基于图像检测与自由流状态电子空穴约束模型的交通信号控制方法转让专利

申请号 : CN201610388766.0

文献号 : CN105809982A

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 史忠科

申请人 : 西安费斯达自动化工程有限公司

摘要 :

为了解决现有交叉路口信号控制还不能同时考虑排队长度和交通流模型、影响车辆放行效率问题,本发明提出了一种基于图像检测与自由流状态电子空穴约束模型的交通信号控制方法,该方法设计了完整的多路图像检测方案,并以FPGA芯片作为交叉路口各个方向车辆排队长度的检测和处理中心,完成对交叉路口各个方向的图像快速采集、图像处理、车辆排队长度和行人信息提取;同时,设置了完整的交通“绿冲突”约束、建立了优化指标函数和多车辆跟驰约束交通流模型,采用交叉路口放行车辆优化和依赖交通流模型时间对应的两步法进行交通信号的优化配时,完成一个完整周期的交通信号控制优化设计;提高了交叉路口车辆放行效率。

权利要求 :

1.一种基于图像检测与自由流状态电子空穴约束模型的交通信号控制方法,其特征包含以下步骤:

步骤1:交叉路口的交通信号控制方案每个信号周期设计一次,交通信号控制方案设计内容包括多路图像信息检测、“绿冲突”约束设置、排队车辆交通流模型、信号优化设计四部分内容;交通信号控制方案设计时间Tsheji小于给定值,在信号执行过程中不能反复调整;在执行下一个信号周期之前Tsheji时刻就设计该周期交通信号控制方案,以保证多路图像信息检测得到最新的交通状况;

步骤2:将多路交通视频经过视频解码模块数字化后送入FPGA,在FPGA中先通过边缘检测和二值化、完成对图像进行预处理并将其存入SRAM缓冲,然后根据车道线像素构成的车道检测区域对图像进行分割和腐蚀,提取出路口各个方向排队车辆长度和车间距,并将相邻两帧图像中指定的同一区域在FPGA进行比较,获得有无目标运动信息以得到车辆运动速度;类似的方法用于检测行人多寡和行进速度;多路图像信息检测获取以下信息:⑴东向西直行:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达对面路口时间;

⑵西向东直行:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达对面路口时间;

⑶北向南直行:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达对面路口时间;

⑷南向北直行:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达对面路口时间;

⑸东向南左转:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达南路口时间;

⑹西向北左转:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达北路口时间;

⑺北向东左转:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达东路口时间;

⑻南向西左转:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达西路口时间;

⑼东向北右转:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达北路口时间;

⑽西向南右转:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达南路口时间;

⑾北向西右转:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达西路口时间;

⑿南向东右转:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达东路口时间;

⒀行人东向西:分别从右、左两边分析行人在人行绿灯开启后与车辆冲突,分析人数多寡及构成情况;

⒁行人西向东:分别从右、左两边分析行人在人行绿灯开启后与车辆冲突,分析人数多寡及构成情况;

⒂行人南向北:分别从右、左两边分析行人在人行绿灯开启后与车辆冲突,分析人数多寡及构成情况;

⒃行人北向南:分别从右、左两边分析行人在人行绿灯开启后与车辆冲突,分析人数多寡及构成情况;

步骤3:绿冲突约束;

⑴对于车辆,定义下标第一个字母s是车辆自北向南方向,n是车辆自南向北方向,e是车辆自西向东方向,w是车辆自东向西方向;下标第二个字母s是车辆直行、r是车辆右转、l是车辆左转;下标第三个字母i表示绿灯开启时刻,f表示绿灯关闭时刻;下标rwr为行人从右手边、即北边、自东向西方向穿越交叉路口,rwl为行人从左手边、即南边、自东向西方向穿越交叉路口,rer为行人从右手边、即南边、自西向东方向穿越交叉路口,rel为行人从左手边、即北边、自西向东方向穿越交叉路口,rnr为行人从右手边、即东边、自南向北方向穿越交叉路口,rnl为行人从左手边、即西边、自南向北方向穿越交叉路口,rsr为行人从右手边、即西边、自北向南方向穿越交叉路口,rsl为行人从左手边、即东边、自北向南方向穿越交叉路口;对于行人,下标第四个字母i表示绿灯开启时刻,f表示绿灯关闭时刻;

⑵假设每个方向绿灯开启时间不同,每个周期内起始时间设为t0,周期设为T,车辆自北向南直行方向绿灯信号标识为 车辆自北向南左转方向绿灯信号标识为 车辆自北向南右转方向绿灯信号标识为车辆自南向北直行方向绿灯信号标识为 车辆自南向北左转方向绿灯信号标识为 车辆自南向北右转方向绿灯信号标识为车辆自西向东直行方向绿灯信号标识为 车辆自西向东左转方向绿灯信号标识为 车辆自西向东右转方向绿灯信号标识为车辆自东向西直行方向绿灯信号标识为 车辆自东向西左转方向绿灯信号标识为 车辆自东向西右转方向绿灯信号标识为⑶行人从右手边自东向西方向穿越交叉路口绿灯信号标识为行人从左手边自东向西方向穿越交叉路口绿灯信号标识为行人从右手边自西向东方向穿越交叉路口绿灯信号标识为行人从左手边自西向东方向穿越交叉路口绿灯信号标识为行人从右手边自南向北方向穿越交叉路口绿灯信号标识为行人从左手边自南向北方向穿越交叉路口绿灯信号标识为行人从右手边自北向南方向穿越交叉路口绿灯信号标识为行人从左手边自北向南方向穿越交叉路口绿灯信号标识为⑷必选的绿冲突约束为:bss·bes=0,bss·bws=0,bss·bnl=0,bns·bsl=0,bes·bwl=

0,bws·bel=0,bss·brwr=0,bss·brwl=0,bss·brer=0,bss·brel=0,bns·bes=0,bns·bws=

0;bns·brwr=0,bns·brwl=0,bns·brer=0,bns·brel=0;

⑸选择采用的绿冲突约束为:

当东向西直行绿灯早于北向南方向左转,即向东方向,绿灯时, 即北向南左转方向绿灯开启时刻大于东向西直行绿灯结束时刻与东向西直行绿灯结束后最后一辆车由斑马线通过北向南方向左转车道后的时间 之和;

当东向西直行绿灯晚于北向南方向左转,即向东方向,绿灯时, 即东向西直行绿灯开启时刻大于北向南方向左转绿灯结束时刻与北向南左转方向绿灯结束后最后一辆车由斑马线通过东向西直行车道后的时间 之和;

当西向东直行绿灯早于南向北方向左转,即向西方向,绿灯时, 即南向北左转方向绿灯开启时刻大于西向东直行绿灯结束后最后一辆车由斑马线通过南向北方向左转车道后的时间 之和;

当西向东直行绿灯晚于南向北方向左转,即向西方向,绿灯时, 即西向东直行绿灯开启时刻大于南向北方向左转绿灯结束时刻与南向北左转方向绿灯结束后最后一辆车由斑马线到达西向东直行车道后的时间 之和;

当南向北直行绿灯早于东向西方向左转,即向南方向,绿灯时,即东向西左转方向绿灯开启时刻大于南向北直行绿灯结束时刻与南向北直行绿灯结束后最后一辆车由斑马线通过东向西方向左转车道后的时间 之和;

当南向北直行绿灯晚于东向西方向左转,即向南方向,绿灯时,即南向北直行绿灯开启时刻大于东向西左转方向绿灯结束时刻与东向西左转方向绿灯结束后最后一辆车由斑马线通过南向北直行车道后的时间 之和;

当北向南直行绿灯早于西向东左转方向,即向北方向,绿灯时, 即西向东左转方向绿灯开启时刻大于北向南直行绿灯结束时刻与北向南直行绿灯结束后最后一辆车由斑马线通过西向东方向左转车道后的时间 之和;

当北向南直行绿灯晚于西向东左转方向,即向北方向,绿灯时, 即北向南直行绿灯开启时刻大于西向东方向左转绿灯结束时刻与西向东左转方向绿灯结束后最后一辆车由斑马线到达北向南直行车道后的时间 之和;

当北向南左转绿灯早于东向西右手方向行人绿灯时,trwri>tslf,即东向西右手方向行人绿灯开启时间大于北向南左转绿灯结束时刻;

当北向南左转绿灯晚于东向西右手方向行人绿灯时, 即北向南左转绿灯开启时间大于东向西右手方向行人绿灯结束时刻与东向西右手方向行人绿灯结束后东向西右手方向行人由等待线通过北向南左转方向车道的时间 之和;

当西向东左转绿灯早于东向西右手方向行人绿灯时, 即东向西右手方向行人绿灯开启时间大于西向东左转绿灯结束时刻与西向东左转绿灯结束后最后一辆车由斑马线到达南向北车道后的时间 之和;

当西向东左转绿灯晚于东向西右手方向行人绿灯时,teli>trwrf,即西向东左转绿灯开启时间大于东向西右手方向行人绿灯结束时刻;

当南向北左转绿灯早于东向西左手方向行人绿灯时,trwli>tnlf,即东向西左手方向行人绿灯开启时间大于南向北左转绿灯结束时刻;

当南向北左转绿灯晚于东向西左手方向行人绿灯时, 即南向北左转绿灯开启时间大于东向西左手方向行人绿灯结束时刻与东向西左手方向行人绿灯结束后东向西左手方向行人由等待线通过南向北左转方向车道的时间 之和;

当东向西左转绿灯早于东向西左手方向行人绿灯时, 即东向西左手方向行人绿灯开启时间大于东向西左转绿灯结束时刻与东向西左转绿灯结束后最后一辆车由斑马线到达北向南车道后的时间 之和;

当东向西左转绿灯晚于东向西左手方向行人绿灯时,teli>trwlf,即西向东左转绿灯开启时间大于东向西左手方向行人绿灯结束时刻;

当南向北左转绿灯早于西向东右手方向行人绿灯时,treri>tnlf,即西向东右方向行人绿灯开启时间大于南向北左转绿灯结束时刻;

当南向北左转绿灯晚于西向东右手方向行人绿灯时, 即南向北左转绿灯开启时间大于西向东右手方向行人绿灯结束时刻与西向东右手方向行人绿灯结束结束后西向东右手方向行人由等待线通过南向北左转方向车道的时间 之和;

当东向西左转绿灯早于西向东右手方向行人绿灯时, 即西向东右手方向行人绿灯开启时间大于东向西左转绿灯结束时刻与东向西左转绿灯结束后最后一辆车由斑马线到达北向南车道后的时间 之和;

当东向西左转绿灯晚于西向东右手方向行人绿灯时,teli>trwrf,即西向东左转绿灯开启时间大于西向东右手方向行人绿灯结束时刻;

当北向南左转绿灯早于西向东左手方向行人绿灯时,treli>tslf,即西向东左手方向行人绿灯开启时间大于北向南左转绿灯结束时刻;

当北向南左转绿灯晚于西向东左手方向行人绿灯时, 即北向南左转绿灯开启时间大于西向东左手方向行人绿灯结束时刻与西向东左手方向行人绿灯结束后西向东左手方向行人由等待线通过北向南左转方向车道的时间 之和;

当西向东左转绿灯早于西向东左手方向行人绿灯时, 即西向东左手方向行人绿灯开启时间大于西向东左转绿灯结束时刻与西向东左转绿灯结束后最后一辆车由斑马线到达南向北车道后的时间 之和;

当西向东左转绿灯晚于西向东左手方向行人绿灯时,teli>trelf,即西向东左转绿灯开启时间大于西向东左手方向行人绿灯结束时刻;

将路口方向逆时针旋转90度,即北代替原来东、西代替原来北、南代替原来西、东代替原来南,同理可以得到南向北、北向南行人的绿冲突约束条件;

步骤4:交通流模型动态约束表达如下:①自由流状态下的电子空穴微观交通流模型为:式中,xn(t)是时刻t第n辆车所在位置, 是时刻t第n辆车的速度,为等价速度,vf为自由行驶速度,ρ为交通流密度,ρjam为出现阻塞时的饱和交通流密度,l,m为正整数参数,△xn(t)是连续的两辆车之间的车头间距,V[△xn(t)]是第n辆车优化速度函数,a是驾驶员的敏感系数,λa是相对速度差的反应参数,车辆正常行驶时s=0,前方的第n+

1辆车通过斑马线而第n辆车被交通信号灯禁止通过时s=1,第n辆车跟随前方的第n+1辆车行驶时有空隙而被其它车道车辆插入、第n辆车不得不调整速度时s=2,第n辆车驶向其它车道插队时s=3,sgn为符号函数, da为车辆可以插入的最小跟车空隙,γa为第n辆车对插入车辆的反应系数,V[△xi(t)]为插入车辆的前向优化速度函数,当第n辆车驶向其它车道但尾部仍在当前车道导致后方的第n-1车不能越过时db=1,当第n辆车已经完全驶向其它车道、当前车道后方的第n-1车能够越过时db=-1,γb0为第n-1辆车对第n辆车驶向其它车道但尾部仍在当前车道的反应系数,γb1为第n-1辆车对第n辆车已经完全驶向其它车道、可以加速追赶跟随前方第n+1辆车的反应系数,A>0为刹车加速度;

②将 近似表达为:

其中,T为采样周期;

得到前方m辆车影响的改进跟驰微观离散交通流模型为:进而得到递推计算式:

其中,Vi[△xn(iT)]是第n辆车在t=iT时的优化速度函数,N为正整数;

③给定xn(0)=0,xn(1)=0,根据(4)式可以得到当|xn[(N+2)T]-Ln|<δ时的N,其中,Ln为第n辆排队车辆在绿灯开启后要行驶的距离,δ为给定的正数;

经验统计得到第n辆排队车辆在绿灯开启后需要延时tdn后才能开动,这样,第n辆排队车辆在绿灯开启后要行驶距离Ln所需时间tnf为:tnf=tdn+NT;

步骤5:信号优化配时方法如下:

(1)建立优化指标:

J=min{λewsLews+λenrLenr+λeslLesl+λwesLwes+λwnlLwnl+λwsrLwsr+λsnsLsns+λserLser+λswlLswl+λnssLnss+λnwrLnwr+λnelLnel+ρewrRewr+ρewlRewl+ρwerRwer+ρwelRwel+ρnsrRnsr+ρnslRnsl+ρsnrRsnr+ρsnlRsnl}其中:λ表示车辆加权系数,L表示排队车辆长度,ρ表示行人加权系数,R表示行人数,λ和L的下标第1和第2位的e,s,w,n分别表示东、南、西、北方向,且第1位朝向第2位方向;第三位s,r,l分别表示直行、右转和左转;例如Lews为东向西直行方向的车辆排队队长,λews为东向西直行方向的车辆排加权系数;ρ和R下标第1和第2位的e,s,w,n分别表示东、南、西、北方向,且第1位朝向第2位方向;第三位l,r分别表示从前进方向的左手边或右手边穿越人行道;

(2)选取交叉路口信号总周期:

TZ=fz(Lews,Lwes,Lsns,Lnss)其中:TZ为所有方向车辆和行人绿灯放行时间并集,即交叉路口信号总周期,fz(Lews,Lwes,Lsns,Lnss)为根据经验已经确定的函数;

根据步骤5(1)的优化指标和步骤3的绿冲突约束,采用线性规划方法确定各个绿灯开启、持续时间及需要放行的车辆数;

(3)根据步骤4的改进跟驰车辆交通流模型确定放行车辆数与放行时间的关系,按照各个方向需要放行的车辆数,对步骤5(2)确定的各个绿灯开启、持续时间进行修正,确定信号总周期。

说明书 :

基于图像检测与自由流状态电子空穴约束模型的交通信号控

制方法

技术领域

[0001] 本发明涉及一种基于图像检测与自由流状态电子空穴约束模型的交通信号控制方法,属于信号处理、通信技术和交通信号控制技术。

背景技术

[0002] 近年来,随着各种交通工具的数量大大增加,国际上很多国家的设施、道路、交通管理系统已经很难适应这种发展速度,特别是大、中城市交通基础设施不足、交通信号控制
的不协调、交通疏导系统缺乏、车辆调度和管理的混乱、交通参与者的交规意识淡薄等诸多
方面的原因导致了城市交通较拥堵现象,由此又引发了交通安全、环境污染等一系列的社
会经济问题;为此,国内外很多学者致力于交通拥堵问题研究,并试图以公交优先等优化调
度方式解决城市交通拥堵问题;在北京、上海等十几个城市引进了国外的交通控制网络,期
望能够缓解城市交通问题;由于中国城市交通控制问题远比国外工业发达国家复杂,特别
是机动车、非机动车、行人的相互干扰、道路质量、投入经费等问题,使得国际许多著名交通控制系统在应用时常常效果不佳甚至失效;原因是国外的SCATS和SCOOT等系统仅仅考虑交
通不拥堵情况,与控制系统配套的检测方案仅仅是进入或驶出交通路口的车流量,由此得
到的优化方案常常出现错误;因此,以上措施和理想化的研究工作仍不能缓解交通拥堵问
题。
[0003] 交通信号控制是利用交通信号,对道路上运行的车辆和行人进行指挥和疏导,交通信号自动控制是交通拥堵缓解控制的重要组成部分,是科学交通管理的一种有效手段,
路口信号机是交通信号的控制器,其主要用于路口的信号灯控制,其既可以独立地实现控
制,又可以实时地采集交通信息提供给中央控制机作为决策的依据;现有的信号机实现独
立控制的功能已经比较强大:根据各交通路口的不同需要可以实现多相位控制方式;根据
不同时间段交通流量的不同可以实现多时段的控制方式,并且还可以根据工作日与节假日
来设置不同的控制方案;控制面板上的按钮可以方便的实现手动/自动、联动、感应、多时
段、绿冲突等控制,并且配有通信接口,可以实现联网远程控制,以方便地使指挥中心对路
口的信号机进行远程监控或通过便携机进行现场监控,满足区域协调控制的要求。
[0004] 通过交通图像检测、建立合理的交通流模型,是提高交叉路口车辆放行率的有效途径;而现有交叉路口信号控制方法还不能同时考虑排队长度和交通流模型,影响了交叉
路口车辆放行效率。

发明内容

[0005] 为了解决现有交叉路口信号控制还不能同时考虑排队长度和交通流模型、影响车辆放行效率问题,本发明提出了一种基于图像检测与自由流状态电子空穴约束模型的交通
信号控制方法,该方法设计了完整的多路图像检测方案,并以FPGA芯片作为交叉路口各个
方向车辆排队长度的检测和处理中心,完成对交叉路口各个方向的图像快速采集、图像处
理、车辆排队长度和行人信息提取;同时,设置了完整的交通“绿冲突”约束、建立了优化指标函数和多车辆跟驰约束交通流模型,采用交叉路口放行车辆优化和依赖交通流模型时间
对应的两步法进行交通信号的优化配时,完成一个完整周期的交通信号控制优化设计;提
高了交叉路口车辆放行效率。
[0006] 本发明解决其技术问题所采用的技术方案:一种基于图像检测与自由流状态电子空穴约束模型的交通信号控制方法,其特征包含以下步骤:
[0007] 步骤1:交叉路口的交通信号控制方案每个信号周期设计一次,交通信号控制方案设计内容包括多路图像信息检测、“绿冲突”约束设置、排队车辆交通流模型、信号优化设计四部分内容;交通信号控制方案设计时间Tsheji小于给定值,在信号执行过程中不能反复调
整;在执行下一个信号周期之前Tsheji时刻就设计该周期交通信号控制方案,以保证多路图
像信息检测得到最新的交通状况;
[0008] 步骤2:将多路交通视频经过视频解码模块数字化后送入FPGA,在FPGA中先通过边缘检测和二值化、完成对图像进行预处理并将其存入SRAM缓冲,然后根据车道线像素构成
的车道检测区域对图像进行分割和腐蚀,提取出路口各个方向排队车辆长度和车间距,并
将相邻两帧图像中指定的同一区域在FPGA进行比较,获得有无目标运动信息以得到车辆运
动速度;类似的方法用于检测行人多寡和行进速度;多路图像信息检测获取以下信息:
[0009] ⑴东向西直行:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达对面路口时间;
[0010] ⑵西向东直行:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达对面路口时间;
[0011] ⑶北向南直行:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达对面路口时间;
[0012] ⑷南向北直行:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达对面路口时间;
[0013] ⑸东向南左转:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达南路口时间;
[0014] ⑹西向北左转:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达北路口时间;
[0015] ⑺北向东左转:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达东路口时间;
[0016] ⑻南向西左转:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达西路口时间;
[0017] ⑼东向北右转:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达北路口时间;
[0018] ⑽西向南右转:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达南路口时间;
[0019] ⑾北向西右转:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达西路口时间;
[0020] ⑿南向东右转:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达东路口时间;
[0021] ⒀行人东向西:分别从右、左两边分析行人在人行绿灯开启后与车辆冲突,分析人数多寡及构成情况;
[0022] ⒁行人西向东:分别从右、左两边分析行人在人行绿灯开启后与车辆冲突,分析人数多寡及构成情况;
[0023] ⒂行人南向北:分别从右、左两边分析行人在人行绿灯开启后与车辆冲突,分析人数多寡及构成情况;
[0024] ⒃行人北向南:分别从右、左两边分析行人在人行绿灯开启后与车辆冲突,分析人数多寡及构成情况;
[0025] 步骤3:绿冲突约束;
[0026] ⑴对于车辆,定义下标第一个字母s是车辆自北向南方向,n是车辆自南向北方向,e是车辆自西向东方向,w是车辆自东向西方向;下标第二个字母s是车辆直行、r是车辆右
转、l是车辆左转;下标第三个字母i表示绿灯开启时刻,f表示绿灯关闭时刻;下标rwr为行
人从右手边、即北边、自东向西方向穿越交叉路口,rwl为行人从左手边、即南边、自东向西方向穿越交叉路口,rer为行人从右手边、即南边、自西向东方向穿越交叉路口,rel为行人
从左手边、即北边、自西向东方向穿越交叉路口,rnr为行人从右手边、即东边、自南向北方向穿越交叉路口,rnl为行人从左手边、即西边、自南向北方向穿越交叉路口,rsr为行人从
右手边、即西边、自北向南方向穿越交叉路口,rsl为行人从左手边、即东边、自北向南方向穿越交叉路口;对于行人,下标第四个字母i表示绿灯开启时刻,f表示绿灯关闭时刻;
[0027] ⑵假设每个方向绿灯开启时间不同,每个周期内起始时间设为t0,周期设为T,车辆自北向南直行方向绿灯信号标识为 车辆自北向南左转方向绿灯信号
标识为 车辆自北向南右转方向绿灯信号标识为
[0028] 车辆自南向北直行方向绿灯信号标识为 车辆自南向北左转方向绿灯信号标识为 车辆自南向北右转方向绿灯信号标识为
[0029] 车辆自西向东直行方向绿灯信号标识为 车辆自西向东左转方向绿灯信号标识为 车辆自西向东右转方向绿灯信号标识为
[0030] 车辆自东向西直行方向绿灯信号标识为 车辆自东向西左转方向绿灯信号标识为 车辆自东向西右转方向绿灯信号标识为
[0031] ⑶行人从右手边自东向西方向穿越交叉路口绿灯信号标识为
[0032] 行人从左手边自东向西方向穿越交叉路口绿灯信号标识为
[0033] 行人从右手边自西向东方向穿越交叉路口绿灯信号标识为
[0034] 行人从左手边自西向东方向穿越交叉路口绿灯信号标识为
[0035] 行人从右手边自南向北方向穿越交叉路口绿灯信号标识为
[0036] 行人从左手边自南向北方向穿越交叉路口绿灯信号标识为
[0037] 行人从右手边自北向南方向穿越交叉路口绿灯信号标识为
[0038] 行人从左手边自北向南方向穿越交叉路口绿灯信号标识为
[0039] ⑷必选的绿冲突约束为:bss·bes=0,bss·bws=0,bss·bnl=0,bns·bsl=0,bes·bwl=0,bws·bel=0,bss·brwr=0,bss·brwl=0,bss·brer=0,bss·brel=0,bns·bes=0,bns·bws=0;bns·brwr=0,bns·brwl=0,bns·brer=0,bns·brel=0;
[0040] ⑸选择采用的绿冲突约束为:
[0041] 当东向西直行绿灯早于北向南方向左转,即向东方向,绿灯时,即北向南左转方向绿灯开启时刻大于东向西直行绿灯结束时刻与东向西直行绿灯结束后
最后一辆车由斑马线通过北向南方向左转车道后的时间 之和;
[0042] 当东向西直行绿灯晚于北向南方向左转,即向东方向,绿灯时,即东向西直行绿灯开启时刻大于北向南方向左转绿灯结束时刻与北向南左转方向绿灯结
束后最后一辆车由斑马线通过东向西直行车道后的时间 之和;
[0043] 当西向东直行绿灯早于南向北方向左转,即向西方向,绿灯时,即南向北左转方向绿灯开启时刻大于西向东直行绿灯结束后最后一辆车由斑马线通过南
向北方向左转车道后的时间 之和;
[0044] 当西向东直行绿灯晚于南向北方向左转,即向西方向,绿灯时,即西向东直行绿灯开启时刻大于南向北方向左转绿灯结束时刻与南向北左转方向绿灯结
束后最后一辆车由斑马线到达西向东直行车道后的时间 之和;
[0045] 当南向北直行绿灯早于东向西方向左转,即向南方向,绿灯时,即东向西左转方向绿灯开启时刻大于南向北直行绿灯结束时刻与南向北直行绿灯结束后
最后一辆车由斑马线通过东向西方向左转车道后的时间 之和;
[0046] 当南向北直行绿灯晚于东向西方向左转,即向南方向,绿灯时,即南向北直行绿灯开启时刻大于东向西左转方向绿灯结束时刻与东向西左转方向绿灯结
束后最后一辆车由斑马线通过南向北直行车道后的时间 之和;
[0047] 当北向南直行绿灯早于西向东左转方向,即向北方向,绿灯时,即西向东左转方向绿灯开启时刻大于北向南直行绿灯结束时刻与北向南直行绿灯结束后
最后一辆车由斑马线通过西向东方向左转车道后的时间 之和;
[0048] 当北向南直行绿灯晚于西向东左转方向,即向北方向,绿灯时,即北向南直行绿灯开启时刻大于西向东方向左转绿灯结束时刻与西向东左转方向绿灯结
束后最后一辆车由斑马线到达北向南直行车道后的时间 之和;
[0049] 当北向南左转绿灯早于东向西右手方向行人绿灯时,trwri>tslf,即东向西右手方向行人绿灯开启时间大于北向南左转绿灯结束时刻;
[0050] 当北向南左转绿灯晚于东向西右手方向行人绿灯时, 即北向南左转绿灯开启时间大于东向西右手方向行人绿灯结束时刻与东向西右手方向行人绿
灯结束后东向西右手方向行人由等待线通过北向南左转方向车道的时间 之和;
[0051] 当西向东左转绿灯早于东向西右手方向行人绿灯时, 即东向西右手方向行人绿灯开启时间大于西向东左转绿灯结束时刻与西向东左转绿灯结束后
最后一辆车由斑马线到达南向北车道后的时间 之和;
[0052] 当西向东左转绿灯晚于东向西右手方向行人绿灯时,teli>trwrf,即西向东左转绿灯开启时间大于东向西右手方向行人绿灯结束时刻;
[0053] 当南向北左转绿灯早于东向西左手方向行人绿灯时,trwli>tnlf,即东向西左手方向行人绿灯开启时间大于南向北左转绿灯结束时刻;
[0054] 当南向北左转绿灯晚于东向西左手方向行人绿灯时, 即南向北左转绿灯开启时间大于东向西左手方向行人绿灯结束时刻与东向西左手方向行人绿
灯结束后东向西左手方向行人由等待线通过南向北左转方向车道的时间 之和;
[0055] 当东向西左转绿灯早于东向西左手方向行人绿灯时, 即东向西左手方向行人绿灯开启时间大于东向西左转绿灯结束时刻与东向西左转绿灯结束
后最后一辆车由斑马线到达北向南车道后的时间 之和;
[0056] 当东向西左转绿灯晚于东向西左手方向行人绿灯时,teli>trwlf,即西向东左转绿灯开启时间大于东向西左手方向行人绿灯结束时刻;
[0057] 当南向北左转绿灯早于西向东右手方向行人绿灯时,treri>tnlf,即西向东右方向行人绿灯开启时间大于南向北左转绿灯结束时刻;
[0058] 当南向北左转绿灯晚于西向东右手方向行人绿灯时, 即南向北左转绿灯开启时间大于西向东右手方向行人绿灯结束时刻与西向东右手方向行人绿
灯结束结束后西向东右手方向行人由等待线通过南向北左转方向车道的时间 之
和;
[0059] 当东向西左转绿灯早于西向东右手方向行人绿灯时, 即西向东右手方向行人绿灯开启时间大于东向西左转绿灯结束时刻与东向西左转绿灯结束
后最后一辆车由斑马线到达北向南车道后的时间 之和;
[0060] 当东向西左转绿灯晚于西向东右手方向行人绿灯时,teli>trwrf,即西向东左转绿灯开启时间大于西向东右手方向行人绿灯结束时刻;
[0061] 当北向南左转绿灯早于西向东左手方向行人绿灯时,treli>tslf,即西向东左手方向行人绿灯开启时间大于北向南左转绿灯结束时刻;
[0062] 当北向南左转绿灯晚于西向东左手方向行人绿灯时, 即北向南左转绿灯开启时间大于西向东左手方向行人绿灯结束时刻与西向东左手方向行人绿
灯结束后西向东左手方向行人由等待线通过北向南左转方向车道的时间 之和;
[0063] 当西向东左转绿灯早于西向东左手方向行人绿灯时, 即西向东左手方向行人绿灯开启时间大于西向东左转绿灯结束时刻与西向东左转绿灯结束后
最后一辆车由斑马线到达南向北车道后的时间 之和;
[0064] 当西向东左转绿灯晚于西向东左手方向行人绿灯时,teli>trelf,即西向东左转绿灯开启时间大于西向东左手方向行人绿灯结束时刻;
[0065] 将路口方向逆时针旋转90度,即北代替原来东、西代替原来北、南代替原来西、东代替原来南,同理可以得到南向北、北向南行人的绿冲突约束条件;
[0066] 步骤4:交通流模型动态约束表达如下:
[0067] ①自由流状态下的电子空穴微观交通流模型为:
[0068]
[0069] 式中,xn(t)是时刻t第n辆车所在位置, 是时刻t第n辆车的速度,为等价速度,vf为自由行驶速度,ρ为交通流密度,ρjam为出现阻塞
时的饱和交通流密度,l,m为正整数参数,Δxn(t)是连续的两辆车之间的车头间距,V[Δxn
(t)]是第n辆车优化速度函数,a是驾驶员的敏感系数,λa是相对速度差的反应参数,车辆正常行驶时s=0,前方的第n+1辆车通过斑马线而第n辆车被交通信号灯禁止通过时s=1,第n
辆车跟随前方的第n+1辆车行驶时有空隙而被其它车道车辆插入、第n辆车不得不调整速度
时s=2,第n辆车驶向其它车道插队时s=3,sgn为符号函数, da为车辆
可以插入的最小跟车空隙,γa为第n辆车对插入车辆的反应系数,V[Δxi(t)]为插入车辆的
前向优化速度函数,当第n辆车驶向其它车道但尾部仍在当前车道导致后方的第n-1车不能
越过时db=1,当第n辆车已经完全驶向其它车道、当前车道后方的第n-1车能够越过时db=-
1,γb0为第n-1辆车对第n辆车驶向其它车道但尾部仍在当前车道的反应系数,γb1为第n-1
辆车对第n辆车已经完全驶向其它车道、可以加速追赶跟随前方第n+1辆车的反应系数,A>
0为刹车加速度;
[0070] ②将 近似表达为:
[0071]
[0072] 其中,T为采样周期;
[0073] 得到前方m辆车影响的改进跟驰微观离散交通流模型为:
[0074]
[0075] 进而得到递推计算式:
[0076]
[0077] 其中,Vi[Δxn(iT)]是第n辆车在t=iT时的优化速度函数,N为正整数;
[0078] ③给定xn(0)=0,xn(1)=0,根据(4)式可以得到当|xn[(N+2)T]-Ln|<δ时的N,其中,Ln为第n辆排队车辆在绿灯开启后要行驶的距离,δ为给定的正数;
[0079] 经验统计得到第n辆排队车辆在绿灯开启后需要延时tdn后才能开动,这样,第n辆排队车辆在绿灯开启后要行驶距离Ln所需时间tnf为:tnf=tdn+NT;
[0080] 步骤5:信号优化配时方法如下:
[0081] (1)建立优化指标:
[0082] J=min{λewsLews+λenrLenr+λeslLesl+λwesLwes+λwnlLwnl+λwsrLwsr+λsnsLsns+λserLser+λswlLswl+λnssLnss+λnwrLnwr+λnelLnel+ρewrRewr+ρewlRewl+ρwerRwer+ρwelRwel+ρnsrRnsr+ρnslRnsl+ρsnrRsnr+ρsnlRsnl}
[0083] 其中:λ表示车辆加权系数,L表示排队车辆长度,ρ表示行人加权系数,R表示行人数,λ和L的下标第1和第2位的e,s,w,n分别表示东、南、西、北方向,且第1位朝向第2位方向;第三位s,r,l分别表示直行、右转和左转;例如Lews为东向西直行方向的车辆排队队长,λews为东向西直行方向的车辆排加权系数;ρ和R下标第1和第2位的e,s,w,n分别表示东、南、西、北方向,且第1位朝向第2位方向;第三位l,r分别表示从前进方向的左手边或右手边穿越人
行道;
[0084] (2)选取交叉路口信号总周期:
[0085] TZ=fz(Lews,Lwes,Lsns,Lnss)
[0086] 其中:TZ为所有方向车辆和行人绿灯放行时间并集,即交叉路口信号总周期,fz(Lews,Lwes,Lsns,Lnss)为根据经验已经确定的函数;
[0087] 根据步骤5(1)的优化指标和步骤3的绿冲突约束,采用线性规划方法确定各个绿灯开启、持续时间及需要放行的车辆数;
[0088] (3)根据步骤4的改进跟驰车辆交通流模型确定放行车辆数与放行时间的关系,按照各个方向需要放行的车辆数,对步骤5(2)确定的各个绿灯开启、持续时间进行修正,确定
信号总周期。
[0089] 本发明的有益效果是:设计了完整的多路图像检测方案,并以FPGA芯片作为交叉路口各个方向车辆排队长度的检测和处理中心,完成对交叉路口各个方向的图像快速采
集、图像处理、车辆排队长度和行人信息提取;同时,设置了完整的交通“绿冲突”约束、建立了优化指标函数和多车辆跟驰约束交通流模型,采用交叉路口放行车辆优化和依赖交通流
模型时间对应的两步法进行交通信号的优化配时,完成一个完整周期的交通信号控制优化
设计;提高了交叉路口车辆放行效率。
[0090] 下面结合附图和实施例对本发明作详细说明。

附图说明

[0091] 附图1是本发明的流程结构框图;
[0092] 附图2是本发明的图像采集与排队长度提取硬件结构框图。

具体实施方式

[0093] 参照附图1、附图2。
[0094] 步骤1:交叉路口的交通信号控制方案每个信号周期设计一次,交通信号控制方案设计内容包括多路图像信息检测、“绿冲突”约束设置、排队车辆交通流模型、信号优化设计四部分内容;交通信号控制方案设计时间Tsheji小于给定值,在信号执行过程中不能反复调
整;在执行下一个信号周期之前Tsheji时刻就设计该周期交通信号控制方案,以保证多路图
像信息检测得到最新的交通状况;
[0095] 步骤2:每个方向视频采集单元采用4个CCD,它可以把现场图像采集进来并送给A/D转化芯片作进一步处理;A/D芯片采用PHILIPS公司的7111H芯片,7111H芯片有4个模拟通
道,通过分时采集4路的图像信号,分时进行处理,可以通过编程选择7111的转换模式,通过I2C总线进行编程,完成7111H的初始化工作,信号的输出格式也由I2C总线进行控制,采用
CCIR601的4:2:2格式;这样,现场图像就从模拟数据转换成数字数据,可以通过缓存器,送给FPGA芯片进行相应的处理;FPGA采用美国Altera公司的Cyclone系列FPGA中的EP1C12芯
片;该芯片密集度达12060个LE单元(每个LE包括一个LUT,一个触发器和相关逻辑,是芯片
实现逻辑的最基本结构,也是FPGA综合性能评价的主要指标),完全能够满足图像处理算法
和系统逻辑控制的需要;169个用户可用I/O端口满足系统实现图像采集和存储的多个芯片
连接要求;缓冲器采用了FIFO器件1041V;由A/D转换芯片转换而来的视频数据直接进入
FIFO,在FIFO中暂时存放;当FPGA需要对其进行处理时,可以通过重复读指令进行读操作,
因为重复指令可以把一条多到5个周期的指令变为1个周期的指令,所以FPGA一次可以读大
量的数据,从而实现缓冲的功能;将多路交通视频经过视频解码模块数字化后送入FPGA,在
FPGA中先通过边缘检测和二值化完成对图像进行预处理并将其存入SRAM缓冲,然后根据车
道线像素构成的车道检测区域对图像进行分割和腐蚀,提取出路口各个方向排队车辆长度
和车间距,并将相邻两帧图像中指定的同一区域在FPGA进行比较,获得有无目标运动信息
以得到车辆运动速度;类似的方法用于检测行人多寡和行进速度;多路图像信息检测获取
以下信息:
[0096] ⑴东向西直行:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达对面路口时间;
[0097] ⑵西向东直行:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达对面路口时间;
[0098] ⑶北向南直行:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达对面路口时间;
[0099] ⑷南向北直行:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达对面路口时间;
[0100] ⑸东向南左转:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达南路口时间;
[0101] ⑹西向北左转:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达北路口时间;
[0102] ⑺北向东左转:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达东路口时间;
[0103] ⑻南向西左转:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达西路口时间;
[0104] ⑼东向北右转:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达北路口时间;
[0105] ⑽西向南右转:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达南路口时间;
[0106] ⑾北向西右转:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达西路口时间;
[0107] ⑿南向东右转:每个排队车辆的车间距、绿灯开启后排队车辆的每辆车到达斑马线时间、到达东路口时间;
[0108] ⒀行人东向西:分别从右、左两边分析行人在人行绿灯开启后与车辆冲突,分析人数多寡及构成情况;
[0109] ⒁行人西向东:分别从右、左两边分析行人在人行绿灯开启后与车辆冲突,分析人数多寡及构成情况;
[0110] ⒂行人南向北:分别从右、左两边分析行人在人行绿灯开启后与车辆冲突,分析人数多寡及构成情况;
[0111] ⒃行人北向南:分别从右、左两边分析行人在人行绿灯开启后与车辆冲突,分析人数多寡及构成情况;
[0112] 步骤3:绿冲突约束;
[0113] ⑴对于车辆,定义下标第一个字母s是车辆自北向南方向,n是车辆自南向北方向,e是车辆自西向东方向,w是车辆自东向西方向;下标第二个字母s是车辆直行、r是车辆右
转、l是车辆左转;下标第三个字母i表示绿灯开启时刻,f表示绿灯关闭时刻;下标rwr为行
人从右手边、即北边、自东向西方向穿越交叉路口,rwl为行人从左手边、即南边、自东向西方向穿越交叉路口,rer为行人从右手边、即南边、自西向东方向穿越交叉路口,rel为行人
从左手边、即北边、自西向东方向穿越交叉路口,rnr为行人从右手边、即东边、自南向北方向穿越交叉路口,rnl为行人从左手边、即西边、自南向北方向穿越交叉路口,rsr为行人从
右手边、即西边、自北向南方向穿越交叉路口,rsl为行人从左手边、即东边、自北向南方向穿越交叉路口;对于行人,下标第四个字母i表示绿灯开启时刻,f表示绿灯关闭时刻;
[0114] ⑵假设每个方向绿灯开启时间不同,每个周期内起始时间设为t0,周期设为T,车辆自北向南直行方向绿灯信号标识为 车辆自北向南左转方向绿灯信号标
识为 车辆自北向南右转方向绿灯信号标识为
[0115] 车辆自南向北直行方向绿灯信号标识为 车辆自南向北左转方向绿灯信号标识为 车辆自南向北右转方向绿灯信号标识为
[0116] 车辆自西向东直行方向绿灯信号标识为 车辆自西向东左转方向绿灯信号标识为 车辆自西向东右转方向绿灯信号标识为
[0117] 车辆自东向西直行方向绿灯信号标识为 车辆自东向西左转方向绿灯信号标识为 车辆自东向西右转方向绿灯信号标识为
[0118] ⑶行人从右手边自东向西方向穿越交叉路口绿灯信号标识为
[0119] 行人从左手边自东向西方向穿越交叉路口绿灯信号标识为
[0120] 行人从右手边自西向东方向穿越交叉路口绿灯信号标识为
[0121] 行人从左手边自西向东方向穿越交叉路口绿灯信号标识为
[0122] 行人从右手边自南向北方向穿越交叉路口绿灯信号标识为
[0123] 行人从左手边自南向北方向穿越交叉路口绿灯信号标识为
[0124] 行人从右手边自北向南方向穿越交叉路口绿灯信号标识为
[0125] 行人从左手边自北向南方向穿越交叉路口绿灯信号标识为
[0126] ⑷必选的绿冲突约束为:bss·bes=0,bss·bws=0,bss·bnl=0,bns·bsl=0,bes·bwl=0,bws·bel=0,bss·brwr=0,bss·brwl=0,bss·brer=0,bss·brel=0,bns·bes=0,bns·bws=0;bns·brwr=0,bns·brwl=0,bns·brer=0,bns·brel=0;
[0127] ⑸选择采用的绿冲突约束为:
[0128] 当东向西直行绿灯早于北向南方向左转,即向东方向,绿灯时,即北向南左转方向绿灯开启时刻大于东向西直行绿灯结束时刻与东向西直行绿灯结束后
最后一辆车由斑马线通过北向南方向左转车道后的时间 之和;
[0129] 当东向西直行绿灯晚于北向南方向左转,即向东方向,绿灯时,即东向西直行绿灯开启时刻大于北向南方向左转绿灯结束时刻与北向南左转方向绿灯结
束后最后一辆车由斑马线通过东向西直行车道后的时间 之和;
[0130] 当西向东直行绿灯早于南向北方向左转,即向西方向,绿灯时,即南向北左转方向绿灯开启时刻大于西向东直行绿灯结束后最后一辆车由斑马线通过南
向北方向左转车道后的时间 之和;
[0131] 当西向东直行绿灯晚于南向北方向左转,即向西方向,绿灯时,即西向东直行绿灯开启时刻大于南向北方向左转绿灯结束时刻与南向北左转方向绿灯结
束后最后一辆车由斑马线到达西向东直行车道后的时间 之和;
[0132] 当南向北直行绿灯早于东向西方向左转,即向南方向,绿灯时,即东向西左转方向绿灯开启时刻大于南向北直行绿灯结束时刻与南向北直行绿灯结束后
最后一辆车由斑马线通过东向西方向左转车道后的时间 之和;
[0133] 当南向北直行绿灯晚于东向西方向左转,即向南方向,绿灯时,即南向北直行绿灯开启时刻大于东向西左转方向绿灯结束时刻与东向西左转方向绿灯结
束后最后一辆车由斑马线通过南向北直行车道后的时间 之和;
[0134] 当北向南直行绿灯早于西向东左转方向,即向北方向,绿灯时,即西向东左转方向绿灯开启时刻大于北向南直行绿灯结束时刻与北向南直行绿灯结束后
最后一辆车由斑马线通过西向东方向左转车道后的时间 之和;
[0135] 当北向南直行绿灯晚于西向东左转方向,即向北方向,绿灯时,即北向南直行绿灯开启时刻大于西向东方向左转绿灯结束时刻与西向东左转方向绿灯结
束后最后一辆车由斑马线到达北向南直行车道后的时间 之和;
[0136] 当北向南左转绿灯早于东向西右手方向行人绿灯时,trwri>tslf,即东向西右手方向行人绿灯开启时间大于北向南左转绿灯结束时刻;
[0137] 当北向南左转绿灯晚于东向西右手方向行人绿灯时, 即北向南左转绿灯开启时间大于东向西右手方向行人绿灯结束时刻与东向西右手方向行人绿
灯结束后东向西右手方向行人由等待线通过北向南左转方向车道的时间 之和;
[0138] 当西向东左转绿灯早于东向西右手方向行人绿灯时, 即东向西右手方向行人绿灯开启时间大于西向东左转绿灯结束时刻与西向东左转绿灯结束后
最后一辆车由斑马线到达南向北车道后的时间 之和;
[0139] 当西向东左转绿灯晚于东向西右手方向行人绿灯时,teli>trwrf,即西向东左转绿灯开启时间大于东向西右手方向行人绿灯结束时刻;
[0140] 当南向北左转绿灯早于东向西左手方向行人绿灯时,trwli>tnlf,即东向西左手方向行人绿灯开启时间大于南向北左转绿灯结束时刻;
[0141] 当南向北左转绿灯晚于东向西左手方向行人绿灯时, 即南向北左转绿灯开启时间大于东向西左手方向行人绿灯结束时刻与东向西左手方向行人绿
灯结束后东向西左手方向行人由等待线通过南向北左转方向车道的时间 之和;
[0142] 当东向西左转绿灯早于东向西左手方向行人绿灯时, 即东向西左手方向行人绿灯开启时间大于东向西左转绿灯结束时刻与东向西左转绿灯结束后
最后一辆车由斑马线到达北向南车道后的时间 之和;
[0143] 当东向西左转绿灯晚于东向西左手方向行人绿灯时,teli>trwlf,即西向东左转绿灯开启时间大于东向西左手方向行人绿灯结束时刻;
[0144] 当南向北左转绿灯早于西向东右手方向行人绿灯时,treri>tnlf,即西向东右方向行人绿灯开启时间大于南向北左转绿灯结束时刻;
[0145] 当南向北左转绿灯晚于西向东右手方向行人绿灯时, 即南向北左转绿灯开启时间大于西向东右手方向行人绿灯结束时刻与西向东右手方向行人绿
灯结束结束后西向东右手方向行人由等待线通过南向北左转方向车道的时间 之
和;
[0146] 当东向西左转绿灯早于西向东右手方向行人绿灯时, 即西向东右手方向行人绿灯开启时间大于东向西左转绿灯结束时刻与东向西左转绿灯结束
后最后一辆车由斑马线到达北向南车道后的时间 之和;
[0147] 当东向西左转绿灯晚于西向东右手方向行人绿灯时,teli>trwrf,即西向东左转绿灯开启时间大于西向东右手方向行人绿灯结束时刻;
[0148] 当北向南左转绿灯早于西向东左手方向行人绿灯时,treli>tslf,即西向东左手方向行人绿灯开启时间大于北向南左转绿灯结束时刻;
[0149] 当北向南左转绿灯晚于西向东左手方向行人绿灯时, 即北向南左转绿灯开启时间大于西向东左手方向行人绿灯结束时刻与西向东左手方向行人绿
灯结束后西向东左手方向行人由等待线通过北向南左转方向车道的时间 之和;
[0150] 当西向东左转绿灯早于西向东左手方向行人绿灯时, 即西向东左手方向行人绿灯开启时间大于西向东左转绿灯结束时刻与西向东左转绿灯结束后
最后一辆车由斑马线到达南向北车道后的时间 之和;
[0151] 当西向东左转绿灯晚于西向东左手方向行人绿灯时,teli>trelf,即西向东左转绿灯开启时间大于西向东左手方向行人绿灯结束时刻;
[0152] 将路口方向逆时针旋转90度,即北代替原来东、西代替原来北、南代替原来西、东代替原来南,同理可以得到南向北、北向南行人的绿冲突约束条件;
[0153] 步骤4:交通流模型动态约束表达如下:
[0154] ①自由流状态下的电子空穴微观交通流模型为:
[0155]
[0156] 式中,xn(t)是时刻t第n辆车所在位置, 是时刻t第n辆车的速度,为等价速度,vf为自由行驶速度,ρ为交通流密度,ρjam为出现阻塞
时的饱和交通流密度,l,m为正整数参数,Δxn(t)是连续的两辆车之间的车头间距,V[Δxn
(t)]是第n辆车优化速度函数,a是驾驶员的敏感系数,λa是相对速度差的反应参数,车辆正常行驶时s=0,前方的第n+1辆车通过斑马线而第n辆车被交通信号灯禁止通过时s=1,第n
辆车跟随前方的第n+1辆车行驶时有空隙而被其它车道车辆插入、第n辆车不得不调整速度
时s=2,第n辆车驶向其它车道插队时s=3,sgn为符号函数, da为车辆
可以插入的最小跟车空隙,γa为第n辆车对插入车辆的反应系数,V[Δxi(t)]为插入车辆的
前向优化速度函数,当第n辆车驶向其它车道但尾部仍在当前车道导致后方的第n-1车不能
越过时db=1,当第n辆车已经完全驶向其它车道、当前车道后方的第n-1车能够越过时db=-
1,γb0为第n-1辆车对第n辆车驶向其它车道但尾部仍在当前车道的反应系数,γb1为第n-1
辆车对第n辆车已经完全驶向其它车道、可以加速追赶跟随前方第n+1辆车的反应系数,A>0
为刹车加速度;
[0157] ②将 近似表达为:
[0158]
[0159] 其中,T为采样周期;
[0160] 得到前方m辆车影响的改进跟驰微观离散交通流模型为:
[0161]
[0162] 进而得到递推计算式:
[0163]
[0164] 其中,Vi[Δxn(iT)]是第n辆车在t=iT时的优化速度函数,N为正整数;
[0165] ③给定xn(0)=0,xn(1)=0,根据(4)式可以得到当|xn[(N+2)T]-Ln|<δ时的N,其中,Ln为第n辆排队车辆在绿灯开启后要行驶的距离,δ为给定的正数;
[0166] 经验统计得到第n辆排队车辆在绿灯开启后需要延时tdn后才能开动,这样,第n辆排队车辆在绿灯开启后要行驶距离Ln所需时间tnf为:tnf=tdn+NT;
[0167] 步骤5:信号优化配时方法如下:
[0168] (1)建立优化指标:
[0169] J=min{λewsLews+λenrLenr+λeslLesl+λwesLwes+λwnlLwnl+λwsrLwsr+λsnsLsns+λserLser+λswlLswl+λnssLnss+λnwrLnwr+λnelLnel+ρewrRewr+ρewlRewl+ρwerRwer+ρwelRwel+ρnsrRnsr+ρnslRnsl+ρsnrRsnr+ρsnlRsnl}
[0170] 其中:λ表示车辆加权系数,L表示排队车辆长度,ρ表示行人加权系数,R表示行人数,λ和L的下标第1和第2位的e,s,w,n分别表示东、南、西、北方向,且第1位朝向第2位方向;第三位s,r,l分别表示直行、右转和左转;例如Lews为东向西直行方向的车辆排队队长,λews为东向西直行方向的车辆排加权系数;ρ和R下标第1和第2位的e,s,w,n分别表示东、南、西、北方向,且第1位朝向第2位方向;第三位l,r分别表示从前进方向的左手边或右手边穿越人
行道;
[0171] (2)选取交叉路口信号总周期:
[0172] TZ=fz(Lews,Lwes,Lsns,Lnss)
[0173] 其中:TZ为所有方向车辆和行人绿灯放行时间并集,即交叉路口信号总周期,fz(Lews,Lwes,Lsns,Lnss)为根据经验已经确定的函数;
[0174] 根据步骤5(1)的优化指标和步骤3的绿冲突约束,采用线性规划方法确定各个绿灯开启、持续时间及需要放行的车辆数;
[0175] (3)根据步骤4的改进跟驰车辆交通流模型确定放行车辆数与放行时间的关系,按照各个方向需要放行的车辆数,对步骤5(2)确定的各个绿灯开启、持续时间进行修正,确定
信号总周期。