一种制备超细纳米立方氮化硼的方法转让专利

申请号 : CN201610415036.5

文献号 : CN105967157B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 黄元杰安焕新姬广富

申请人 : 中国工程物理研究院流体物理研究所

摘要 :

本发明公开了一种制备超细纳米立方氮化硼的方法,该方法包括以下步骤:A、先将NH3BH3粉末或(NHBH)n粉末通过模具压制成片状前驱物;B、然后将片状前驱物装入样品盒并密封,再将样品盒装入靶内;C、然后引爆装有金属飞片的炸药筒,使金属飞片高速飞行并撞击到靶上产生冲击波,并使靶内达到1400℃以上温度和12 GPa以上压力;D、待片状前驱物在高温高压环境下快速化学反应后,回收靶,打开靶取出固体产物即得超细纳米立方氮化硼。本发明一种制备超细纳米立方氮化硼的方法,制备过程工艺简单,所制备的超细纳米立方氮化硼尺寸均一,且具有高硬度、高热导率、高热稳定性和高化学稳定性,可批量生产超细纳米立方氮化硼。

权利要求 :

1.一种制备超细纳米立方氮化硼的方法,其特征在于,包括以下步骤:A、先将NH3BH3粉末或(NHBH)n粉末通过模具压制成片状前驱物,所述片状前驱物为圆形或椭圆形或矩形,所述片状前驱物厚度为0.8-1.5毫米,片状前驱物面积为100-200平方毫米;

B、然后将片状前驱物装入样品盒并密封,再将样品盒装入靶内;

C、然后引爆装有金属飞片的炸药筒,使金属飞片高速飞行并撞击到靶上产生冲击波,并使靶内达到1400 ℃以上温度和12 GPa以上压力;

D、待片状前驱物在高温高压环境下快速化学反应后,回收靶,打开靶取出固体产物即得超细纳米立方氮化硼。

2.根据权利要求1所述的一种制备超细纳米立方氮化硼的方法,其特征在于:所述步骤B中的样品盒为钢样品盒,其壁厚为8-10毫米。

3.根据权利要求1所述的一种制备超细纳米立方氮化硼的方法,其特征在于:所述步骤B中的靶的材料与样品盒材料相同。

4.根据权利要求1所述的一种制备超细纳米立方氮化硼的方法,其特征在于:所述步骤C中的金属飞片为铜片或钢片或铝片。

5.根据权利要求1或4所述的一种制备超细纳米立方氮化硼的方法,其特征在于:所述步骤C中的金属飞片厚度大于片状前驱物的厚度,金属飞片面积大于片状前驱物的面积。

6.根据权利要求1所述的一种制备超细纳米立方氮化硼的方法,其特征在于:所述步骤C中的金属飞片撞击靶时的飞行速度为每秒2-4千米。

说明书 :

一种制备超细纳米立方氮化硼的方法

技术领域

[0001] 本发明涉及一种立方氮化硼的制备方法,特别是涉及一种制备超细纳米立方氮化硼的方法。

背景技术

[0002] 立方氮化硼(c-BN) 是一种超硬材料,它不仅具有超高的硬度,而且具有突出的化学稳定性、很高的热导率、远高于金刚石的化学稳定性和导致光学透明的宽带隙。而对于纳米c-BN,根据Hall-Petch效应,可以预期,当粒子尺寸仅为几纳米时它的硬度可以超过自然界最硬的材料——金刚石。由于纳米c-BN优异的力学、物理、化学性质,人们期望它在诸如高强度研磨磨料、高强度防护、高精度切割刀具等多个领域取得广泛应用。因此,引起了人们广泛的关注和制备方法上的不懈努力。
[0003] 截止目前,成功制备纳米c-BN的方法主要有三种:高温高压下相变、化学反应和脉冲激光烧蚀。其中,利用高温高压相变的方法制备的纳米c-BN粒子尺寸为主要分布在10-50 nm范围内;化学方法制备的粒子尺寸大于20 nm;利用超快脉冲激光烧蚀则可以成功制备尺寸在10纳米以下的超细的纳米c-BN粒子,但是受到脉冲激光光斑大小的限制,这种方法产量非常小,在实际生产过程中限制较大。

发明内容

[0004] 本发明所要解决的技术问题是提供一种制备超细纳米立方氮化硼的方法,其不仅可实现批量化生产,而且制得的超细纳米立方氮化硼尺寸均一,且具有高硬度、高热导率、高热稳定性和高化学稳定性。
[0005] 为了解决上述技术问题,本发明采用如下技术方案:
[0006] 一种制备超细纳米立方氮化硼的方法,包括以下步骤:A、先将NH3BH3粉末或(NHBH)n粉末通过模具压制成片状前驱物;B、然后将片状前驱物装入样品盒并密封,再将样品盒装入靶内;C、然后引爆装有金属飞片的炸药筒,使金属飞片高速飞行并撞击到靶上产生冲击波,并使靶内达到1400 ℃以上温度和12 GPa以上压力;D、待片状前驱物在高温高压环境下快速化学反应后,回收靶,打开靶取出固体产物即得超细纳米立方氮化硼。本发明根据制备物的特点,选用硼原子和氮原子的原子比为1:1的NH3BH3或(NHBH)n作为反应原料,再利用爆炸后的高速金属飞片撞击到靶上产生冲击波,使靶内样品盒中的片状前驱物瞬间进入高温高压状态,从而使其快速发生化学分解反应,反应原料中的氢原子通过气体形式释放掉,不会留在回收的固体产物中,且使反应环境满足六方氮化硼(h-BN)向立方氮化硼(c-BN)转变的条件,使前驱物成核、形成超细纳米立方氮化硼,该方法能成功制备直径约2 nm、长约20 nm的c-BN棒和尺寸3 nm的c-BN粒子,这是目前世界上成功制备出的最小尺寸的c-BN粒子。
[0007] 作为优选,所述步骤A中的片状前驱物为圆形或椭圆形或矩形,这样便于模压成型。
[0008] 作为优选,所述步骤A中的片状前驱物厚度为0.8-1.5毫米,片状前驱物面积为100-200平方毫米,这样可有效保证原料处在冲击波产生的高温高压区域,并能及时发生高温高压下的化学反应。
[0009] 作为优选,所述步骤B中的样品盒为钢样品盒,其壁厚为8-10毫米,该样品盒能耐高温高压,而且其厚度可保证其在冲击下不会发生破损从而导致样品泄漏。
[0010] 作为优选,所述步骤B中的靶的材料与样品盒材料相同,由于同种材料的阻抗相同,使得样品盒在冲击下的压力温度比较稳定,有利于NH3BH3、(NHBH)n发生反应生成c-BN。
[0011] 作为优选,所述步骤C中的金属飞片为铜片或钢片或铝片,可保证其撞击到靶上形成足够强度的冲击波。
[0012] 作为优选,所述步骤C中的金属飞片厚度大于片状前驱物的厚度,金属飞片面积大于片状前驱物的面积,这样既能保证金属飞片的飞行速度,又可保证其撞击到靶上后产生特定的高温高压区域。
[0013] 作为优选,所述步骤C中的金属飞片撞击靶时的飞行速度为每秒2-4千米,其飞行速度可根据不同材质金属飞片的不同阻抗特性来进行合理设计,以保证其撞击效果。
[0014] 与现有技术相比,本发明一种制备超细纳米立方氮化硼的方法,制备过程工艺简单,所制备的超细纳米立方氮化硼尺寸均一,且具有高硬度、高热导率、高热稳定性和高化学稳定性,可批量生产超细纳米立方氮化硼,所制备的超细纳米立方氮化硼的尺寸可以通过改变金属飞片的厚度加以调控,试验结果表明,本发明的方法具有制备的纳米立方氮化硼尺寸小、均一、可批量生产等优点,所制备的超细纳米立方氮化硼具有可与金刚石媲美的超高的硬度、高化学稳定性等特点,在高精度磨料、高性能切割刀具等方面,具有很好的市场前景和应用价值。

具体实施方式

[0015] 本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
[0016] 本说明书中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
[0017] 本发明一种制备超细纳米立方氮化硼的方法,包括以下步骤:A、先将NH3BH3粉末或(NHBH)n粉末通过模具压制成片状前驱物;B、然后将片状前驱物装入样品盒并密封,再将样品盒装入靶内;C、然后引爆装有金属飞片的炸药筒,使金属飞片高速飞行并撞击到靶上产生冲击波,并使靶内达到1400 ℃以上温度和12 GPa以上压力;D、待片状前驱物在高温高压环境下快速化学反应后,回收靶,打开靶取出固体产物即得超细纳米立方氮化硼。所述步骤A中的片状前驱物为圆形或椭圆形或矩形,厚度为0.8-1.5毫米,片状前驱物面积为100-200平方毫米。所述步骤B中的样品盒为钢样品盒,其壁厚为8-10毫米,靶的材料与样品盒材料相同。所述步骤C中的金属飞片为铜片或钢片或铝片,金属飞片厚度大于片状前驱物的厚度,金属飞片面积大于片状前驱物的面积,金属飞片撞击靶时的飞行速度为每秒2-4千米。
[0018] 实施例1:本发明一种制备超细纳米立方氮化硼的方法,先将原子比B:N=1:1的NH3BH3粉末用模具压制成片状前驱物,片状前驱物为圆形,其直径为13 mm,厚度为1 mm;然后将片状前驱物装入钢样品盒,密封好,然后装入靶内,并安装好尺寸匹配的动量片、动量环等部件,靶的材料与样品盒材料相同;将尺寸φ90×1.2 mm铜飞片安装在药筒前端的中央位置,接着将尺寸φ100×200 mm的药筒装满硝基甲烷炸药,装入φ32×5 mm型号的泰胺传爆药柱,插入LD-10型号的雷管,接好电引线和起爆器;然后通过起爆器放电引爆雷管,接着引爆传爆药柱和炸药,使炸药前端铜飞片瞬间加速至每秒3千米的高速,使铜飞片撞击到靶上产生冲击波,使样品盒中的片状前驱物瞬间进入高温高压状态,温度高于1400 ℃, 压力高于12 GPa;原料在高温高压进行快速化学反应,释放出气体,并成核、形成超细纳米c-BN,回收靶,打开靶取出固体产物即得超细纳米立方氮化硼。所得纳米c-BN平均尺寸3 nm,这是目前成功制备的最小纳米c-BN。
[0019] 实施例2:本发明一种制备超细纳米立方氮化硼的方法,先将原子比B:N=1:1的(NHBH)n粉末用模具压制成片状前驱物,片状前驱物为圆形,其直径为15 mm,厚度为1.4 mm;然后将片状前驱物装入钢样品盒,密封好,然后装入靶内,并安装好尺寸匹配的动量片、动量环等部件,靶的材料与样品盒材料相同;将尺寸φ90×1.6 mm钢飞片安装在药筒前端的中央位置,接着将尺寸φ200×200 mm的药筒装满硝基甲烷炸药,装入φ32×5 mm型号的泰胺传爆药柱,插入LD-10型号的雷管,接好电引线和起爆器;然后通过起爆器放电引爆雷管,接着引爆传爆药柱和炸药,使炸药前端钢飞片瞬间加速至每秒2千米的高速,使钢飞片撞击到靶上产生冲击波,使样品盒中的片状前驱物瞬间进入高温高压状态,温度高于1400 ℃, 压力高于12 GPa;原料在高温高压进行快速化学反应,释放出气体,并成核、形成超细纳米c-BN,回收靶,打开靶取出固体产物即得超细纳米立方氮化硼。所得纳米c-BN平均尺寸3.3 nm。
[0020] 实施例3:本发明一种制备超细纳米立方氮化硼的方法,先将原子比B:N=1:1的NH3BH3粉末用模具压制成片状前驱物,片状前驱物为正方形,其边长为10 mm,厚度为0.8 mm;然后将片状前驱物装入钢样品盒,密封好,然后装入靶内,并安装好尺寸匹配的动量片、动量环等部件,靶的材料与样品盒材料相同;将尺寸φ90×1 mm铜飞片安装在药筒前端的中央位置,接着将尺寸φ100×200 mm的药筒装满硝基甲烷炸药,装入φ32×5 mm型号的泰胺传爆药柱,插入LD-10型号的雷管,接好电引线和起爆器;然后通过起爆器放电引爆雷管,接着引爆传爆药柱和炸药,使炸药前端铜飞片瞬间加速至每秒3千米的高速,使铜飞片撞击到靶上产生冲击波,使样品盒中的片状前驱物瞬间进入高温高压状态,温度高于1400 ℃, 压力高于12 GPa;原料在高温高压进行快速化学反应,释放出气体,并成核、形成超细纳米c-BN,回收靶,打开靶取出固体产物即得超细纳米立方氮化硼。所得纳米c-BN平均尺寸3.1 nm。
[0021] 实施例4:本发明一种制备超细纳米立方氮化硼的方法,先将原子比B:N=1:1的(NHBH)n粉末用模具压制成片状前驱物,片状前驱物为椭圆形,其面积为200平方毫米,厚度为1.5 mm;然后将片状前驱物装入钢样品盒,密封好,然后装入靶内,并安装好尺寸匹配的动量片、动量环等部件,靶的材料与样品盒材料相同;将尺寸φ90×1.8 mm铝飞片安装在药筒前端的中央位置,接着将尺寸φ200×200 mm的药筒装满硝基甲烷炸药,装入φ32×5 mm型号的泰胺传爆药柱,插入LD-10型号的雷管,接好电引线和起爆器;然后通过起爆器放电引爆雷管,接着引爆传爆药柱和炸药,使炸药前端铝飞片瞬间加速至每秒2千米的高速,使铝飞片撞击到靶上产生冲击波,使样品盒中的片状前驱物瞬间进入高温高压状态,温度高于1400 ℃, 压力高于12 GPa;原料在高温高压进行快速化学反应,释放出气体,并成核、形成超细纳米c-BN,回收靶,打开靶取出固体产物即得超细纳米立方氮化硼。所得纳米c-BN平均尺寸3.2 nm。
[0022] 以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。