用于温度与应变同时测量的光纤光栅式传感系统及方法转让专利

申请号 : CN201610489840.8

文献号 : CN105953825B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 何祖源刘庆文陈嘉庚樊昕昱

申请人 : 上海交通大学

摘要 :

一种用于温度与应变同时测量的光纤光栅式传感系统及方法,包括:探测光支路、反馈检测支路、保偏光耦合器、调制单元和计算单元,其中:探测光支路输出双边带强度调制的探测光通过输入传感光栅以实现对传感光栅的快轴和慢轴上的透射峰中心进行探测,传感光栅的反射信号通过保偏光耦合器输入反馈检测支路,调制单元根据计算单元的控制指令及读数,向探测光支路输出频率信号,计算单元根据反馈检测支路提供的数据对调制单元的频率参数进行修正,以便将探测光的两个边带锁定在传感光栅相应的透射峰上并计算得到温度和应变;本发明能够显著提高采样速率和温度、应变的测量分辨率,实现更高的解调精度。

权利要求 :

1.一种用于温度与应变同时测量的光纤光栅式传感系统,其特征在于,包括:探测光支路、反馈检测支路、保偏光耦合器、调制单元和计算单元,其中:传感光栅一端与保偏光耦合器相连,另一端经去菲涅耳反射处理,探测光支路输出双边带强度调制的探测光通过输入传感光栅以实现对传感光栅的快轴和慢轴上的透射峰中心进行探测,传感光栅的反射信号通过保偏光耦合器输入反馈检测支路,调制单元根据计算单元的控制指令及读数,向探测光支路输出频率信号,计算单元根据反馈检测支路提供的数据对调制单元的频率参数进行修正,以便将探测光的两个边带锁定在传感光栅相应的透射峰上并计算得到温度和应变。

2.根据权利要求1所述的光纤光栅式传感系统,其特征是,所述的探测光支路包括:依次相连的可调谐激光器、光耦合器、光相位调制器、光强度调制器和45°旋转熔接的保偏光纤。

3.根据权利要求1所述的光纤光栅式传感系统,其特征是,所述的反馈检测支路包括:

信号发生器、偏振分束器、与偏振分束器的两个输出端对应相连的快轴检测支路和慢轴检测支路,其中:信号发生器调控快轴检测支路和慢轴检测支路。

4.根据权利要求3所述的光纤光栅式传感系统,其特征是,所述的偏振分束器的输入端与保偏光耦合器的输入端相连,偏振分束器的两个输出端分别对应传感光栅的快轴和慢轴的反射信号。

5.根据权利要求4所述的光纤光栅式传感系统,其特征是,所述的快轴检测支路和慢轴检测支路结构相同,为串联的光电探测器和锁定放大器。

6.根据权利要求1所述的光纤光栅式传感系统,其特征是,所述的信号发生器驱动光相位调制器和锁定放大器。

7.根据权利要求1所述的光纤光栅式传感系统,其特征是,所述的传感光栅为保偏光纤上π相移光纤布拉格光栅。

8.一种基于上述任一权利要求所述系统的测量方法,其特征在于,根据锁定后射频信号发生器的信号频率和光波长计读出的可调谐激光器的输出波长,换算后得到传感光栅快慢轴的透射峰的中心频率差,即双折射致频率差和两个透射中心频率的平均值,即光栅布拉格频率;根据双折射致频率差和光栅布拉格频率分别对温度和应变的灵敏度的对应关系,解得待测的温度与应变;

所述的双折射致频率差ΔfBi为锁定后的射频信号发生器信号频率的2倍;

所述的光栅布拉格频率fBr为锁定后的可调谐激光器的输出波长的频率形式。

9.根据权利要求8所述的测量方法,其特征是,所述的对应关系为:

其中:fBr为光栅布拉格频率,ΔfBi为双折射致频率差, 为光栅布拉格频率对温度的灵敏度, 为光栅布拉格频率对应变的灵敏度, 为双折射致频率差对温度的灵敏度,为双折射致频率差对应变的灵敏度,T为待测温度,ε为待测应变,T0和ε0为待定的温度与应变常量。

说明书 :

用于温度与应变同时测量的光纤光栅式传感系统及方法

技术领域

[0001] 本发明涉及的是一种光纤传感领域的技术,具体是一种用于温度与应变同时测量的光纤光栅式传感系统及方法。

背景技术

[0002] 相移光纤布拉格光栅(PS‐FBG)是传统光纤布拉格光栅(FBG)的变种。由于在折射率周期性分布的光栅引入了相移点,导致其阻带中某个特定波长处产生极窄的透射窗口。该透射窗口的中心波长对温度与应变同时敏感,且其灵敏度与与未引入相移的布拉格光栅一致。
[0003] 保偏光纤作为设计时引入了强双折射的一类光纤,其快轴与慢轴具有不同的折射率。两者折射率的差值和与其相对应的频率差值同样对温度与应变线性敏感,因此,保偏光纤中的双折射效应也可应用于相关的温度或应变传感场景。
[0004] 在高精度光纤光栅传感领域中,D.Gatti、G.Galzerano等发表的论文(Optics Express,Vol.16,No.3,pp.1945‐1950,2008)中提出了基于相移光纤布拉格光栅的高精度应变传感器,但由于此方案中仅采用了相移光栅透射窗口中心波长这一组物理量,因此无法消除光栅本身对温度应变交差敏感所导致的测量误差。而在温度应变同时测量的研究领域中,需对两组不同的物理量进行测量,通过求解二元方程组得到真实的待测温度与应变。
[0005] M.Sudo、M.Nakai等在其论文(12thInternational Conference on Optical Fiber Sensors,OSA Technical Digest Series,Vol.16,170/OWC7‐1,1997)中提出了将保偏光纤上的传统光纤光栅用于温度应变同时测量的方案,但由于其解调精度较低导致了对双折射效应的测量结果精度较差,从而无法实现优于1℃/10με的分辨率。

发明内容

[0006] 本发明针对现有技术分辨率难以满足要求等缺陷,提出一种用于温度与应变同时测量的光纤光栅式传感系统及方法,通过保偏光纤上的相移光纤布拉格光栅的快慢轴透射窗口的不同中心频率,进行高精度的解调,实现温度与应变同时测量。
[0007] 本发明是通过以下技术方案实现的:
[0008] 本发明涉及一种用于温度与应变同时测量的光纤光栅式传感系统,包括:探测光支路、反馈检测支路、保偏光耦合器、调制单元和计算单元,其中:传感光栅一端与保偏光耦合器相连,另一端经去菲涅耳反射处理,探测光支路输出双边带强度调制的探测光通过输入传感光栅以实现对传感光栅的快轴和慢轴上的透射峰中心进行探测,传感光栅的反射信号通过保偏光耦合器输入反馈检测支路,调制单元根据计算单元的控制指令及读数,向探测光支路输出频率信号,计算单元根据反馈检测支路提供的数据对调制单元的频率参数进行修正,以便将探测光的两个边带锁定在传感光栅相应的透射峰上并计算得到温度和应变。
[0009] 所述的探测光支路包括:依次相连的可调谐激光器、光耦合器、光相位调制器、光强度调制器和45°旋转熔接的保偏光纤。
[0010] 所述的可调谐激光器发出的光信号经过光耦合器分为两束,一束进入光相位调制器,一束进入光波长计进行波长读数。
[0011] 所述的反馈检测支路包括:信号发生器、偏振分束器、与偏振分束器的两个输出端对应相连的快轴检测支路和慢轴检测支路。
[0012] 所述的偏振分束器的输入端与保偏光耦合器的输入端相连,偏振分束器的两个输出端分别对应传感光栅的快轴和慢轴的反射信号。
[0013] 所述的快轴检测支路和慢轴检测支路结构相同,为串联的光电探测器和锁定放大器。
[0014] 所述的信号发生器同步驱动光相位调制器和锁定放大器。
[0015] 所述的调制单元为射频信号发生器。
[0016] 所述的射频信号发生器驱动光强度调制器。
[0017] 所述的计算单元通过控制总线对射频信号发生器进行控制及读数。
[0018] 所述的计算单元为计算机。
[0019] 所述的计算机对锁定放大器的数据进行采集,并对可调谐激光器的中心频率和射频信号发生器的信号频率进行修正。
[0020] 所述的数据为探测光的两个边带与相应的传感光栅的快轴和慢轴透射峰中心的两个鉴频信号。
[0021] 所述的传感光栅一端与保偏光耦合器相连,另一端经去菲涅耳反射处理。
[0022] 所述的传感光栅为保偏光纤上的相移光纤布拉格光栅。
[0023] 本发明涉及一种基于上述系统的测量方法,根据锁定后射频信号发生器的信号频率和光波长计读出的可调谐激光器的输出波长,换算后得到传感光栅快慢轴的透射峰的中心频率差(双折射致频率差)和两个透射中心频率的平均值(光栅布拉格频率);根据双折射致频率差和光栅布拉格频率分别对温度和应变的灵敏度的对应关系,解得待测的温度与应变。
[0024] 所述的对应关系为: 其中:fBr为光栅布拉格频率,ΔfBi为双折射致频率差, 为光栅布拉格频率对温度的灵敏度, 为光栅布拉格频率对应变的灵敏度, 为双折射致频率差对温度的灵敏度, 为双折射致频率差对应变的灵敏度,T为待测温度,ε为待测应变,T0和ε0为待定的温度与应变常量。
[0025] 技术效果
[0026] 与现有技术相比,本发明基于光栅的本征物理效应消除光栅对温度与应变的交叉敏感的问题,采用频率锁定式的闭环结构进行双边带探测的解调,具备高于传统光学方式的射频调制信号频率的控制精度与读数精度,实现温度和应变的同时快速测量,达到10‐3℃的温度分辨率和10‐2με的应变分辨率。

附图说明

[0027] 图1为光纤传感系统示意图;
[0028] 图2为光纤传感系统原理示意图;
[0029] 图3为传感光栅的光谱示意图;
[0030] 图中:(a)为快轴,(b)为慢轴;
[0031] 图4为光栅布拉格频率与双折射致频率差的应变特性曲线;
[0032] 图5为光栅布拉格频率与双折射致频率差的温度特性曲线;
[0033] 图6为实施例的实验结果;
[0034] 图中:(a)为测得的光栅布拉格频率与双折射致频率差的关系图,(b)为待测温度与应变关系图;
[0035] 图中:1为可调谐激光器、2为光耦合器、3为光波长计、4为射频信号发生器、5为光相位调制器、6为光强度调制器、7为45°旋转熔接的保偏光纤、8为偏振分束器、9为传感光栅、10为光电探测器、11为锁定放大器、12为信号发生器、13为计算单元、14为保偏光耦合器。

具体实施方式

[0036] 下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
[0037] 实施例1
[0038] 如图1所示,本实施例包括:探测光支路、反馈检测支路、保偏光耦合器14、调制单元和计算单元,其中:探测光支路输出的双边带强度调制的探测光通过输入传感光栅9,对传感光栅9的快轴和慢轴上的透射峰中心进行探测,传感光栅9的反射信号通过保偏光耦合器14输入反馈检测支路;调制单元根据计算单元的控制指令及读数,向探测光支路输出频率信号,计算单元采集反馈检测支路的数据对调制单元的频率参数进行修正,形成两个闭环反馈回路,将探测光的两个边带锁定在传感光栅9相应的透射峰上,计算得到温度和应变,显示并存储结果。
[0039] 所述的探测光支路包括:依次相连的可调谐激光器1、光耦合器2、光相位调制器5、光强度调制器6和45°旋转熔接的保偏光纤7。
[0040] 所述的可调谐激光器1发出的光信号经过光耦合器2分为两束,一束进入光相位调制器5,一束进入光波长计3进行波长读数。
[0041] 所述的反馈检测支路包括信号发生器12、偏振分束器8、与偏振分束器8的两个输出端对应相连的快轴检测支路和慢轴检测支路,其中:信号发生器12调控快轴检测支路和慢轴检测支路。
[0042] 所述的偏振分束器8的输入端与保偏光耦合器14的输入端相连,偏振分束器8的两个输出端分别对应传感光栅9的快轴和慢轴的反射信号。
[0043] 所述的快轴检测支路和慢轴检测支路结构相同,为串联的光电探测器10和锁定放大器11。
[0044] 所述的信号发生器12驱动光相位调制器5和锁定放大器11。
[0045] 所述的调制单元为射频信号发生器4。
[0046] 所述的射频信号发生器4驱动光强度调制器6。
[0047] 所述的计算单元通过控制总线对射频信号发生器4进行控制及读数。
[0048] 所述的计算单元为计算机13。
[0049] 所述的计算机13对锁定放大器11的数据进行采集,并可调谐激光器1的中心频率和射频信号发生器4的信号频率进行修正。
[0050] 所述的数据为探测光的两个边带与相应的传感光栅9的快轴和慢轴透射峰中心的两个鉴频信号。
[0051] 所述的传感光栅9一端与保偏光耦合器14相连,另一端经去菲涅耳反射处理。
[0052] 如图2所示,所述的锁定原理为:光强度调制器6产生的两个强度调制边带的中心频率分别位于两个谐振峰附近。基于光相位调制器5与锁定放大器11的同步解调可分别得到快慢轴上的鉴频信号,由该鉴频信号可得知探测光的边带与谐振峰的频率偏差Δffast和Δfslow,其中:Δffast表示快轴上探测边带与谐振峰的频偏,Δfslow表示慢轴上探测光的边带与谐振峰的频偏。单独调谐可调谐激光器1的中心波长可使两个边带向相同方向移动;而单独调谐射频信号发生器4的信号频率可使两个边带向相反方向移动。为使两探测边带精确对准两谐振中心,则可调谐激光器1输出的调谐量应设为 射频信号的调谐量设为 由于慢轴上谐振峰对应的鉴频信号ηslow及快轴上谐振峰对应的
鉴频信号ηfast分别与频率偏差Δfslow、Δffast成正比,故激光器输出频率的调谐量与η1=ηslow+ηfast成正比,而射频信号的调谐量 与η2=
ηfast-ηslow成正比。因此,我们选用两鉴频信号的共模分量(即η1)与差模分量(即η2)作为两个反馈变量,分别对激光器输出频率flaser与射频信号频率fsideband进行不断修正,即可实现两个边带对两个谐振峰的同时对准。此时,探头(π相移布拉格光栅)的布拉格频率即激光器输出频率flaser,而双折射致频率差即两倍射频信号频率2×fsideband。
[0053] 所述的保偏光纤为高双折射型保偏光纤。
[0054] 所述的传感光栅9为熊猫型保偏光纤上π相移光纤布拉格光栅,工作中心波长为1550nm,相移光栅谐振峰半高宽为0.25pm(对应频率为31MHz),快慢轴双折射致频率差的范围为46.5~47.0GHz。
[0055] 如图3所示,所述的π相移光纤布拉格光栅具有超窄透射窗口,快轴与慢轴上的光纤透射窗口具有不同的中心波长,并且两者均对温度与应变敏感,其灵敏度与未引入相移的布拉格光栅一致。快轴和慢轴上的光纤透射窗口的中心波长差值由保偏光纤的双折射系数决定,并也对温度和应变敏感。在上述两个物理效应中,光纤透射窗口的中心频率对温度和应变、中心波长差值对应变的灵敏度均为正值,中心波长差值对温度的灵敏度为负值。
[0056] 所述的可调谐激光器1的输出线宽为1kHz的连续光。
[0057] 本实施例涉及基于上述系统的方法,包括以下步骤:
[0058] 步骤1、根据锁定后射频信号发生器4的信号频率和光波长计3读出的可调谐激光器1的输出波长,换算后得到传感光栅9快慢轴的透射峰的中心频率差(双折射致频率差)和两透射中心频率的平均值(光栅布拉格频率)。
[0059] 所述的双折射致频率差ΔfBi为锁定后的射频信号发生器4信号频率的2倍。
[0060] 所述的光栅布拉格频率fBr为锁定后的可调谐激光器1的输出波长的频率形式。
[0061] 步骤2、根据双折射致频率差ΔfBi和光栅布拉格频率fBr分别对温度和应变的灵敏度的对应关系,解得待测的温度与应变。
[0062] 所述的对应关系为: 其中: 为光栅布拉格频率对温度的灵敏度, 为光栅布拉格频率对应变的灵敏度, 为双折射致频率差对温度的灵敏度, 为双折射致频率差对应变的灵敏度,T为待测温度,ε为待测应变,T0和ε0为待定的温度与应变常量。
[0063] 所述的T0和ε0可通过系统定标确定。
[0064] 如图4和图5所示,在1550nm波段,本实施例的光栅布拉格频率fBr和双折射致频率差ΔfBi均与待测温度T和待测应变ε呈线性关系;光栅布拉格频率对温度的灵敏度光栅布拉格频率对应变的灵敏度 双折射致频率差对温度的灵敏度 双折射致频率差对应变的灵敏度
[0065] 如图6所示,传感光栅9在有温度漂移的环境中,同时施加1με、0.02Hz的正弦应变信号,测得的光栅布拉格频率与双折射致频率差同时表现出正弦变化与缓慢漂移,与光纤光栅对温度和应变的交叉敏感特性相符。
[0066] 如图6(b)所示,应变数据表现为清晰的正弦信号且无漂移,温度数据则表现为缓慢漂移且不含有正弦变化分量。该结果与实际情况相符,因此可认为本实施例实现了光栅上交叉敏感的温度与应变的同时测量。
[0067] 本实施例对温度的测量分辨率为0.0029℃,对应变的测量分辨率为0.046με。
[0068] 本实施例的温度测量范围为‐50~200℃,应变测量范围可达2000με。
[0069] 本实施例采用基于双边带探测的闭环式解调,通过45°旋转熔接的保偏光纤7将慢轴上的线偏振光转为快慢轴上强度相等的探测光,保偏光纤上的π相移光纤布拉格光栅结构紧凑,尺寸与普通的高反射率的光栅相同,因而对应用场景的适应性较强;制造工艺成熟,成本较低,便于量产。