫系统,提高纤维的混合和梳理效果,改善了纤维的各向同性,同时在梳理机的上下道夫后边配制杂乱罗拉和凝聚罗拉,进一步提高材料的各向同性,经过杂乱后纤网的杂乱比在1.3-1.5之间。
[0029] 3、复合交叉铺网技术:1)上层纤网的铺网采用交叉叉铺网技术,对梳理后的纤维网进行反复折叠形成纤网层,铺网角度30-60o, 铺网20-30层,克重450 g/m2,并通过牵伸对纤网进行牵伸,牵伸比为
1:0.1-0.3。
[0030] 2)下层纤网层的铺网采用复合交叉铺网技术(如图2),面层纤网梳理成网后,在交叉铺网机下和底层纤网叠层复合,其中面层纤网的纵横向强力比在1.3-1.2:1。铺网角度30-60o,铺网12-16层,克重400g/m2,。
[0031] 3)通过一道预刺,5道主刺,制得针刺密度850 刺/cm2,纵横向强力比:1:1.1克重825g/ m2的复合纤网
二、热轧轧光
步骤一制备的复合纤网经过如图2所示的热轧复合设备,热轧温度110℃,热轧压力
550N/m2,收卷成布。
[0032] 三、淋膜复合将含有Tio2抗菌剂(0.3%)、Sio2气凝胶吸附剂(0.5%)和无卤磷系阻燃剂(0.5%)等助剂的LDPE共混在100-150℃下造粒,经过淋膜复合设备,在165℃下熔融挤出淋在步骤二制备的轧光过了复合纤网的上层纤网上。冷却收卷得到制备的汽车内饰材料。
[0033] 实施例2基本步骤和方法与实施例1相同,不同的是原料设计时长度为38mm,线密度为3.5dtex较细普通涤纶(22%)、阻燃纤维(8%)、低熔点纤维(70%)作为下层纤网原料。
[0034] 实施例 3 基本步骤和方法与实施例1相同,不同的是淋膜材料中将含有Tio2抗菌剂(0.6%)、Sio2气凝胶吸附剂(1%)和无卤磷系阻燃剂(1%)等助剂。
[0035] 对比例1基本步骤和方法与实施例1相同,不同的是纤维原料比例为:较粗普通涤纶(97%)、阻燃纤维(3%)作为下层纤网原料;较细普通涤(94%)纶、阻燃纤维(6%)作为上层纤网原料。
[0036] 对比例2基本步骤和方法与实施例1相同,不同的是在制备步骤三中,淋膜材料中不含Tio2抗菌剂、Sio2气凝胶吸附剂和无卤磷系阻燃剂等助剂。
[0037] 对上述实施例和对比例的样品,根据标准QC/T236-1997《汽车内饰材料性能的试验方法》测试其克重、断裂强度和剥离强力,根据GB/T27630-2011《乘用车内空气质量评价指南》测试其VOC,根据QB/T2591-2003A《抗菌塑料抗菌性能试验方法和抗菌效果》检测用菌:大肠杆菌(Escherichia coli) ATCC25922, 金黄色葡萄球菌(Staphy lococcus aureus) ATCC6538,以及GB 8410-2006《汽车内饰材料的燃烧特性》测试其阻燃性能,测试结果如表1所示。可以看出,实施例都表现出较好的物理机械性能,特别是低熔点含量较高的实施例2,以及无机助剂含量较高的实施例3,其纵横向强力和剥离强力相比于实施例1特别是对比例1和对比例2都有显著的提升。添加多孔的抗菌及、吸附剂以及阻燃剂后,汽车内饰材料的挥发物含量、抗菌性能、阻燃性能都有一定的提升,特别是多孔抗菌和吸附剂的添加,挥发物含量显著下降,抗菌性能均在99%以上,大大提升了汽车乘坐的舒适性、安全性和卫生性。
[0038]表1 实施例和比较例汽车内饰材料性能。
[0039] 上述各种参数可在指定范围内根据实际条件与需要进行选择。
[0040] 上述仅为本发明的具体实施例,但本发明的构思并不局限于此,凡利用此构思对本发明进行非实质性改动,均应属于侵犯本发明保护范围的行为。