石墨烯/碳纳米管薄膜肖特基结光电探测器及其制备方法转让专利

申请号 : CN201610394607.1

文献号 : CN106024968B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 罗林保张腾飞汪丹丹邹宜峰梁凤霞

申请人 : 合肥工业大学

摘要 :

本发明公开了一种石墨烯/碳纳米管薄膜肖特基结光电探测器及其制备方法,其是在绝缘衬底上表面覆盖有碳纳米管薄膜,碳纳米管薄膜的一端设置有与碳纳米管薄膜呈欧姆接触的银电极,另一端设置有与碳纳米管薄膜呈肖特基接触的石墨烯薄膜,在石墨烯薄膜上设置有与石墨烯薄膜呈欧姆接触的第二银电极。本发明中的光电探测器既利用了碳纳米管宽光谱吸收的特性,又结合了石墨烯高透光率、低电阻率等优良特性,实现了对300‑1050nm光的探测,并且具有很高的响应度和响应速度;本发明制备方法简单,适合大规模生产,可制备宽光谱、高探测率、响应速度快的光电探测器,为全碳结构光电探测的应用开拓了新的前景。

权利要求 :

1.石墨烯/碳纳米管薄膜肖特基结光电探测器,其特征在于:在绝缘衬底(1)上表面覆盖有碳纳米管薄膜(2),所述碳纳米管薄膜(2)上表面的一端设置有与所述碳纳米管薄膜(2)呈欧姆接触的第一银电极(3),另一端设置有与所述碳纳米管薄膜(2)呈肖特基接触的石墨烯薄膜(4),在所述石墨烯薄膜(4)上设置有与石墨烯薄膜呈欧姆接触的第二银电极(5);

所述第一银电极与所述石墨烯薄膜不接触,所述第二银电极与所述碳纳米管薄膜不接触。

2.根据权利要求1所述的石墨烯/碳纳米管薄膜肖特基结光电探测器,其特征在于:所述碳纳米管薄膜由本征碳纳米管构成;所述石墨烯薄膜为本征石墨烯薄膜。

3.根据权利要求1所述的石墨烯/碳纳米管薄膜肖特基结光电探测器,其特征在于:所述绝缘衬底是以单晶硅为基底、且二氧化硅层厚度不小于300nm的二氧化硅片。

4.根据权利要求1所述的石墨烯/碳纳米管薄膜肖特基结光电探测器,其特征在于:所述第一银电极和第二银电极的厚度为15-30nm。

5.一种权利要求1-4中任意一项所述的石墨烯/碳纳米管薄膜肖特基结光电探测器的制备方法,其特征是按如下步骤进行:(1)将绝缘衬底依次用丙酮、酒精、去离子水超声清洗,然后用氮气枪吹干备用;

(2)将碳纳米管粉末溶解在N-甲基-2-吡咯烷酮中,离心,所得上清液滴涂到绝缘衬底上,晾干,形成碳纳米管薄膜;

(3)通过电子束镀膜方法在碳纳米管薄膜的一侧蒸镀第一银电极;

(4)利用湿法转移将石墨烯薄膜转移到碳纳米管薄膜上,使其位于碳纳米管薄膜的另一侧,所述第一银电极与所述石墨烯薄膜不接触;

(5)在石墨烯薄膜上表面点上银浆作为第二银电极,所述第二银电极与所述碳纳米管薄膜不接触,即获得石墨烯/碳纳米管薄膜肖特基结光电探测器。

说明书 :

石墨烯/碳纳米管薄膜肖特基结光电探测器及其制备方法

技术领域

[0001] 本发明属于半导体光电探测领域,具体涉及石墨烯/碳纳米管薄膜肖特基结光电探测器及其制备方法。

背景技术

[0002] 电磁波,是由同相且相互垂直的电场和磁场在空间中衍射发射的震荡粒子波,是以波动的形式传播的电磁场,具有波粒二象性。人眼可见的光是波长在390-760nm范围的电磁波,一般光电探测的范围是紫外-可见-近红外波段,光电探测器的原理是由辐射引起的被照射材料电导率发生改变,光电探测器在军事和国民经济的各个领域有广泛用途,如在紫外波段主要用于光通讯、探伤和光学仪器等方面,在可见光或近红外波段主要用于射线测量和探测、工业自动控制、广度计量等,在红外波段主要用于导弹制导、红外热成像、红外遥感等方面。
[0003] 光电探测从工作机制上可分为光子效应探测器和热辐射探测器。光子效应是利用光子与电子的直接相互作用,激发光的波长需要和半导体带隙相匹配,由于粒子间的作用时间很短,其响应速度一般比较快。另一种热辐射探测器是基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,其区别于光子探测器的最大特点是对光辐射的波长无选择性。光电探测从是否需要外界能量驱动工作可分为光电导型和光伏型,光电导一般是单纯利用半导体的光敏特性制成的器件,而光伏型则是利用内光电效应也即光伏效应产生电压驱动自身工作的器件。光电探测器的主要参数有响应度、探测率、光谱响应、频率响应、量子效率、噪声等效功率等等。
[0004] 碳纳米管,又名巴基管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级,管子两端基本上都封口)的一维量子材料。碳纳米管主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。层与层之间保持固定的距离,约0.34nm,直径一般为2~20nm。根据碳六边形沿轴向的不同取向可以将其分成锯齿形、扶手椅型和螺旋型三种。根据碳纳米管的导电性质可以将其分为金属型碳纳米管和半导体型碳纳米管:当n-m=3k(k为整数)时(n、m代表手性指数),碳纳米管为金属型;当n-m=3k±1时,碳纳米管为半导体型。
碳纳米管作为一维纳米材料,重量轻、六边形结构连接完美,具有许多异常的力学、电学和化学性能。在电学方面,半导体单壁碳纳米管具有超高电子迁移率,单根半导体单壁碳纳米管作为沟道材料的场效应晶体管(FET),其性能指标已经在多方面超过传统硅基器件。此外,碳纳米管还具有良好的化学稳定性和机械延展性,具有很好的构建柔性电子器件、全碳电路的潜力。在光学特性方面,碳纳米管与传统光电材料如化合物半导体、有机物半导体相比也具有优异的光吸收和光响应性能。碳纳米管是一种多子带、直接带隙的半导体,其带隙可调,并与直径大致成反比关系,因此碳纳米管薄膜具有从紫外到红外的宽谱光吸收特性。
碳纳米管的吸收系数很高,已报道碳管薄膜样品在近红外到中红外区间的光吸收系数在
4 5 -1
10-10cm 之间,较传统红外材料高出约一个量级。作为一种小尺度的纳米材料,碳纳米管具有很好的光电集成潜力,在保持较高探测性能的同时,单一像素器件能够达到亚微米尺度。近些年随着碳纳米管及纳米材料研究的深入其广阔的应用前景也不断地展现出来。在光电探测领域主要有纳米单根碳纳米管器件、碳纳米管薄膜或阵列的光电导器件、碳纳米管和传统金属的肖特基结型器件,但光电导型器件存在暗电流较大、响应度不高等缺点,而与传统金属构成的肖特基结型器件中,金属会阻碍光的吸收,从而影响器件的整体性能,单根碳纳米管器件虽然具有很优异的性能,但很难大规模量产,并且器件的可靠性和可重复性较差。
[0005] 石墨烯是由单层碳原子周期性紧密堆积构成的结构类似苯环(六角形蜂巢结构)的一种二维碳材料。石墨烯是由英国曼切斯特大学的两位科学家首次发现的,当时他们通过对石墨片层层剥离得到了仅由一层碳原子构成的薄片,就是石墨烯。石墨烯是已知的世上最薄、最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000cm2/V·s,又比纳米碳管或-8硅晶体高,而电阻率只约10 Ω·m,比铜或银更低,为世上电阻率最小的材料。由于其独有的特性,石墨烯被称为“神奇材料”,科学家甚至预言其将“彻底改变21世纪”。由于高导电性、高强度、超轻薄等特性,石墨烯在航天军工领域的应用优势极为突出的。因其电阻率极低,电子迁移的速度极快,因此被期待可用来发展更薄、导电速度更快的新一代电子元件或晶体管。石墨烯最重要的性质之一就是它独特的载流子特性和无质量的狄拉克费米子属性。石墨烯的价带和导带部分相重叠于费米能级处,是能隙为零的二维半导体,载流子可不通过散射在亚微米距离内运动,为目前发现的电阻率最小的材料。石墨烯内部电子输运的抗干扰能力很强,其电子迁移率在室温下可超过15000cm2/(V·s),而当载流子密度低于5×109cm-2时,低温悬浮石墨烯的电子迁移率首次被发现可以接近200000cm2/(V·s)。单层悬浮石墨烯的白光吸收率是2.3%,而且吸收率随着层数的变化呈线性增加。Gusynin等发现石墨烯的透明度只取决于其精细结构常数。在光电探测领域,虽然石墨烯具有很宽的吸收带宽,也存在着明显的劣势;本征石墨烯自身由于光吸收率低、缺乏光增益机制,导致石墨烯探测器的响应度较低;石墨烯自身的光生载流子寿命短,仅皮秒左右,导致光生载流子难以有效收集,也严重影响探测器的响应度,因此单纯的石墨烯基的探测器无法满足实际应用的需要。

发明内容

[0006] 本发明是为避免上述现有技术所存在的不足之处,充分利用石墨烯这一新型的二维纳米材料以及光电性能优异的碳纳米管材料,提供一种结构新颖、制备工艺简单、光吸收能力强、响应速度快、且抗电磁干扰能力强的石墨烯/碳纳米管薄膜肖特基结光电探测器。
[0007] 本发明为解决技术问题采用如下技术方案:
[0008] 本发明的石墨烯/碳纳米管薄膜肖特基结光电探测器,其特点在于:在绝缘衬底上表面覆盖有碳纳米管薄膜,所述碳纳米管薄膜上表面的一端设置有与所述碳纳米管薄膜呈欧姆接触的第一银电极,另一端设置有与所述碳纳米管薄膜呈肖特基接触的石墨烯薄膜,在所述石墨烯薄膜上设置有与石墨烯薄膜呈欧姆接触的第二银电极。
[0009] 在上述结构中,碳纳米管薄膜可以完全覆盖绝缘衬底的上表面,也可以部分覆盖;第一银电极与石墨烯薄膜不接触,第二银电极与碳纳米管薄膜不接触。
[0010] 其中,所述碳纳米管薄膜由本征碳纳米管构成;所述石墨烯薄膜为本征石墨烯薄膜。
[0011] 所述绝缘衬底是以单晶硅为基底、且二氧化硅层厚度不小于300nm的二氧化硅片。
[0012] 所述第一银电极和第二银电极的厚度为15-30nm。
[0013] 本发明上述石墨烯/碳纳米管薄膜肖特基结光电探测器的制备方法,是按如下步骤进行:
[0014] (1)将绝缘衬底依次用丙酮、酒精、去离子水超声清洗,然后用氮气枪吹干备用;
[0015] (2)将碳纳米管粉末溶解在N-甲基-2-吡咯烷酮中,离心,所得上清液滴涂到绝缘衬底上,晾干,形成碳纳米管薄膜;
[0016] (3)通过电子束镀膜方法在碳纳米管薄膜的一侧蒸镀第一银电极;
[0017] (4)利用湿法转移将石墨烯薄膜转移到碳纳米管薄膜上,使其位于碳纳米管薄膜的另一侧;
[0018] (5)在石墨烯薄膜上表面点上银浆作为第二银电极,即获得石墨烯/碳纳米管薄膜肖特基结光电探测器。
[0019] 本发明的石墨烯/碳纳米管薄膜肖特基结光电探测器利用石墨烯优异的透光和导电能力构筑肖特基结,增强器件的光电特性,具体工作原理如下:以石墨烯和碳纳米管形成的肖特基结为核心,利用石墨烯在紫外-可见-近红外光的高透过性,结合碳纳米管本身的带隙特征,从而最大程度的提高整个器件对光的吸收能力。
[0020] 本发明所用石墨烯薄膜为采用CVD方法制备的本征石墨烯薄膜,其为弱P型类金属材料,因此可以与碳纳米管形成肖特基异质结。
[0021] 与已有技术相比,本发明的有益效果体现在:
[0022] 1、本发明的石墨烯/碳纳米管薄膜肖特基结光电探测器,既利用了碳纳米管宽光谱吸收的特性,又结合了石墨烯高透光率、低电阻率等优良特性,实现了对300-1050nm光的探测,不仅具有响应速度快、响应度高、波长响应范围大等优点,还具有绿色环保的特点,兼具实用性和一定前瞻性。
[0023] 2、本发明利用离心、滴涂所获得的碳纳米管薄膜均匀且较为致密。
[0024] 3、本发明的光电探测器制备方法简单,适合大规模生产,可制备宽光谱、高探测率、响应速度快的光电探测器,为全碳结构光电探测的应用开拓了新的前景。

附图说明

[0025] 图1为本发明的石墨烯/碳纳米管薄膜肖特基结光电探测器的结构示意图;
[0026] 图2为本发明的碳纳米管薄膜在绝缘衬底表面的分布示意图;
[0027] 图3为本发明的石墨烯薄膜和碳纳米管薄膜所构筑肖特基结的光学显微镜图;
[0028] 图4为本发明实施例中器件在黑暗条件和980nm光照条件下的电流与电压关系特性曲线;
[0029] 图5为本发明实施例中器件在零偏压下的光响应图(a)和上升下降时间图(b);
[0030] 图6为本发明实例中器件的光电流随入射光功率变化曲线(a)和光谱响应图(b);
[0031] 图中标号:1为绝缘衬底;2为碳纳米管薄膜;3为第一银电极;4为石墨烯薄膜;5为第二银电极。

具体实施方式

[0032] 实施例1
[0033] 参见图1,本实施例的石墨烯/碳纳米管薄膜肖特基结光电探测器具有如下结构:
[0034] 在绝缘衬底1上表面覆盖有碳纳米管薄膜2,碳纳米管薄膜2上表面的一端设置有与碳纳米管薄膜2呈欧姆接触的第一银电极3,另一端设置有与碳纳米管薄膜2呈肖特基接触的石墨烯薄膜4,在石墨烯薄膜4上设置有与石墨烯薄膜呈欧姆接触的第二银电极5。
[0035] 本实施例的石墨烯/碳纳米管薄膜肖特基结光电探测器是按如下步骤进行制备:
[0036] (1)将二氧化硅片依次用丙酮、酒精、去离子水超声10分钟,然后用氮气枪吹干,获得绝缘衬底;
[0037] (2)将1g碳纳米管粉末(购买自Carbon solutions,型号P3-SWNT,纯度大于90%)溶解100mL在N-甲基-2-吡咯烷酮中,离心,所得上清液滴涂到绝缘衬底上,晾干,形成碳纳米管薄膜,其分布示意图如图2所示;
[0038] (3)通过电子束镀膜方法在碳纳米管薄膜的一侧蒸镀厚度30nm的银电极;
[0039] (4)利用湿法转移将通过CVD法制备的本征石墨烯薄膜转移到碳纳米管薄膜上,使其位于碳纳米管薄膜的另一侧;
[0040] (5)在石墨烯薄膜上表面点上银浆作为第二银电极(厚度30nm),即得石墨烯/碳纳米管薄膜肖特基结光电探测器,其光学显微镜图如图3所示。
[0041] 本实施例所得器件在黑暗(Dark)和980nm光照射下的电流和电压的关系特性曲线如图4所示,可以看出器件具有很好的整流特性,整流特性比大概为102左右。同时,加光照射时,器件在反向偏置时有很明显的响应,电流达到4×10-3A,而在正向偏置时则基本没有变化,电流仍保持在1×10-3A。这证明了本实施例的肖特基结型光电探测器为少子器件,工作在反向偏置,同时也间接表明银电极与碳纳米管薄膜有很好的欧姆接触,石墨烯也与碳纳米管薄膜形成了很好的肖特基接触。
[0042] 本实施例所得器件在0V偏压下的脉冲光照响应曲线如图5(a)所示,可以看出器件随着光源的开关在高低阻态之间变化并且具有很好的重复性,开关比为228。此外器件在没有电压驱动时仍然具有电流,这说明器件具有光伏特性,可以作为一种不需要外电流驱动的光电探测器。器件的响应时间曲线如图5(b)所示,可以看出器件的上升时间为68μs、下降时间为105μs,这表明了本实施例所制备的器件具有非常优异的响应速度。
[0043] 本实施例所得器件的光电流随入射光功率的变化曲线如图6(a)所示,可以看出光电流随入射光功率的变化呈线性变化的趋势,这表明了本实施例所制备的器件具有很好的线性范围。器件的响应度随入射光波长的变化曲线如图6(b)所示,可以看出器件在300-1100nm内都有一定的响应,在950nm处响应度最高为230mA/W。这表明本实施例所制备的器件可以作为一种宽光谱响应的、而且对红外光较敏感的光电探测器。