快速光电恢复响应的近紫外光电位敏传感器及其制备方法转让专利

申请号 : CN201610560686.9

文献号 : CN106024926B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 王先杰宋炳乾宋波隋郁胡昌

申请人 : 哈尔滨工业大学

摘要 :

快速光电恢复响应的近紫外光电位敏传感器及其制备方法,本发明属于传感器领域,它为了解决现有窄禁带半导体紫外光电位敏传感需要遮光片的问题。该近紫外光电位敏传感器具有金属氧化物—SiC结构,在β‑SiC基片上采用激光脉冲沉积金属氧化物层,其中的金属氧化物为Fe3O4、Al‑ZnO、In2O3或F‑SnO2。制备方法:一、金属氧化物粉末压片成型,制备金属氧化物靶材;二、清洗β‑SiC基片;三、采用准分子激光器辐照金属氧化物靶材,利用激光脉冲在基片上沉积金属氧化物层。本发明采用的SiC宽禁带半导体仅在紫外/近紫外光区响应,所以不需要增加遮光片,并且该传感器的位置灵敏度较高。

权利要求 :

1.快速光电恢复响应的近紫外光电位敏传感器,其特征在于该快速光电恢复响应的近紫外光电位敏传感器具有金属氧化物—SiC结构,在β-SiC基片上采用激光脉冲沉积有厚度为10~60nm的金属氧化物层,其中的金属氧化物为Fe3O4、Al-ZnO、In2O3或F-SnO2。

2.根据权利要求1所述的快速光电恢复响应的近紫外光电位敏传感器,其特征在于在β-SiC基片上采用激光脉冲沉积有厚度为15~30nm的金属氧化物层。

3.快速光电恢复响应的近紫外光电位敏传感器的制备方法,其特征在于是按下列步骤实现:一、将金属氧化物粉末经模具压片成型,然后在900~1100℃下烧结处理,得到金属氧化物靶材;

二、将β-SiC基片依次置于去离子水、丙酮和无水乙醇中分别超声清洗10~20min,得到清洗后的SiC基片;

-4 -4

三、将本底真空抽至3×10 Pa~5×10 Pa,以清洗后的SiC基片作为沉积衬底,通入纯氧控制气压为0.01~20Pa,调节SiC基片的温度为300~500℃,采用准分子激光器辐照金属氧化物靶材,控制单脉冲能量为100~200mJ,脉冲频率为1~5Hz进行脉冲激光沉积金属氧化物层,沉积结束后原位保温,最后自然冷却到室温状态,得到快速光电恢复响应的近紫外光电位敏传感器;

其中步骤一所述的金属氧化物为Fe3O4、Al-ZnO、In2O3或F-SnO2。

4.根据权利要求3所述的快速光电恢复响应的近紫外光电位敏传感器的制备方法,其特征在于步骤一所述金属氧化物粉末的粒径为100~200nm。

5.根据权利要求3所述的快速光电恢复响应的近紫外光电位敏传感器的制备方法,其特征在于步骤一在900~1100℃下烧结处理10~14h。

6.根据权利要求3所述的快速光电恢复响应的近紫外光电位敏传感器的制备方法,其特征在于步骤三所述纯氧的纯度大于99.99%。

7.根据权利要求3所述的快速光电恢复响应的近紫外光电位敏传感器的制备方法,其特征在于步骤三沉积金属氧化物层的厚度为10~60nm。

8.根据权利要求3所述的快速光电恢复响应的近紫外光电位敏传感器的制备方法,其特征在于步骤三通入纯氧控制气压为0.1~1Pa,调节SiC基片的温度为350℃。

9.根据权利要求3所述的快速光电恢复响应的近紫外光电位敏传感器的制备方法,其特征在于是步骤三采用准分子激光器辐照金属氧化物靶材,控制单脉冲能量为200mJ,脉冲频率为5Hz进行脉冲激光沉积金属氧化物层。

10.根据权利要求3所述的快速光电恢复响应的近紫外光电位敏传感器的制备方法,其特征在于步骤三沉积结束后原位保温20~30min。

说明书 :

快速光电恢复响应的近紫外光电位敏传感器及其制备方法

技术领域

[0001] 本发明属于传感器领域,具体涉及基于侧向光伏效应的紫外光电位敏传感材料及其制备方法。

背景技术

[0002] 在上个世纪之初,Schottky就在半导体结构上发现了侧向光伏效应,此后1957年,Wallmark在p+-n结中首次发现了侧向光伏电压的大小与光照位置间存在着高度的线性依赖关系(Proc.IRE,1957,45,474.),这使得侧向光伏效应在位敏传感器(position-sensitive detectors,PSD)和其它光学传感器得到了广泛应用(Appl.Phys.Lett.,1986,49,1537.;Appl.Phys.Lett.,1986,49,663)。高位置灵敏度和快速光电响应是位敏传感器最核心的指标。目前,基于Si的光电位敏传感器已经广泛使用,如上海交通大学的Wang Hui课题组分别在金属薄膜(包括Cr、Ti、Co等)/Si结构中在单色可见光的照射下发现了很大的侧向光伏效应,尤其是在Ti/TiO2/Si结构中在可见光(635nm)辐照下发现了高达113mV/mm的灵敏度的侧向光伏效应(Opt.Express 22(10),11627–11632(2014);Opt.Express 16(6),3798–3806(2008);Appl.Phys.Lett.,95,141112(2009))。但是由于金属薄膜的厚度非常小继而造成的易氧化特性,使得这些器件不能稳定运行。
[0003] 实际上,仅紫外光电响应的位敏传感器具有安全性高、抗干扰能力强等优点,在导弹预警与跟踪、生物医学检测等军事和民用方面都具有非常重要的应用。目前使用的紫外光位敏传感器主要是带有滤光片的窄禁带半导体硅(Si)基传感器,因此无法满足在特殊环境实际应用的需求。SiC具有宽带隙、高电子迁移率、高临界击穿电场和低介电常数等突出优点,是制作高温、高频、大功率和抗辐照等对工作环境有特殊要求的紫外光电器件的理想材料,在军用、民用和航空航天等许多方面有迫切的应用需求。
[0004] 截止目前,尚未有基于宽禁带半导体的快速光电恢复响应光电位敏传感器材料和器件的制备及研究。按照经典的侧向光电效应模型,侧向光伏恢复响应时间取决于电子(或空穴)在半导体薄膜中的迁移率。电子在SiC中的高迁移率有助于获得快速光电恢复响应的位敏传感器。然而,基于p-n结原理的SiC基光电传感器的工艺比较复杂、难以工业化制备,故而无法实现以SiC为核心的快速光电响应的位敏传感器。

发明内容

[0005] 本发明是为了解决现有窄禁带半导体紫外光电位敏传感需要遮光片问题,而提供一种基于宽禁带半导体的紫外/近紫外位敏传感器及其制备方法。
[0006] 本发明快速光电恢复响应的近紫外光电位敏传感器具有金属氧化物—SiC结构,在β-SiC基片上采用激光脉冲沉积有厚度为10~60nm的金属氧化物层,其中的金属氧化物为Fe3O4、Al-ZnO、In2O3或F-SnO2。
[0007] 本发明快速光电恢复响应的近紫外光电位敏传感器的制备方法按下列步骤实现:
[0008] 一、将金属氧化物粉末经模具压片成型,然后在900~1100℃下烧结处理,得到金属氧化物靶材;
[0009] 二、将β-SiC基片依次置于去离子水、丙酮和无水乙醇中分别超声清洗10~20min,得到清洗后的SiC基片;
[0010] 三、将本底真空抽至3×10-4Pa~5×10-4Pa,以清洗后的SiC基片作为沉积衬底,通入纯氧控制气压为0.01~20Pa,调节SiC基片的温度为300~500℃,采用准分子激光器辐照金属氧化物靶材,控制单脉冲能量为100~200mJ,脉冲频率为1~5Hz进行脉冲激光沉积金属氧化物层,沉积结束后原位保温,最后自然冷却到室温状态,得到快速光电恢复响应的近紫外光电位敏传感器;
[0011] 其中步骤一所述的金属氧化物为Fe3O4、Al-ZnO、In2O3或F-SnO2。
[0012] 本发明采用宽带隙半导体β-SiC单晶作为基片,以金属氧化物作为薄膜材料以形成肖特基结,制备紫外/近紫外位敏传感器。β-SiC属于宽带隙半导体材料,其带隙约为2.36eV,理论上在波长小于530nm的单色光即可响应,在一定程度上其探测范围比较接近短波区域并可延伸到日盲区范围,有利于在特定环境下的探测使用。
[0013] 本发明所述快速光电恢复响应的近紫外光电位敏传感器包含以下优点:
[0014] 1、金属氧化物无毒、廉价易得,而且化学性质稳定,耐空气腐蚀;
[0015] 2、利用SiC半导体仅在紫外/近紫外光区响应,该结构从理论上可探测波长小于530nm的单色光,其探测范围比较接近日盲区范围,有利于在特定环境下的探测使用;
[0016] 3、两电极距离在3.6mm下达到了位置灵敏度63.3mV/mm,激光功率为10mW,激光波长为405nm;
[0017] 4、本发明得到的近紫外光电位敏传感器的结构简单,由于SiC宽禁带半导体仅在紫外/近紫外光区响应,所以不需要增加遮光片就可获得仅紫外光电响应的传感器。光电位置传感材料的侧向光伏响应的上升沿为3μs,半峰宽在35μs左右,跟目前带有遮光片的Si基位敏传感器性能相接近;
[0018] 5、由于SiC半导体与Si半导体具有相近的性质,可利用成熟的硅基半导体器件技术,该光电位置传感结构极易与现有的半导体加工工艺相结合。

附图说明

[0019] 图1为侧向光伏瞬态时间响应测试的结构示意图;
[0020] 图2为图1薄膜样品处的结构示意图;
[0021] 图3为在405nm、10mW激光下侧向光伏与光斑位置间的关系图,其中a代表实施例一得到的近紫外光电位敏传感器,b代表实施例二得到的近紫外光电位敏传感器,c代表实施例三得到的近紫外光电位敏传感器;
[0022] 图4为实施例一得到的近紫外光电位敏传感器对不同波长激光的响应曲线图;
[0023] 图5为实施例一得到的近紫外光电位敏传感器对不同功率激光的响应曲线图,其中d代表400nm,e代表405nm,f代表532nm;
[0024] 图6为实施例一得到的近紫外光电位敏传感器在无负载时侧向光伏的时间响应测试曲线图;
[0025] 图7为实施例一得到的近紫外光电位敏传感器在有负载时侧向光伏的时间响应测试曲线图,其中沿箭头方向分别为负载为25kΩ,10kΩ,5kΩ,4kΩ,3.3kΩ,3kΩ,1.3kΩ。

具体实施方式

[0026] 具体实施方式一:本实施方式快速光电恢复响应的近紫外光电位敏传感器具有金属氧化物—SiC结构,在β-SiC基片上采用激光脉冲沉积有厚度为10~60nm的金属氧化物层,其中的金属氧化物为Fe3O4、Al-ZnO、In2O3或F-SnO2。
[0027] 具体实施方式二:本实施方式与具体实施方式一不同的是在β-SiC基片上采用激光脉冲沉积有厚度为15~30nm的金属氧化物层。
[0028] 具体实施方式三:本实施方式快速光电恢复响应的近紫外光电位敏传感器的制备方法按下列步骤实施:
[0029] 一、将金属氧化物粉末经模具压片成型,然后在900~1100℃下烧结处理,得到金属氧化物靶材;
[0030] 二、将β-SiC基片依次置于去离子水、丙酮和无水乙醇中分别超声清洗10~20min,得到清洗后的SiC基片;
[0031] 三、将本底真空抽至3×10-4Pa~5×10-4Pa,以清洗后的SiC基片作为沉积衬底,通入纯氧控制气压为0.01~20Pa,调节SiC基片的温度为300~500℃,采用准分子激光器辐照金属氧化物靶材,控制单脉冲能量为100~200mJ,脉冲频率为1~5Hz进行脉冲激光沉积金属氧化物层,沉积结束后原位保温,最后自然冷却到室温状态,得到快速光电恢复响应的近紫外光电位敏传感器;
[0032] 其中步骤一所述的金属氧化物为Fe3O4、Al-ZnO、In2O3或F-SnO2。
[0033] 本实施方式所述的Al-ZnO为铝掺杂的氧化锌,F-SnO2为F掺杂的SnO2。
[0034] 具体实施方式四:本实施方式与具体实施方式三不同的是步骤一中所述金属氧化物粉末的粒径为100~200nm。其它步骤及参数与具体实施方式三相同。
[0035] 具体实施方式五:本实施方式与具体实施方式三或四不同的是步骤一在900~1100℃下烧结处理10~14h。其它步骤及参数与具体实施方式三或四相同。
[0036] 具体实施方式六:本实施方式与具体实施方式三至五之一不同的是步骤三所述纯氧的纯度大于99.99%。其它步骤及参数与具体实施方式三至五之一相同。
[0037] 具体实施方式七:本实施方式与具体实施方式三至六之一不同的是步骤三沉积金属氧化物层的厚度为10~60nm。其它步骤及参数与具体实施方式三至六之一相同。
[0038] 具体实施方式八:本实施方式与具体实施方式三至七之一不同的是步骤三通入纯氧控制气压为0.1~1Pa,调节SiC基片的温度为350℃。其它步骤及参数与具体实施方式三至七之一相同。
[0039] 具体实施方式九:本实施方式与具体实施方式三至八之一不同的是步骤三采用准分子激光器辐照金属氧化物靶材,控制单脉冲能量为200mJ,脉冲频率为5Hz进行脉冲激光沉积金属氧化物层。其它步骤及参数与具体实施方式三至八之一相同。
[0040] 具体实施方式十:本实施方式与具体实施方式三至九之一不同的是步骤三沉积结束后原位保温20~30min。其它步骤及参数与具体实施方式三至九之一相同。
[0041] 实施例一:本实施例快速光电恢复响应的近紫外光电位敏传感器的制备方法按下列步骤实施:
[0042] 一、将Fe3O4粉末经模具压片成Φ13的圆片,然后在1000℃下烧结处理12h,得到金属氧化物靶材;
[0043] 二、将β-SiC基片依次置于去离子水、丙酮和无水乙醇中分别超声清洗20min,得到清洗后的SiC基片;
[0044] 三、将本底真空抽至3×10-4Pa,以清洗后的SiC基片作为沉积衬底,通入纯氧控制气压为0.1Pa,调节SiC基片的温度为350℃,采用准分子激光器辐照金属氧化物靶材,控制单脉冲能量为200mJ,脉冲频率为5Hz进行脉冲激光沉积厚度为15nm的金属氧化物层,沉积结束后原位保温30min,最后自然冷却到室温状态,得到快速光电恢复响应的近紫外光电位敏传感器。
[0045] 本实施例步骤二所述的β-SiC基片商购自天科合达蓝光半导体有限公司,步骤三所述的准分子激光器为德国Compex,KrF气体激光器,λ=248nm。
[0046] 实施例二:本实施例与实施例一不同的是步骤三脉冲激光沉积厚度为20nm的金属氧化物层。
[0047] 实施例三:本实施例与实施例一不同的是步骤三脉冲激光沉积厚度为25nm的金属氧化物层。
[0048] 侧向光伏位置灵敏度测试设备的搭建过程如下:
[0049] 将单色激光器(波长为分别532nm、405nm、400nm,功率在10mW内可调)固定在一个稳定支架上,经扩束镜后再将一个焦距为1cm的透镜放在光路上,将激光斑点汇聚在薄膜上一个直径约0.1mm的点上,将两块金属铟压在薄膜表面作为电极,电极直径小于0.5mm。利用电动马达来控制二维平移台的移动,进而实现光照位置的改变。
[0050] 按实施例一制备得到的近紫外光电位敏传感器在405nm波长、10mW功率的激光照射下,在Fe3O4(15nm)-SiC结构其位置灵敏度最大,达到了63.3mV/mm。
[0051] 在同样的波长和功率的激光下,实施例二得到的Fe3O4(20nm)-SiC结构的位敏传感器的位置灵敏度是50.2mV/mm;而实施例三得到的Fe3O4(25nm)-SiC结构的位敏传感器的位置灵敏度只有42mV/mm。
[0052] 同样的,在Fe3O4(15nm)-SiC结构中,换成10mW的400nm激光,其灵敏度有所增大,其值是75.5mV/mm。在10mW的532nm激光,其灵敏度比较小,只有14.3mV/mm。根据光生载流子扩散理论,理论值下该结构可在200~400nm间保持着相当大的光电压和位置灵敏度。
[0053] 侧向光伏瞬态响应特性的测试:
[0054] 利用飞秒激光系统1(钛宝石激光器),选择波长800nm波长,并经过倍频技术得到400nm的激光,经分光镜2后一路光路通过透镜3将激光斑点汇聚在近紫外光电位敏传感器5的薄膜上一个直径约0.1mm的点上,另一束光经透镜3后被CCD高速相机4接收,以便与光生信号耦合做时域分析。将两片金属铟压在薄膜表面作为电极,电极直径小于0.5mm,两个电极通过导线连接在锁相放大器7的输入端,输出端连接示波器6,其型号为Tektronix DPO 
5054数字式示波器,测试金属氧化物-SiC结构侧向光伏的时间响应特性。侧向光伏时间响应测试的结构示意图如图1和2所示,以该器件产生的侧向光伏作为电源与可调负载电阻构成回路来观测侧向光伏的响应时间特性。
[0055] 使用飞秒激光系统进行侧向光伏的时间分辨测量,并对实施例一得到的位敏传感器并联电子元件(如电阻)作为负载。所测量的光伏响应的上升沿约为3μs。
[0056] 实施例四:本实施例与实施例一不同的是以Al-ZnO(其中Al的掺杂浓度为2%)为金属氧化物靶材,步骤三将本底真空抽至5×10-4Pa,以清洗后的SiC基片作为沉积衬底,通入纯氧控制气压为2Pa,调节SiC基片的温度为650℃,采用准分子激光器辐照金属氧化物靶材,控制单脉冲能量为200mJ,脉冲频率为5Hz进行脉冲激光沉积厚度为15nm的金属氧化物层,沉积结束后原位保温20min,最后自然冷却到室温状态。
[0057] 本实施例得到的近紫外光电位敏传感器在405nm波长、10mW功率的激光照射下,其灵敏度为32mV/mm。