具有多个触点的微电子芯片转让专利

申请号 : CN201610056759.0

文献号 : CN105914478B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 罗曼·皮埃尔·帕尔马德

申请人 : 星晶公司

摘要 :

本发明涉及一种用于非接触智能卡或接触及非接触两用智能卡的电子模块(2),该电子模块(2)至少包括:第一天线(3a)、第二天线(3b)、第三天线(3c)和微电子芯片(1),其特征在于:微电子芯片包括:微处理器、至少第一触点(P1)、第二触点(P2)、第三触点(P3)、第四触点(P4)、连接在第一触点(P1)与第三触点(P3)之间的第一调谐电容器(C1)以及连接在第二触点(P2)与第四触点(P4)之间的第二电容器(C2),第一触点和第三触点(P1,P3)与微处理器的输入/输出端相连并且被配置成将通过这些天线交换的射频通信信号发送至微处理器;第一天线(3a)连接在第一触点(P1)与第三触点(P3)之间并且被配置成通过第一电容器(C1)产生谐振;第二天线(3b)连接在所述第二触点(P2)与第四触点(P4)之间并且被配置成通过第二电容器(C2)产生谐振以捕获远程读取器通过感应所发送的能量;第三天线(3c)在第二触点(P2)与第四触点(P4)之间与第二天线(3b)串联连接以将所捕获的能量发送至微电子芯片(1),并且与第一天线(3a)耦合以用于通过第一天线(3a)将第二天线(3b)所捕获的能量传送至微电子芯片(1)。

权利要求 :

1.一种用于非接触智能卡或接触及非接触两用智能卡的电子模块,所述电子模块至少包括:第一天线、第二天线、第三天线和微电子芯片,其特征在于:所述微电子芯片包括:微处理器、至少第一触点、第二触点、第三触点、第四触点、连接在所述第一触点与所述第三触点之间的第一调谐电容器以及连接在所述第二触点与所述第四触点之间的第二电容器,所述第一触点和所述第三触点与所述微处理器的输入/输出端相连并且被配置成将通过这些天线交换的射频通信信号发送至所述微处理器;

所述第一天线连接在所述第一触点与所述第三触点之间并且被配置成通过所述第一调谐电容器产生谐振;

所述第二天线连接在所述第二触点与所述第四触点之间并且被配置成通过所述第二电容器产生谐振以捕获远程读取器通过感应所发送的能量;

所述第三天线在所述第二触点与第四触点之间与所述第二天线串联连接以将所捕获的能量发送至所述微电子芯片,并且与所述第一天线耦合以用于通过所述第一天线将所述第二天线所捕获的能量传送至所述微电子芯片,并且其中,所述第三天线被磁耦合至所述第一天线。

2.根据权利要求1所述的电子模块,其中,所述第二电容器是可变电容器。

3.根据权利要求1所述的电子模块,其中,所述微电子芯片包括可变电阻器,所述可变电阻器在所述第二触点与所述第四触点之间与所述第二电容器串联连接。

说明书 :

具有多个触点的微电子芯片

技术领域

[0001] 本发明涉及智能卡或芯片卡领域。更具体地,本发明涉及非接触智能卡或接触及非接触两用智能卡中的芯片。

背景技术

[0002] 非接触智能卡被用于实现读取器与集成到智能卡的电子模块中的芯片之间的信息的短距离传输,而无需将非接触智能卡插入到读取器中并且读取器与电子模块的金属触点之间无需任何电连接。
[0003] 为此,非接触智能卡具有连接至芯片的天线以用于智能卡与卡读取器之间的射频通信。由于非接触智能卡既没有能量来源也没有能量存储,因此天线能够通过自感来为智能卡的芯片供电。
[0004] 传统地,这样的智能卡采用信用卡的形式,并且如图1所示,智能卡天线3设置在智能卡主体的基板4上。因此,天线通过电子模块2连接至芯片。这样的天线的尺寸足以确保为芯片供电。
[0005] 然而,目前,电子系统的小型化的加剧需要将非接触芯片集成到尺寸比信用卡小得多的支撑物中。如图2所示,被连接至芯片1的天线3不再被设置到卡主体中而是必须被集成到电子模块2中。因此,天线被直接连接至芯片1的两个触点La和Lb上。芯片1还包括用于使天线谐振的电容器C。然而,这样的模块内可获得的小空间不容许其将与现有非接触智能卡主体中存在的天线具有相同尺寸的天线包含在内。被集成到电子模块中的天线所能收集的能量将低得多,有可能低到难以保证对芯片正确的电力供应。
[0006] 因此,需要一种在遵守芯片所集成到的电子模块的小尺寸所导致的小可用表面区域的约束的同时,确保为非接触芯片提供合适的电力供应的系统。

发明内容

[0007] 根据第一方面,本发明涉及一种用于非接触智能卡或接触及非接触两用智能卡的电子模块,该电子模块至少包括:第一天线、第二天线、第三天线和微电子芯片,其特征在于:
[0008] 该微电子芯片包括:微处理器、至少第一触点、第二触点、第三触点、第四触点、连接在第一触点与第三触点之间的调谐电容器、连接在第二触点与第四触点之间的第二电容器,第一触点和第三触点被连接至微处理器的输入/输出端并且被配置成将通过天线交换的射频通信信号发送至所述微处理器,
[0009] 第一天线连接在第一触点与第三触点之间并且被配置成通过第一电容器使其谐振。
[0010] 第二天线连接在第二触点与第四触点之间并且被配置成通过第二电容器使其谐振以捕获远程读取器通过感应所发送的能量。
[0011] 第三天线在第二触点与第四触点之间与第二天线串联连接以将所捕获的能量发送至微电子芯片,并且与第一天线耦合以用于将第二天线所捕获的能量通过第一天线传递至微电子芯片。
[0012] 尽管在电子模块中可用区域很小,该芯片仍然能够提供保证其供电的电气组件,而不需要其外侧的部件。
[0013] 为了增加所捕获且发送至芯片的能量的量,这样的模块的两个耦合电路中具有多个天线。
[0014] 优选地,第二电容器是可变电容器。这样的电容器使得电子模块的第二天线(其不同于通过芯片的第一电容器而产生谐振的第一天线)能够高效地产生谐振并且使得能够极大地增加所捕获并发送到芯片的能量。
[0015] 此外,微电子芯片包括在第二触点和第四触点之间与第二电容器串联连接的可变电阻器。这样的可变电阻器使得能够减小并调节该可变电阻器所插入的电路的品质因数,从而调节其带宽。

附图说明

[0016] 本发明的其他特征和优点将出现在下面的说明书中。将参照附图对本发明的实施例进行描述,在附图中:
[0017] 图1示出已知的智能卡;
[0018] 图2示出已知的微电子芯片;
[0019] 图3示出根据本发明第一实施例的微电子芯片;
[0020] 图4示出根据本发明第二实施例的微电子芯片;
[0021] 图5示出根据本发明第三实施例的微电子芯片;
[0022] 图6示出根据本法的第四实施例的微电子芯片;
[0023] 图7示出根据本发明第五实施例的微电子芯片;以及
[0024] 图8示出根据本发明第六实施例的微电子芯片。

具体实施方式

[0025] 如图3所示,本法涉及用于非接触智能卡或接触及非接触两用智能卡的微电子芯片1。
[0026] 这样的芯片包括至少第一触点P1和第二触点P2。芯片1可以被集成到电子模块2中,该电子模块2包括至少一个天线3,该至少一个天线3被配置成通过触点P1、P2连接至芯片1从而保证与远程读取器进行射频通信。
[0027] 所述至少一个天线3能够通过感应来收集远程读取器所发送的能量以用于为芯片1供电。天线所捕获的能量还能够通过触点P1、P2发送至芯片。
[0028] 在该芯片内,这样的能量更具体地用于为微处理器和芯片的待供电的其他电路(诸如,存储器或专用于加速密码计算的加密处理器)供电。为此,该芯片还包括至少第三接触P3,并且芯片的两个触点(例如,第一触点P1和第三触点P3)被连接至微处理器的输入/输出端,从而被配置成将所捕获的能量和通过天线交换的射频通信信号发送至所述微处理器。
[0029] 该芯片1还包括两个电容器C1、C2,并且该芯片的触点中的至少一个(例如,第二触点P2)与被连接至微处理器的输入/输出端的两个触点分开并且不同。该触点和至少一个其他触点被配置成与所述至少一个天线3连接从而保证所述天线能够负荷电容器C1、C2。例如,电容器C1的电容可以介于20pF与70pF之间,以及电容器C2的电容可以介于100pF与200pF之间。
[0030] 可设想,芯片的第一触点P1和第二触点P2与模块的天线3相连并且因此为外部连接器,集成到电子模块上的芯片外部的组件可通过该外部连接器而被连接至该芯片。芯片的其他触点也可以是外部连接器,外部组件可连接至该外部连接器。可替代地,这些其他触点可以仅仅是芯片的内部触点,不具有来自芯片外部的任何直接连接。
[0031] “与连接至微处理器的输入/输出端的两个触点不同或分开”指的是第二触点P2没有位于芯片1的电路的某一点上,该点的电位始终与连接至微处理器的输入/输出端的触点的电位相等。因此,该触点与连接至微处理器的输入/输出端的触点既不物理上相同也没有在芯片内通过导线直接连接至与微处理器的输入/输出端相连的触点。这并不排除在第三接触P2也是外部连接器的情况下,在芯片外部的触点之间所作的连接。
[0032] 因此,该芯片包括至少三个触点,包括:采用外部连接器形式的第一触点P1和第二触点P2以及不同的第三触点P3,该第三触点P3被连接至微处理器的输入/输出端,并且其本身可以采用或不采用外部连接器的形式。芯片的另一触点被连接至微处理器的输入/输出端。该触点可以是第一触点P1或第二触点P2或者采用或不采用外部连接器形式的附加触点。
[0033] 当它们采用外部连接器的形式时,连接至微处理器输入/输出端的触点还可以被连接到模块的至少一个天线3。
[0034] 在图3所述的示例中,第三触点P3为外部连接器的形式并且第一触点P1被连接到微处理器的输入/输出端。
[0035] 如图3所示,芯片1可以包括第四触点P4,第一电容器C1可以是连接在第一触点P1和第三触点P3之间的调谐电容器,以及第二电容器C2可以连接在第二触点P2和第四触点P4之间。介于20pF与70pF之间的电容能够使介于1.5μH与6μH之间的电感L发生谐振。
[0036] 如图3和图4所示,所述至少一个天线3可以通过被连接至所示触点P1、P2、P3、P4的具有不同电位的四个点来连接至芯片以用于与远程读取器进行射频通信并且为芯片供电。
[0037] 在芯片内设置两个电容器和至少三个触点使得芯片的连接至天线3的触点中的至少一个触点与被连接至微处理器的输入/输出端的两个触点中的任意一个都不相同,这使得能够建立不同的电路来通过这些触点将这些电容器与所述至少一个天线3相互连接以提供比将电子模块的天线与被连接至微处理器的输入/输出端的两个触点直接连接的情况下更多的能量。因此,微处理器能够接收足够的能量从而被合适地供电。
[0038] 设置四个触点能够例如建立两个独立的电路,每个电路包括其自身的天线和用于使天线谐振的电容器。
[0039] 如图3所示,第二电容器C2可以是例如电容介于100pF与200pF之间的可变电容器,以便于使连接在第二触点P2与第四触点P4之间的天线更容易谐振。C2的电容值可以由微处理器根据被连接至芯片的触点的至少一个天线的值来选择。
[0040] 此外,如图3所示,芯片1可以包括可变电阻器R,该可变电阻器R在第二触点P2与第四触点P4之间与第二电容器C2串联连接。比如在可变电容C2的情况下,该电阻器R的值可以由微处理器来选择。这样串联的电阻能够降低电路的品质因数Q=1/(4RCω)从而增大电路的带宽B=ω/Q,ω为信号的角频率。
[0041] 根据图3所示的第一示例,电子模块包括连接在第一触点P1与第三触点P3之间的第一天线3a,第一触点P1与第三触点P3还被连接至微处理器的输入/输出端。该天线通过第一电容器C1而产生谐振,该第一电容器C1也被连接在所述第一触点P1和第三触点P3之间。
[0042] 为了增加电子模块处被收集并发送至芯片的能量的量,电子模块还包括连接在芯片的第二触点P2与第四触点P4之间的第二天线3b(称为增益天线(booster antenna))。通过也被连接在芯片的第二触点P2与第四触点P4之间的第二电容器而产生谐振,这样的天线还收集读取器通过感应所发送的能量。为了将该能量发送至芯片,第三天线3c在芯片的第二触点P2与第四触点P4之间与增益天线3b串联连接。该第三天线被耦合至第一天线3a并且能够通过第一天线3a将增益天线3b所捕获的能量传送至芯片。通过具有不同电位的四个触点将天线3a、3b、3c与芯片连接能够建立两个电路,每个电路包括能够谐振的天线并且这两个电路彼此耦合,从而增大了电子模块捕获并发送至芯片的能量。此外,这样的天线3a,3b,3c可以是单个天线3的天线元件。
[0043] 对具有两个天线触点的经典天线与具有四个触点的天线进行比较,这两种天线都具有相同的整体表面。对芯片所接收的电压和功率的测量显示具有四个触点的天线所采集的能量为具有两个触点的天线所采集的能量的三倍。在芯片的二极管电桥的输出端处测得的电压也为三倍,这使得芯片能够在更大范围电磁场内进行操作,从而能够使得操作距离显著增加。
[0044] 根据图4所述的第二示例,芯片1包括与图3所述的配置相同的电路,并且电子模块包括三个天线3a、3b、3c,这三个天线分别连接在第三触点P3与第四触点P4之间、第二触点P2与第四触点P4之间以及第一触点P1与第二触点P2之间。在这个例子中,电容器C1被用作天线的调谐电容器,以及电容器C2放大由天线捕获并被传送到该芯片的能量。这样的天线3a,3b,3c可以是单个天线3的天线元件。
[0045] 图5示出了第三配置示例,其中,芯片1包括与图3中所示的配置中的电路相同的电路,并且其中,第一天线3a连接在第一触点P1与第三接触P3之间,并且第二天线3b连接在第二接点P2和第四接触P4之间。此外,第三接触P3与第四接触P4通过导线来连接。根据该示例,如前述示例一样,电容器C1用作天线的调谐电容器并且电容器C2放大天线所捕获并被传送至芯片的能量。此外,由于第三触点P3与第四接触通过导线连接,它们可以仅为一个触点,因此只需要三个触点。
[0046] 图6示出第四配置示例,其中,芯片1包括与图3所示的配置中的电路相同的电路,并且其中,天线3连接在第一触点P1与第三触点P3之间,第三触点P3与第四触点P4通过导线连接,以及第一触点P1与第二触点P2通过导线连接。根据该示例,电容器C1、C2被用作天线3的调谐电容。并联地安装电容器使得能够得到电容等于C1+C2的总调谐电容器。
[0047] 根据另一个实施例,芯片1可以包括第一调谐电容器C1和第二电容器C2,其中,该第一调谐电容器C1连接在第一触点P1与第三触点P3之间,第一触点P1与第三触点P3被连接至微处理器输入/输出端,并且第二电容器C2被连接至第二触点P2和第三接触P3,以这样的方式,当天线3被连接在第一触点P1与第二触点P2之间时,第一调谐电容器C1在第一触点P1与第三触点P3之间与至少一个天线并联连接,并且第二电容器C2在第一触点P1与第三触点P3之间与至少一个天线串联连接。
[0048] 图7示出了这种配置的示例,其中,如在图3至图6所示的示例一样,芯片1包括附加第四触点P4并且所有触点都采用外部连接器的形式。在该示例中,天线3被连接在第一触点P1与第二触点P2之间,并且第二电容器C2通过第四触点P4以及连接第四触点与第三触点P3的导线被连接至第三触点P3。
[0049] 然而,只使用三个触点完全可以实现这样的配置,在这种情况下,第四触点P4是不存在的,第二电容器C2则被直接连接至第三触点P3。类似地,第三触点以及第四触点(如果有的话)不需要采取外部连接器的形式,因为它们未被直接连接至位于芯片外部的任何组件。
[0050] 调谐电容器C1能够使电路谐振。电容器C2通过使得电路的谐振频率能够被调谐增大天线3的效率。因此,它增大了被发送至芯片的能量的量。这种具有串联的电容器的电路仅在以下情况下成为可能:将该电容器置于被连接至微处理器的输入/输出端的第三触点P3与不同于被连接至微处理器的输入/输出端的触点的第二触点P2之间。如果芯片只包括两个触点,并且都被连接到微处理器的输入/输出端,这样的串联布局通过包括第二电容器才能够成为可能,因而减小了天线3的可用空间。此时,对于确保芯片的合适供电,该天线可能过小。
[0051] 图8示出了配置的第六示例,其中,芯片仅包括三个触点。此时,第一接触和第三接触被连接至微处理器的输入/输出端,第一电容器C1被连接在第一触点P1与第二接触P2之间,第二电容器C2被连接在第二触点P2与第三P3之间。电子模块包括连接在第一触点P1与第三接触P3之间的天线3a,并且第二天线3b连接在第二触点P2与第三接触P3之间。在该示例中,第一电容器C1用作天线的调谐电容器并且第二电容器C2放大天线所捕获并被传送至芯片的能量。
[0052] 因此,这样的微电子芯片能够使不同电路确保芯片具有合适的供电,而无需在智能卡的主体中设置任何天线,同时满足其中包含有芯片的短尺寸电子模块所导致的小可用区域的约束。