一种硫硒化镉固溶体量子点及其制备方法和光催化产氢应用转让专利

申请号 : CN201610214312.1

文献号 : CN105885847B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 余家国牟善伟

申请人 : 武汉理工大学

摘要 :

本发明涉及一种CdSeS固溶体量子点及其制备方法和光催化产氢应用,硫硒化镉固溶体量子点的制备方法为:1)制备Na2SeSO3溶液:将硒粉在亚硫酸钠的水溶液中回流,得到Na2SeSO3溶液;2)制备CdSe量子点悬浮液:将(CH3COO)2Cd·2H2O溶于蒸馏水中,并用碱液调节溶液pH值为11,通氮气30分钟,然后在氮气气氛下加入巯基乙酸和Na2SeSO3溶液,常温下反应1h,再于40‑60℃反应40‑60min得到水溶性CdSe量子点悬浮液;3)向蒸馏水中加入水溶性CdSe量子点悬浮液、Na2S和Na2SO3,所得混合物采用超声分散后继续搅拌反应得到CdSeS固溶体量子点。

权利要求 :

1.一种CdSeS固溶体量子点的制备方法,其特征在于步骤如下:

1)制备Na2SeSO3溶液:将亚硫酸钠和硒粉按质量比3:1加入去离子水中,于70-90℃回流

5-10小时,得到浓度为0.1-0.2mol/L的硒代硫酸钠溶液;

2)制备水溶性CdSe量子点悬浮液:将(CH3COO)2Cd·2H2O溶于蒸馏水中,所得溶液浓度为0.5-1.5mg/L,并用碱液调节溶液pH值为11,常温并在氮气气氛下反应半小时,然后加入巯基乙酸和步骤1)所得硒代硫酸钠溶液,先在常温下搅拌反应1h,然后于40-60℃反应40-

60min得到水溶性CdSe量子点悬浮液;

3)制备CdSeS固溶体量子点:向蒸馏水中加入步骤2)所得水溶性CdSe量子点悬浮液、Na2S和Na2SO3,所得混合物在常温下超声分散后继续搅拌反应40-60min得到CdSeS固溶体量子点的悬浮液,再离心烘干得到CdSeS固溶体量子点。

2.根据权利要求1所述的制备方法,其特征在于步骤2)所述巯基乙酸与蒸馏水体积比为1:750;所述硒代硫酸钠溶液与蒸馏水体积比为1:60。

3.根据权利要求1所述的制备方法,其特征在于步骤2)所述水溶性CdSe量子点悬浮液浓度为500-780mg/L。

4.根据权利要求1所述方法,其特征在于:步骤3)所述水溶性CdSe量子点悬浮液与蒸馏水体积比为1:4-40,所述Na2S与水溶性CdSe量子点质量比为156-1562:1;所述Na2SO3与水溶性CdSe量子点质量比为328-3275:1。

5.根据权利要求4所述方法,其特征在于:步骤3)所述水溶性CdSe量子点悬浮液与蒸馏水体积比为1:10-20。

6.根据权利要求1-5任一所述方法制备的CdSeS固溶体量子点在光催化产氢方面的用途,其特征在于:直接将CdSeS固溶体量子点的悬浮液置于水中,加入Na2S和Na2SO3作为牺牲剂,在可见光照射下进行光还原水分解产氢。

说明书 :

一种硫硒化镉固溶体量子点及其制备方法和光催化产氢应用

技术领域

[0001] 本发明属于光催化材料技术领域,具体涉及一种CdSeS固溶体量子点及其制备方法和光催化分解蒸馏水制氢的应用。

背景技术

[0002] 氢气作为一种清洁能源,具有高燃烧值、零污染排放等优点,同时它也是一种常用的工业原料,广泛应用于合成氨、石油加氢裂解、冶金工业。目前,以不可再生的化石资源为原料是氢气生产的主要途径。而化石能源的使用带来了日趋严重的能源危机以及环境问题。因此,发展可再生能源制氢技术是解决能源、环境问题的根本出路。
[0003] 光催化分解水制氢因其清洁可再生性被誉为是未来最理想的制氢途径。光催化体系分可见光响应的催化剂和紫外光响应的催化剂体系。
[0004] 研究调配具有合适能带位置的可见光响应的催化剂是提高可见光催化产氢效率、促进光催化技术进一步发展的研究重点。目前制备可见光相应的催化剂普遍工艺比较复杂,产物不易获得。

发明内容

[0005] 本发明所要解决的技术问题是针对现有技术中存在的上述不足,提供一种CdSeS固溶体量子点的制备方法及其光催化产氢方面的应用,该制备方法工艺简单,全程不需要分离提纯步骤,可直接以悬浮液形态用于光催化产氢,反应条件温和,并且所得催化剂利用太阳光制氢效率高(达13mmolg-1h-1)。
[0006] 为解决上述技术问题,本发明提供的技术方案是:
[0007] 提供一种CdSeS固溶体量子点的制备方法,其步骤如下:
[0008] 1)制备Na2SeSO3溶液:将亚硫酸钠和硒粉按质量比3:1加入去离子水中,于70-90℃回流5-10小时,得到浓度为0.1-0.2mol/L的硒代硫酸钠溶液;
[0009] 2)制备水溶性CdSe量子点悬浮液:将(CH3COO)2Cd·2H2O溶于蒸馏水中,所得溶液浓度为0.5-1.5mg/L,并用碱液调节溶液pH值为11,常温并在氮气气氛下反应半小时,然后加入巯基乙酸和步骤1)所得硒代硫酸钠溶液,先在常温下搅拌反应1h,然后于40-60℃反应40-60min得到水溶性CdSe量子点悬浮液;
[0010] 3)制备CdSeS固溶体量子点:向蒸馏水中加入步骤2)所得水溶性CdSe量子点悬浮液、Na2S和Na2SO3,所得混合物在常温下超声分散后继续搅拌反应40-60min得到CdSeS固溶体量子点的悬浮液,再离心烘干得到CdSeS固溶体量子点。
[0011] 按上述方案,步骤2)所述巯基乙酸与蒸馏水体积比为1:750;所述硒代硫酸钠溶液与蒸馏水体积比为1:60。
[0012] 按上述方案,步骤2)所述水溶性CdSe量子点悬浮液浓度为500-780mg/L。
[0013] 按上述方案,步骤3)所述水溶性CdSe量子点悬浮液与蒸馏水体积比为1:4-40,所述Na2S与水溶性CdSe量子点质量比为156-1562:1;所述Na2SO3与水溶性CdSe量子点质量比为328-3275:1。
[0014] 优选的是,步骤3)所述水溶性CdSe量子点悬浮液与蒸馏水体积比为1:10-20。
[0015] 本发明还包括根据上述方法得到的CdSeS固溶体量子点。
[0016] 本发明还包括上述方法得到的CdSeS固溶体量子点在光催化产氢方面的用途:直接将CdSeS固溶体量子点的悬浮液置于水中,加入Na2S和Na2SO3作为牺牲剂,在可见光照射下进行光还原水分解产氢。
[0017] 本发明的有益效果在于:本发明制备方法具有工艺简单、成本低廉、重复性好的特点,全程不需要分离提纯步骤,首先以亚硫酸钠和硒粉为原料制备硒代硫酸钠溶液,然后直接以硒代硫酸钠溶液进行反应,在温和条件下反应制备得到CdSe量子点悬浮液,然后以该CdSe量子点悬浮液为原料,加入硫化钠和亚硫酸钠在温和条件下制备得到CdSeS固溶体量子点的悬浮液,该悬浮液不需要分离提纯,可直接用于光催化制氢,并且悬浮液中所含硫化钠和亚硫酸钠可直接用作光催化制氢反应的牺牲剂。另外,以该CdSeS固溶体量子点作为光催化剂用于产氢可以以可见光作为光源,由于CdSeS固溶体量子点具有合适的能带结构,其比表面积巨大,由于固溶体结构其电子传输效率高,能大幅提高催化剂的制氢效率(达13mmolg-1h-1),提高了太阳能利用率,催化剂吸收光谱范围可宽至400nm左右。

附图说明

[0018] 图1为本发明对比例1制备的CdS、实施例1制备的水溶性CdSe量子点和CdSeS固溶体量子点的XRD衍射图;
[0019] 图2为实施例1制备的水溶性CdSe量子点的透射电镜照片;
[0020] 图3为实施例1制备的CdSeS固溶体量子点的透射电镜照片;
[0021] 图4a为实施例1制备的水溶性CdSe量子点的EDS图,图4b为实施例1制备的CdSeS固溶体量子点的EDS图;
[0022] 图5为对比例1制备的CdS、实施例1制备的水溶性CdSe量子点和CdSeS固溶体量子点的紫外可见漫反射图;
[0023] 图6a为实施例1制备的水溶性CdSe量子点的XPS原图,图6b为实施例1制备的CdSeS固溶体量子点的XPS原图;
[0024] 图7为实施例1所制备的CdSe量子点以及CdSeS固溶体量子点的主要元素S,Se拟合图;
[0025] 图8为实施例1所制备的CdSe量子点以及CdSeS固溶体量子点的主要元素Cd拟合图;
[0026] 图9为实施例1制备的水溶性CdSe量子点、CdSeS固溶体量子点的红外图谱;
[0027] 图10为对比例1制备的CdS、实施例1制备的CdSeS固溶体量子点的光催化制氢测试图;
[0028] 图11为实施例4加入不同量的水溶性CdSe量子点形成的CdSeS固溶体量子点的光催化制氢测试图。

具体实施方式

[0029] 为使本领域技术人员更好地理解本发明的技术方案,下面结合附图对本发明作进一步详细描述。
[0030] 对比例1
[0031] 传统的光催化剂CdS的制备:
[0032] 取5g乙酸镉与5g硫化钠加入50mL水中,在室温下磁力搅拌20min,经过真空抽滤装置,即得到CdS,用蒸馏水和乙醇分别洗涤3次并真空干燥10h,即可得到黄色产物CdS,其XRD衍射图如图1所示,可以看出合成的物质为结晶度良好的CdS。
[0033] 称取50mg CdS光催化剂,将其分散于80mL蒸馏水中,然后分别加入5.24g Na2SO3和2.5g Na2S作为光催化牺牲剂,在磁力搅拌下,用300W氙灯作为可见光光源,进行光还原水分解产氢实验,用气相色谱进行定性分析,确定产物H2的含量。
[0034] 图5为本实施例制备的CdS的紫外可见漫反射图,其紫外可见漫反射光谱与预期相符合。该样品在560nm附近有最强的吸收。
[0035] 图10为制备的CdS的光催化制氢测试图,可见其具有光催化性能,但是催化性能不佳,催化产氢速率仅为1mmolg-1h-1。
[0036] 实施例1
[0037] CdSeS固溶体量子点的制备:
[0038] (1)CdSe前驱体Na2SeSO3的制备:将亚硫酸钠和硒粉以3:1的质量比加入到去离子水中90℃回流10小时,得到浓度为0.2mol/L的Na2SeSO3溶液备用;
[0039] (2)水溶性CdSe量子点制备:将0.272g(CH3COO)2Cd·2H2O溶于180mL蒸馏水中搅拌,所得溶液浓度为5mg/L,然后滴加0.4mol/L的NaOH溶液至溶液的pH为11,然后通高纯氮反应30分钟,之后分别加入240μL巯基乙酸和3mL浓度为0.2mol/L的Na2SeSO3溶液,常温反应1小时,然后加热到60℃搅拌反应1h得到水溶性CdSe量子点悬浮液(浓度为780mg/L),向取出的20mL水溶性CdSe量子点悬浮液中加入30mL的丙酮,静置20min之后离心分离并在80℃下烘干即得到用于表征测试的粉末状的水溶性CdSe量子点,其XRD衍射图如图1所示。由图可见,CdSe量子点结晶度不高,这是因为表面被巯基乙酸修饰,对样品存在屏蔽效应,但能看出样品为CdSe;
[0040] (3)CdSeS量子点的制备:在含有80mL蒸馏水的烧杯中加入7mL步骤(2)制备的水溶性CdSe量子点悬浮液和5.24g Na2S与2.5g NaSO3,烧杯中的反应物超声分解后混合均匀并在常温下搅拌1h,离心烘干即得到CdSeS固溶体量子点。
[0041] 图1为本实施例制备的水溶性CdSe量子点和CdSeS固溶体量子点的XRD衍射图,可见CdSeS固溶体量子点的衍射峰位于CdSe量子点和CdS的衍射峰之间。
[0042] 图2为本实施例制备的CdSe量子点的透射电镜照片,可看出量子点的粒径为2-6nm,粒径分布较均匀。
[0043] 图4a为本实施例所制备的CdSe的元素分布图,可以看出样品中含有Cd,Se,S等元素,其中S元素为表面活性剂中巯基乙酸的S元素。
[0044] 图3b为本实施例制备的CdSeS固溶体量子点的透射电镜照片,可以看到量子点的粒径为3-8nm,粒径分布较均匀。图3c为样品的高分辨透射电镜图片,从图中可以看出CdSeS固溶体粒径变小而且图中可见明显CdSeS的晶格条纹,其晶格条纹间距为0.32nm,说明得到CdSeS固溶体结构。
[0045] 图4a为本实施例制备的CdSe的元素分布图(EDS图),可以看到合成的样品中有Cd,Se,S等元素,其中S元素为加入的表面活性剂巯基乙酸中含有S。图4b为本实施例所制备的CdSeS的元素分布图,可以看出样品中含有Cd,Se,S等元素,其中S元素明显较CdSe中的S元素显著增多,说明形成CdSeS固溶体。
[0046] 图5为本实施例制备的CdSe量子点与CdSeS固溶体量子点的紫外可见漫反射图,CdSe量子点在520nm附近吸收最强。与块状的CdSe的光吸收不同,具有量子尺寸效应。CdSeS固溶体量子点在620nm附近吸收最强,大大增强了对太阳光的利用。
[0047] 图6a为本实施例制备的水溶性CdSe量子点的XPS原图,可以看出样品中含有Cd,Se,S等元素,测得每种元素的结合能都与标准谱图中的结合能一致。图6b为本实施例制备的CdSeS固溶体量子点的XPS原图,可以看出样品中含有Cd,Se,S等元素,测得每种元素的结合能都与标准谱图中的结合能一致。
[0048] 图7为所制备的CdSe量子点(a,c)以及CdSeS固溶体量子点(b,d)的主要元素S,Se拟合图,从图中可以看出CdSeS固溶体中S元素的2p轨道的结合能相比于CdSe量子点中的S元素的2p轨道的结合能增大了,而CdSeS固溶体中Se元素的3d轨道的结合能相比于CdSe量子点中的Se元素的3d轨道的结合能减小了,这就说明S元素和Se元素之间发生了电子的转移,即Se原子将电子转移到了S原子上,从而形成了CdSeS固溶体。
[0049] 图8为所制备的CdSe量子点(a)以及CdSeS固溶体量子点(b)的主要元素Cd拟合图,可以看出CdSe和CdSeS中的Cd元素的结合能没有发生变化,进一步说明实施例1所制备的为CdSeS固溶体。
[0050] 图9为制备的水溶性CdSe量子点与CdSeS固溶体量子点的红外图谱,可见CdSe量子点表面的巯基乙酸各种基团在红外光谱中有明显的特征峰,CdSeS固溶体量子点表面的巯基乙酸各种基团在红外光谱中也有明显的特征峰。
[0051] 图10为对比例1制备的CdS与本实施例制备的CdSeS固溶体量子点的光催化制氢测试图,可以看到CdSeS固溶体量子点的产氢性能远高于CdS量子点,其产氢速率达13mmolg-1h-1。
[0052] 实施例2
[0053] CdSeS量子点的制备:
[0054] (1)CdSe前驱体Na2SeSO3的制备:将亚硫酸钠和硒粉以3:1的质量比加入到去离子水中70℃回流5小时,得到浓度为0.1mol/L的Na2SeSO3溶液;
[0055] (2)水溶性CdSe量子点制备:将0.09g(CH3COO)2Cd·2H2O溶于180mL蒸馏水中搅拌,所得溶液浓度为0.5mg/L。然后滴加0.4mol/L的NaOH溶液至溶液的pH为11,然后通高纯氮反应30分钟,之后分别加入240μL巯基乙酸和3mL浓度为0.1mol/L的Na2SeSO3溶液,常温反应1小时,然后加热到40℃搅拌反应40min得到水溶性CdSe量子点悬浮液(浓度为500mg/L),向取出的20mL水溶性CdSe量子点悬浮液中加入30mL的丙酮,静置20min之后离心分离并在80℃下烘干即得到用于表征测试的粉末状的水溶性CdSe量子点;
[0056] (3)CdSeS量子点的制备:在含有80mL蒸馏水的烧杯中加入5mL上述制备的水溶性CdSe量子点悬浮液和5.24g Na2S与2.5g NaSO3,烧杯中的反应物超声分解后混合均匀并在常温下搅拌1h,离心烘干即得到CdSeS固溶体量子点。
[0057] 实施例3
[0058] CdSeS量子点的制备:在含有80mL蒸馏水的烧杯中加入10mL实施例1制备的水溶性CdSe量子点悬浮液和5.24g Na2S与2.5g NaSO3,烧杯中的反应物超声分解后混合均匀并在常温下搅拌40min,离心烘干即得到CdSeS固溶体量子点。
[0059] 实施例4
[0060] 加入不同量的水溶性CdSe量子点悬浮液对于形成的CdSeS的光催化产氢性能影响的测试。
[0061] 在含有80mL蒸馏水的烧杯中分别加入2mL、5mL、7mL、20mL实施例1制备的水溶性CdSe量子点悬浮液和5.24g Na2S与2.5g NaSO3,烧杯中的反应物超声分解后混合均匀并搅拌一小时,在磁力搅拌下,用300W氙灯作为可见光光源,进行光还原水分解产氢实验,用气相色谱进行定性分析,确定产物的含量。
[0062] 图11为加入不同量的水溶性CdSe量子点悬浮液形成的CdSeS固溶体量子点的光催化制氢测试图,由图可知,加入5mL或7mL水溶性CdSe量子点悬浮液形成的CdSeS用于光催化产氢的效果更佳。