用于车辆的驱动装置转让专利

申请号 : CN201610084912.0

文献号 : CN105882383B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 马场正幸堤贵彦佐藤俊

申请人 : 丰田自动车株式会社

摘要 :

一种用于车辆的驱动装置,包括:发动机(10);MG(20);第一旋转轴(31);第二旋转轴(32);变速器(34),其布置在第一旋转轴(31)和第二旋转轴(32)之间;驱动轮(35),其联接至第二旋转轴(32);第一离合器(K0),其能够中断发动机(10)和第一旋转轴(31)之间的动力传递;第二离合器(K2),其能够中断MG(20)和第一旋转轴(31)之间的动力传递;以及ECU(100),其用于控制发动机(10)、MG(20)、变速器(34)、第一离合器(K0)和第二离合器(K2)。当第一旋转轴(31)的转速变得高于阈值时,ECU(100)释放第二离合器(K2),且ECU(100)将阈值在驾驶员发出加速请求的情形下比在未发出加速请求的情形下设定得低。结果,对于离合器减少了接合或分离MG(20)的操作次数。

权利要求 :

1.一种用于车辆的驱动装置,包括:发动机;

电动发电机;

第一旋转轴和第二旋转轴;

变速器,其布置在所述第一旋转轴和所述第二旋转轴之间;

驱动轮,其联接至所述第二旋转轴;

第一离合器,其能够中断所述发动机和所述第一旋转轴之间的动力传递;

第二离合器,其能够中断所述电动发电机和所述第一旋转轴之间的动力传递;以及控制单元,其用于控制所述发动机、所述电动发电机、所述变速器、所述第一离合器以及所述第二离合器,所述发动机的上限转速高于所述电动发电机的上限转速,所述控制单元配置为在所述第一旋转轴的转速高于阈值的情形下释放所述第二离合器,以及所述控制单元配置为在驾驶员发出加速请求的情形下,将所述阈值设定得低于所述变速器的升档之后的所述第一旋转轴的转速。

2.根据权利要求1所述的用于车辆的驱动装置,其中所述第二离合器是具有犬齿的离合器。

3.根据权利要求1所述的用于车辆的驱动装置,其中在驾驶员发出所述加速请求的情形下,所述控制单元随着车速的增加而提升所述阈值。

4.根据权利要求1所述的用于车辆的驱动装置,其中所述控制单元基于由所述驾驶员操作的开关或者换档杆的设定来判定是否发出了所述加速请求。

5.根据权利要求1所述的用于车辆的驱动装置,其中在加速器压下程度已经等于或者大于预定值超过预定时间的情形下,所述控制单元判定发出了所述加速请求。

说明书 :

用于车辆的驱动装置

[0001] 该非临时申请是基于在2015年2月13日提交日本专利局的编号为2015-026295的日本专利申请,其整个内容通过引用合并于此。

技术领域

[0002] 本发明涉及一种用于车辆的驱动装置,且具体地涉及一种设置有发动机、电动发电机以及变速器的车辆的驱动装置。

背景技术

[0003] 特开号为2004-150507的日本专利公开了一种设置有发动机、电动发电机以及变速器的混合动力车辆。在该混合动力车辆中,变速器布置在电动发电机的旋转轴和机械地连接至驱动轮的内啮合齿轮轴之间,并且配置为在必要时接合这两个轴或者与这两个轴分离。因而,在由于驱动轮的空转而在混合动力车辆中发生滑动的情形下,对于变速器来说能够解除电动发电机的旋转轴和内啮合齿轮轴之间的接合,以便使电动发电机与驱动轮脱离。因此,能够防止电动发电机由于滑动而以过大转速工作。当滑动被解决时,变速器以小的变速比接合旋转轴和内啮合齿轮轴。结果,能够防止车辆再次滑动,这非常可能在先前的滑动之后立即发生。
[0004] 但是,还存在的可能性为:在驾驶员打算继续加速的情形下发生电动发电机的过度旋转,这未被在特开号为2004-150507的日本专利中所公开的现有技术所讨论。
[0005] 为了方便设计,在设置有发动机和电动发电机的车辆中,通常的是将发动机的上限转速Nemax和电动发电机的上限转速Ngmax之间的关系设计为满足Nemax>Ngmax。
[0006] 对于这种车辆,在发动机的转速增加的情形下,为了防止电动发电机过度旋转,必需在发动机的转速达到上限转速Nemax之前使电动发电机和发动机轴分离。因此,离合器(下文描述为离合器K2)在混合动力车辆中被设置用于使电动发电机和发动机的旋转轴分离。
[0007] 当车速根据来自驾驶员的加速意图增加时,发动机的旋转轴的转速将超出Ngmax并且达到Nemax。紧接在转速达到Ngmax之前,释放离合器,从而使电动发电机和旋转轴分离。
[0008] 当驾驶员打算继续加速从而车速进一步增加时,紧接在转速达到Nemax之前由变速器执行升档。由于这种操作,旋转轴的转速变得低于Ngmax,并且离合器被再次接合。当车速进一步增加时,离合器被再次释放。
[0009] 如上所述,在驾驶员打算继续加速的情形下,响应于在加速期间旋转轴的转速增加和在升档时旋转轴的转速减小,离合器被反复地接合和分离。这种转速波动(hunting)状态在离合器操作时造成车辆中的震动,并且引起转矩响应于电动发电机的接合或者分离而波动,这并不是喜欢看到的。

发明内容

[0010] 鉴于上述问题,本发明已经完成,因此本发明的目的是提供一种用于车辆的驱动装置,以便对于离合器减少接合或者分离电动发电机的操作次数。
[0011] 总之,本发明提供了一种用于车辆的驱动装置,其包括:发动机;电动发电机;第一旋转轴和第二旋转轴;变速器,其布置在第一旋转轴和第二旋转轴之间;驱动轮,其联接至第二旋转轴;第一离合器;第二离合器;以及控制单元。第一离合器能够中断发动机和第一旋转轴之间的动力传递。第二离合器能够中断电动发电机和第一旋转轴之间的动力传递。控制单元控制发动机、电动发电机、变速器、第一离合器和第二离合器。控制单元配置为在第一旋转轴的转速高于阈值的情形下释放第二离合器。控制单元配置为将阈值在驾驶员发出加速请求的情形下比在未发出加速请求的情形下设定得低。
[0012] 在驾驶员继续请求加速的情形下,车速继续增加,从而升档将在自动变速器中发生若干次。在该情况下,如果阈值被固定至电动发电机过度旋转时的转速,那么第二离合器的接合和分离将反复若干次,这造成转速波动发生,且结果,在车辆中会发生震动,使得驾驶员感觉到转矩变化。因而,在驾驶员请求加速的情形下,将阈值设定得更低。
[0013] 将阈值设定得更低等同于如图2和图3中所示的将分离电动发电机的范围从范围A扩大至范围B,这将在后面描述。因而,甚至在车速增加期间反复升档,因为旋转轴的变化范围落入用于分离电动发电机的扩大后的范围B中,所以第二离合器将不再接合,从而转速波动不可能发生在第二离合器中。
[0014] 优选地,第二离合器是具有犬齿的离合器,称为犬牙式离合器。犬牙式离合器的优势在于:其价格低并且要求小的安装空间,但是其劣势在于:如果档与转速不同步,那么接合时发生的震动极大。在驾驶员继续请求加速的情形下,车速将继续增加,并且如果在此时执行升档,则因为转速变化极大,所以尤其很难将档与转速同步。根据本发明,第二离合器在此时将不再接合,因而,使用犬牙式离合器作为第二离合器是特别有效的。
[0015] 优选地,在发出所述加速请求的情形下,所述控制单元随着车速的增加而提升所述阈值。但是,降低阈值将使得电动发电机较早地和驱动轮分离,这不利于车辆性能。随着车速变高,转速在升档期间的变化幅度变小,通过如上所述控制阈值,能够增加在高速范围内使用电动发电机来辅助转矩的机会。
[0016] 优选地,控制单元基于由驾驶员操作的开关或者换档杆的设定来判定是否发出了加速请求。
[0017] 优选地,在加速器压下程度已经等于或者大于预定值超过预定时间的情形下,控制单元判定发出了加速请求。
[0018] 根据本发明,甚至在由驾驶员发出加速请求的情形下,每次在变速器中执行换档时,都能够防止电动发电机被反复接合或分离,从而使得驾驶员在驾驶时感觉更舒适。
[0019] 当与附图相结合时,本发明的前述和其他目的、特征、方案以及优势从以下本发明的具体实施方式中将变得更加显而易见。

附图说明

[0020] 图1是示出根据本实施例的用于车辆1的驱动装置的总体配置的示意图。
[0021] 图2是用于解释用来防止MG 20过度旋转的MG分离范围的示意图。
[0022] 图3是示出节气门开度小于图2的节气门开度的示例的示意图。
[0023] 图4是用于解释本实施例中在离合器K2上执行的控制的流程图。

具体实施方式

[0024] 下文中,将参考附图详细描述本发明的实施例。应该注意的是,在附图中相同的或者对应的零件将指定有相同的附图标记,且将不再重复对其的描述。
[0025] 图1是示出根据本实施例的用于车辆1的驱动装置的总体配置的示意图。用于车辆1的驱动装置包括发动机10、电动发电机(下文还称为“MG”)20、电力控制回路(下文称为“PCU”)21、高电压电池22、自动变速单元30、离合器K2、离合器K0、液压回路50以及电子控制单元(下文称为“ECU”)100。
[0026] 车辆1是混合动力车辆,其通过从发动机10和MG 20中的至少一个经由自动变速单元30和差速装置36传递至驱动轮35的动力被驱动而行驶。发动机10是诸如汽油发动机或者柴油发动机的内燃机。用作自动变速单元30的输入轴的旋转轴31,经由离合器K0联接至发动机10的输出轴12。用作自动变速单元30的输出轴的旋转轴32,联接至驱动轮35。根据本实施例的自动变速单元30包括变矩器33和自动变速器34。
[0027] 自动变速器34的换档范围由驾驶员经由换档杆104而设定。自动变速器34的换档范围从包括以下内容的多个换档范围中进行选择:向前驱动范围(D范围)、倒档驱动范围(R范围)、驻车范围(P范围)以及空档范围(N范围)。例如,如果用户关闭IG开关(未示出)(IG OFF状态),则自动变速器34的换档范围被设定为“P范围”。在P范围中,旋转轴32被固定(为驻车而锁定)并且和自动变速单元30中的旋转轴31分离。
[0028] 通过使用差速器锁定开关102,能够将差速装置36设定为差速器锁定状态,在该状态下,两个驱动轮的转速是相等的。
[0029] 典型地,MG 20由三相永磁同步电动机构造。换句话说,MG 20的转子安装有永久磁铁。MG 20的定子缠绕有三相线圈(U相线圈、V相线圈以及W相线圈),且每个相线圈的另一端在中性点处彼此连接。
[0030] MG 20的转子是内部中空的,且旋转轴31被插入其中。离合器K2布置在MG 20的转子的内表面和旋转轴31之间。因而,MG 20的转子经由离合器K2联接至旋转轴31。离合器K2优选为具有犬齿的犬牙式离合器。犬牙式离合器的优势在于:其价格低并且要求小的安装空间,但是劣势在于:在档与转速不同步的情形下在接合时发生的震动极大。
[0031] 通过从高电压电池22经由PCU 21的媒介所供给的高电压电力来驱动MG20。同时,当MG 20通过从旋转轴31传递的动力(从发动机10或者从驱动轮传递的动力)旋转时,MG 20发电。高电压电池22储蓄将要供给在高电压下工作的MG 20的电力。
[0032] PCU 21设置有转换器和变流器。转换器配置为增大从高电压电池22输入的电压并且输出增大后的电压至变流器,或者配置为减小从变流器输入的电压并且输出减小后的电压至高电压电池22。变流器配置为将从转换器输入的电流转换成三相交流电流并且输出该三相交流电流至MG 20,或者配置为将从MG 20输入的三相交流电流转换成直流并且输出直流至转换器。
[0033] 液压回路50配置为调整从电油泵或者机械油泵(未示出)供给的液压油的液压,并且供给具有调整后的液压的液压油至自动变速单元30、离合器K2和离合器K0。
[0034] 根据本实施例的离合器K2是常闭的离合器(下文称为“N/C”),其在没有液压油供给的通常状态下接合并且在供给有预定压力的液压油的状态下释放。类似地,根据本实施例的离合器K0也是N/C离合器,其在通常状态下接合并且在供给有预定压力的液压油的状态下释放。
[0035] 虽然未在附图中示出,但是车辆1设置有用于检测控制车辆1所需的物理参数(诸如发动机10的转速(发动机转速Ne)、车轮速度Nw、由用户操纵的加速踏板106的变量、MG 20的转速(MG转速Ng)以及旋转轴31的转速(输入轴转速Nat))的多个传感器。这些传感器发送检测结果至ECU 100。
[0036] ECU 100配置为包括中央处理单元(CPU,未示出)和内部存储器。当用户执行用于启动车辆1的操作(将IG开关(未示出)从OFF(关)状态切换至ON(开)状态的操作,下文称为“IG ON操作”)时,ECU 100被激活。当ECU 100因IG ON操作而被激活时,ECU 100基于来自传感器的信息和存储在存储器中的信息来执行预定的算术运算,并且基于运算结果来控制车辆1中的各个设备。
[0037] ECU 100控制车辆1在电动机行驶模式、混合动力行驶模式以及发动机行驶模式的任何一个模式下行驶。如果电池的SOC充分高,那么车辆被控制以当车速低(例如,30km/h或者更低)时在电动机行驶模式下行驶,而当车速高(例如,30km/h或更高)时在混合动力行驶模式或者发动机行驶模式下行驶。
[0038] 在电动机行驶模式下,ECU 100使离合器K2接合(使MG 20联接至旋转轴31)并且使离合器K0释放(使发动机10和旋转轴31分离)以便通过使用来自MG 20的动力来使旋转轴31旋转。
[0039] 在混合动力行驶模式下,ECU 100使离合器K2(使MG 20联接至旋转轴31)和离合器K0(使发动机10联接至旋转轴31)接合以便通过使用来自发动机10和MG 20中的至少一个的动力来使旋转轴31旋转。
[0040] 在发动机行驶模式下,ECU 100使离合器K2释放(使MG 20和旋转轴31分离)并且使离合器K0接合(使发动机10联接至旋转轴31)以便通过使用来自发动机10的动力来使旋转轴31旋转。在该状态下,因为MG 20从传动系脱离,所以车辆1起的作用与具有布置在发动机和驱动轮之间的自动变速器的通常发动机车辆相同。
[0041] [对MG 20的过度旋转避免控制]
[0042] 当具有图1中所示配置的混合动力车辆正在由MG 20的辅助下利用发动机10行驶时,因为离合器K0和K2被接合,所以发动机10的转速等于MG 20的转速。
[0043] 虽然发动机10的转速等于MG 20的转速,但是这不意味着发动机10的上限转速(Nemax)必然等于MG 20的上限转速(Ngmax)。而是,因为难以使得上限转速彼此相等,所以为了便于设计,通常的是设定Nemax>Ngmax。
[0044] 在这种车辆中,在发动机的转速增加的情形下,为了防止电动发电机过度旋转,在发动机的转速达到上限转速Nemax之前必需使MG 20和发动机轴分离。
[0045] 图2是用于解释用来防止MG 20过度旋转的MG分离范围的示意图。参考图2,横轴表示车速,纵轴表示旋转轴31的转速。应该注意的是,在该图中,节气门开度是全开,换句话说,θ=WOT(全开的节气门)。发动机10的上限转速(Nemax)和MG 20的上限转速(Ngmax)之间的范围设定为MG分离范围A。
[0046] 因为大多数车辆被设计为具有Nemax>Ngmax,从而,旋转轴31可以以大于Ngmax的转速旋转。在该情况下,如果离合器K2不释放以使MG 20和旋转轴31分离,那么MG 20会过度旋转。
[0047] 首先,将描述在车辆正在加速的情形下的分离范围A的应用。
[0048] 当车速从零起被加速时,正如由图中的粗线指示的,首先自动变速器34被设定为第一档,并且旋转轴31的转速将超出Ngmax并且达到Nemax。在该过程中,紧接在转速达到Ngmax之前(在点P1的附近),释放离合器K2以使MG 20和旋转轴31分离。
[0049] 当车速进一步增加时,紧接在第一档中的转速达到Nemax之前自动变速器34从第一档升档至第二档。响应于该升档,旋转轴31的转速突然下降并且在点P2的附近变得低于Ngmax,离合器K2被再次接合。
[0050] 当车速在自动变速器34处于第二档的条件下进一步增加时,离合器K2在点P3附近被释放,在升档至第三档之后,离合器K2在点P4附近被接合。当车速在第三档进一步增加时,离合器K2在点P5附近被再次释放。当自动变速器34从第三档升档至第四档时,随同升档一起的转速的下降幅度(档位间隔(gear step))是小的,MG 20保持在分离状态。
[0051] 如上所述,响应于加速期间旋转轴31的转速的增加和在升档时旋转轴31的转速的减小,离合器K2被反复地接合和分离。这种转速波动状态在离合器操作时造成车辆中的震动并且根据MG 20的存在或者不存在而引起转矩波动,这并不是喜欢看到的。
[0052] 特别地,当升档发生在点P2或者点P4时,发动机转速Ne急速波动,从而,比较难以使MG 20的转速和旋转轴31的转速同步以使离合器K2接合。因此,由于在接合离合器K2时转速不能成功同步,所以会发生震动,由于在接合离合器K2时MG 20的转速的突然改变,所以会发生过度输出,并且在接合离合器K2时由于滑动,所以离合器K2的寿命会降低。
[0053] 因此,根据本实施例,在驾驶员打算继续加速并且转速在转速Ngmax附近反复改变的情形下,MG分离范围从分离范围A扩大至分离范围B。具体地,如图2所示,MG分离范围中的转速的低速边界从Ngmax变为由虚线指示的Nsw。
[0054] Nsw是用于判定离合器K2的接合和分离的边界值,并且可以针对每个节气门开度通过施加裕量至连接升档时转速下降所处的那些点的线而获得。
[0055] 注意的是,可以基于在加速期间离合器K2的估计接合持续时间来确定Nsw。
[0056] 在本实施例中,如图2中所示,用于使电动发电机脱离的转速Nsw被设定得低于升档之后的发动机转速。因而,即使车速如图2中由粗线所示的那样增加,MG分离范围B的应用也能够防止因反复接合和分离而在离合器K2中发生转速波动,且因而,防止在车辆中发生震动并且防止离合器K2的寿命减少。
[0057] 在图2中,节气门开度设定为等于WOT,但是节气门开度并不限于WOT。只要旋转轴31的转速被加速超出Ngmax,MG分离范围就能够以相同方式扩大。
[0058] 图3是示出节气门开度小于图2中的节气门开度的示例的示意图。在图3中,节气门开度为例如70%。比较图3与图2,在节气门开度为70%的情形下升档期间转速的改变幅度(档位间隔)小于在节气门开度为WOT的情形下升档期间转速的改变幅度(档位间隔)。但是,甚至在该情况下,旋转轴31的转速在升档时也将跨过Ngmax变化。
[0059] 因此,甚至在转速如图3中由粗线所示的那样改变的情形下,也能通过将MG分离范围从范围A扩大至范围B来控制离合器。
[0060] 基于上述描述,将再次参考图1来描述本实施例。用于本实施例的车辆的驱动装置包括发动机10、MG 20、旋转轴31和32、布置在旋转轴31和旋转轴32之间的自动变速器34、联接至旋转轴32的驱动轮35、离合器K0、离合器K2以及ECU 100。离合器K0能够中断发动机10和旋转轴31之间的动力传递。离合器K2能够中断MG 20和旋转轴31之间的动力传递。ECU 100控制发动机10、MG 20、自动变速器34、离合器K0以及离合器K2。ECU 100配置为在旋转轴
31的转速高于阈值的情形下释放离合器K2。ECU 100配置为将阈值在驾驶员发出加速请求的情形下比在未发出加速请求的情形下设定得低。
[0061] 在驾驶员继续请求加速的情形下,车速继续增加,如图2和图3中所示,升档将在自动变速器34中发生若干次。在该情况下,如果阈值被固定至MG 20过度旋转的转速,那么离合器K2的接合和分离将反复若干次,造成转速波动的发生,且结果,在车辆中会发生震动,使得驾驶员感觉到转矩变化。因而,在驾驶员请求加速的情形下,阈值设定地更低以便尽可能地防止转速波动发生在离合器K2中。
[0062] 优选地,离合器K2是具有犬齿的离合器,称作犬牙式离合器。犬牙式离合器的优势在于:其价格低并且要求小的安装空间,但是其劣势在于:在档与转速不同步的情形下在接合时发生的震动极大。在驾驶员继续请求加速的情形下,车速将继续增加,如果在此时执行升档,则因为转速变化极大,所以尤其很难将档与转速同步。根据本发明,离合器K2在此时将不再接合,从而,使用犬牙式离合器作为离合器K2是特别有效的。
[0063] 优选地,在发出所述加速请求的情形下,ECU 100随着车速的增加而提升阈值Nsw。但是,降低阈值将使得MG 20较早和驱动轮35分离,这不利于车辆性能。随着车速变高,转速在升档期间的变化幅度变小,通过如上所述控制阈值,能够增加在高速范围内使用MG 20来辅助转矩的机会。
[0064] 接下来,参考图4中的流程图,将描述由ECU 100执行的控制。图4是用于解释本实施例中的在离合器K2上执行的控制的流程图。流程图的处理由预定主程序调用且每次在已经经过预定时间间隔或满足预定条件之后执行。
[0065] 参考图1和图4,当流程图的处理开始时,首先在步骤S100,ECU 100判定用户是否打算继续加速。优选地,ECU 100基于由驾驶员操作的开关或者换档杆的设定来判定是否发出了加速请求。ECU 100可以在设计用于动力加速的开关(诸如差速器锁定开关102)被操作或者换档杆被移至L范围的情形下,判定用户继续请求加速。可选择地,ECU 100可以在加速器压下程度已经等于或者大于预定值超过预定时间的情形下判定用户继续请求加速。
[0066] 在步骤S100判定用户不打算继续加速的情形下(在S100中为否),处理进行到步骤S210。在步骤S210,阈值被设定为从如图2和图3中所示的Ngmax减去裕量的值。该裕量可以是根据加速度和离合器K2的释放时间间隔估计出的值。
[0067] 另一方面,在步骤S100判定用户打算继续加速的情形下(在S100中为是),处理进行到步骤S200。在步骤S200,阈值被设定为如图2和图3所示的Nsw。
[0068] 如图2和图3所示,对于每个节气门开度,阈值Nsw通过从连接以下这些点的线中减去裕量而获得:这些点由从执行升档时的时刻的高转速下降的旋转轴31的转速和同一时刻的车速来定义。
[0069] 在步骤S200或者S210中确定了阈值之后,在步骤S300判定发动机转速Ne和MG 20的转速Ng中较小的一个是否大于阈值Nsw。比较发动机转速Ne和MG 20的转速Ng两者的原因是因为当离合器K2接合时Ng=Ne,因而可以根据Ng来执行判定,但是当离合器K2释放时,在Ne和Ng均不大于阈值的这种条件下离合器K2应该接合。
[0070] 在步骤S300满足MIN(Ne,Ng)>阈值Nsw的情形下(在S300中为是),处理进行到步骤S400,在该步骤中,判定使MG 20和旋转轴31分离。另一方面,在步骤S300不满足MIN(Ne,Ng)>阈值Nsw的情形下(在S300中为否),处理进行到步骤S410,在该步骤中,判定联接离合器K2以便使MG 20接合至旋转轴31。
[0071] 在步骤S400或者步骤S410中作出判定之后,在步骤S500中ECU 100控制液压回路50以响应于在上述获得的每个判定结果而接合或者分离离合器K2。在随后的步骤S600中,控制处理返回至主程序。
[0072] 如上所述,根据本实施例,用于分离MG 20的范围是基于驾驶员是否继续请求加速来改变的。因而,在驾驶员继续请求加速的情形下能够防止在离合器K2的接合和分离期间发生转速波动。
[0073] 而且,如图2和图3中所示,MG分离范围B的边界随车速变高而提升,从而,能够扩大用于MG 20的可用范围。
[0074] 虽然已经详细描述和示出了本发明,但是应该清楚地理解的是,本发明是仅通过说明和示例的方式来描述而不是通过限制的方式,本发明的范围由随附的权利要求项来解释。