针对感应式功率传输系统的阻抗匹配转让专利

申请号 : CN201580009718.X

文献号 : CN106030957B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : D·W·里特J·J·特利兹T·K·默耶J·M·阿尔维斯S·G·赫巴斯特

申请人 : 苹果公司

摘要 :

本发明公开了一种电磁感应功率传输装置(100),该电磁感应功率传输装置包括:感应式功率发射器(102)和感应式功率接收器(104),该感应式功率发射器包括:具有活跃状态和不活跃状态的电源,该电源被配置为以可选择的占空比在活跃状态和不活跃状态之间切换;和耦接到该电源的功率发射电感器(102‑12);该感应式功率接收器包括:被定位成感应地靠近功率发射电感器的功率接收电感器(104‑12);可编程负载(104‑12);和耦接到功率接收电感器并被配置为响应于可编程负载的功率需求的变化而增大或减小感应式功率接收器的电阻抗的阻抗控制器(104‑6)。

权利要求 :

1.一种电磁感应功率传输装置,包括:感应式功率发射器,所述感应式功率发射器包括:具有活跃状态和不活跃状态的电源,所述电源被配置为以可选择的占空比在所述活跃状态和所述不活跃状态之间切换;和耦接到所述电源的功率发射电感器;和感应式功率接收器,所述感应式功率接收器包括:被定位成感应地靠近所述功率发射电感器的功率接收电感器;

可编程负载;和

耦接到所述功率接收电感器并被配置为响应于所述可编程负载的功率需求的变化而对所述功率接收电感器的漏电感进行放电以改变跨所述可编程负载的电压,以增大或减小所述感应式功率接收器的电阻抗的阻抗控制器。

2.根据权利要求1所述的功率传输装置,其中所述阻抗控制器包括升压转换器。

3.根据权利要求1所述的功率传输装置,其中所述阻抗控制器包括降压转换器。

4.根据权利要求1所述的功率传输装置,其中所述阻抗控制器包括同步桥整流器,所述同步桥整流器包括:具有可控的占空比的振荡器;和

多个开关,每个开关能够至少部分地响应于所述功率接收电感器的电压极性和所述振荡器的电压幅值进行切换。

5.一种电磁感应功率接收装置,包括:功率接收电感器;

可编程负载;和

耦接到所述功率接收电感器并被配置为响应于所述可编程负载的功率需求的变化而对所述功率接收电感器的漏电感进行放电以改变跨所述可编程负载的电压,以增大或减小所述功率接收电感器的电阻抗的阻抗控制器。

6.根据权利要求5所述的功率接收装置,其中所述阻抗控制器包括升压转换器。

7.根据权利要求5所述的功率接收装置,其中所述阻抗控制器包括降压转换器。

8.根据权利要求5所述的功率接收装置,其中所述阻抗控制器包括同步桥整流器,所述同步桥整流器包括:具有可控的占空比的振荡器;和

多个开关,每个开关能够至少部分地响应于所述功率接收电感器的电压极性和所述振荡器的电压幅值进行切换。

9.一种操作与便携式电子设备相关联的感应式功率接收器的方法,所述方法包括:确定所述便携式电子设备的负载状况;

从感应式功率发射器接收感应式功率;以及响应于所确定的负载状况,通过对所述感应式功率接收器的漏电感进行放电以改变跨可编程负载的电压来调整所述感应式功率接收器的阻抗。

10.根据权利要求9所述的方法,其中调整所述感应式功率接收器的阻抗的所述操作至少部分地由阻抗控制器来执行。

11.根据权利要求10所述的方法,其中所述阻抗控制器包括升压转换器。

12.根据权利要求10所述的方法,其中所述阻抗控制器包括降压转换器。

13.根据权利要求10所述的方法,还包括:确定所述便携式电子设备的所述负载状况已改变。

14.根据权利要求13所述的方法,还包括:确定所述便携式电子设备的所述负载状况已增大。

15.根据权利要求14所述的方法,还包括:在确定所述便携式电子设备的所述负载状况已增大时,减小所述感应式功率接收器的有效阻抗。

16.根据权利要求13所述的方法,还包括:确定所述便携式电子设备的所述负载状况已减小。

17.根据权利要求16所述的方法,还包括:在确定所述便携式电子设备的所述负载状况已减小时,增大所述感应式功率接收器的有效阻抗。

18.根据权利要求11所述的方法,其中所述阻抗控制器包括同步桥整流器,所述同步桥整流器包括:具有可控的占空比的振荡器;和

多个开关,每个开关能够至少部分地响应于功率接收电感器的电压极性和所述振荡器的电压幅值进行切换。

说明书 :

针对感应式功率传输系统的阻抗匹配

[0001] 相关申请的交叉引用
[0002] 本专利合作条约专利申请要求于2014年2月23日提交且名称为“Impedance Matching for Inductive Power Transfer Systems”的美国临时申请号61/943,478的优先权,其公开内容据此全文并入本文。

技术领域

[0003] 本公开涉及针对电磁感应功率传输系统的有效管理,并且更具体地涉及用于增大感应式功率接收附件或者感应式功率接收电子设备的阻抗的系统和方法。

背景技术

[0004] 许多便携式电子设备包括需要外部功率以时常进行再充电的一个或多个可再充电电池。此类设备可包括移动电话、智能电话、平板电脑、膝上型计算机、可穿戴设备、导航设备、运动设备、健康设备、医疗设备、附件设备、外围输入设备等。
[0005] 一些电子设备可包括代替缆线充电系统或者栓系充电系统的感应式充电系统。在这些示例中,用户可将便携式电子设备放置在感应式充电表面(“平台”)上,以经由电磁感应再装满可充电电池。在这些系统中,平台内的电磁线圈(“发射线圈”)可感应地耦接到便携式电子设备内的电磁线圈(“接收线圈”)。通过交替或切换通过发射线圈的电流,电流可在接收线圈中被感应。该便携式电子设备可被适配为使用所接收的电流来再装满可再充电电池的电荷。
[0006] 许多便携式电子设备在感应式功率传输期间可进入多功率模式。例如,具有可再充电电池的便携式电子设备在一段时间之后可从汲取低功率的涓流充电模式切换到汲取相对高功率的恒流充电模式。若干个可操作模式中的每个可操作模式可呈现由感应式功率发射器看到的不同负载状况。在许多情况下,充电负载状况减小了发射器和接收器之间的功率传输的效率。
[0007] 因此,可存在对用于有效地且快速地跨多功率模式将可用的功率传送到便携式电子设备的系统和方法的当前的需要。

发明内容

[0008] 本文所述的实施方案可涉及、包括用于管理跨感应式充电接口的效率的方法、系统和装置或采用其形式。此类实施方案可包括感应式功率发射器和感应式功率接收器。阻抗控制器可被耦接到功率接收电感器并且可被配置为响应于耦接到感应式功率接收器的便携式电子设备的功率需求的变化而增大或减小感应式功率接收器的阻抗。
[0009] 许多实施方案可包括其中该阻抗控制器被配置为将从感应式功率发射器的视角的便携式电子设备的有效阻抗保持在穿过便携式电子设备的所有或基本上所有负载状况的基本上相同的值处的配置。
[0010] 另一个实施方案可包括其中该阻抗控制器为升压转换器的配置。在某些另外的实施方案中,该阻抗控制器可为降压转换器。另外的实施方案包括被集成在桥式整流器内的升压转换器或者降压转换器中的一者。
[0011] 本文描述的另外的实施方案可涉及、包括动态地调整感应式功率接收装置的阻抗的方法或采用其形式。例如,在某些实施方案中,该方法可包括确定感应式功率接收器的负载状况并调整接收器阻抗的步骤。

附图说明

[0012] 现在将参考在附图示出的代表性实施方案。应当理解,以下描述并非旨在将公开内容限制于一个优选实施方案。相反,其旨在涵盖可被包括在由所附权利要求限定的所述实施方案的实质和范围内的替代形式、修改形式和等同形式。
[0013] 图1为样本感应式功率传输系统的简化信号流程框图。
[0014] 图2为被适配为动态地调整接收器阻抗的感应式功率接收器的一个示例的简化信号流程图。
[0015] 图3为被适配为动态地减小接收器阻抗的感应式功率接收器的一个示例的简化信号流程图。
[0016] 图4为被适配为动态地增大接收器阻抗的感应式功率接收器的一个示例的简化信号流程图。
[0017] 图5为被适配为动态地减小接收器阻抗的感应式功率接收器的一个示例的简化信号流程图。
[0018] 图6为被适配为动态地改变接收器阻抗的感应式功率传输系统的一个示例的简化信号流程示意图。
[0019] 图7为被适配为动态地改变接收器阻抗的感应式功率传输系统的一个示例的简化信号流程示意图。
[0020] 图8为示出了动态地调整接收器阻抗的方法的示例性操作的简化的流程图。
[0021] 在不同附图中使用相同或相似的附图标记来指示相似、相关或者相同的项目。

具体实施方式

[0022] 本文所述的实施方案可涉及用于管理感应式充电接口的效率的方法和装置或采用其形式。应当理解,本文所述的各种实施方案以及其功能、操作、部件和能力在必要时可与其他元件组合,并且因此任何元件或特征结构的任何物理的、功能的或者可操作的讨论并非旨在仅限制于具体实施方案而排除其他实施方案。
[0023] 本文所述的实施方案涉及感应式充电系统,该感应式充电系统可包括用于发射功率的感应式功率发射装置和用于接收功率的便携式电子设备或附件。此类电子设备可包括媒体播放器、媒体存储设备、个人数字助理、平板电脑、蜂窝电话、膝上型计算机、智能电话、触笔、全球定位传感器单元、遥控器设备、可穿戴设备、电动车、家用电器、医疗设备、健康设备、运动设备等。
[0024] 在许多示例中,当邻近感应式功率发射装置(例如,“平台”或者“充电站”)的功率发射电感器(例如,“发射线圈”)放置便携式电子设备时,便携式电子设备可激活包括功率接收电感器(例如,“接收线圈”)的感应式充电电路,以便向感应式功率发射装置传达便携式电子设备准备好接收功率。在其他示例中,功率接收电感器和/或便携式电子设备可简单地从充电站接收功率而无需先前的通信。通过将交替电流或者其他转换电流施加到发射线圈,电流可在接收线圈中被感应到。便携式电子设备可使用所接收的电流来再装满一个或多个可再充电电池的电荷。
[0025] 功率管理实施方案可采用感应式能量的发射器和接收器内的自适应功率管理系统的形式。例如,当邻近感应式充电站放置便携式电子设备时,该感应式充电站可激活感应式功率传输电路。在所有其他时段,交互式功率传输电路可完全地断电。在其他示例中,发射线圈可不断地发射功率。在此类示例中,当邻近发射线圈放置便携式电子设备时,便携式电子设备可接收感应式功率。在另外的示例中,发射线圈可间歇地发射功率。
[0026] 在其他实施方案中,功率发射线圈可与功率接收线圈以电感形式耦接。在进行耦接时,发射线圈可经历增大的负载。因此,当便携式电子设备的功率需求变化时,发射线圈所经历的负载可能也会变化。例如,便携式电子设备可包括多个功率接收负载状况。又如,当便携式电子设备被完全充电时,与该设备对应的负载可下降。
[0027] 在一个实施方案中,便携式电子设备可至少间歇地或者偶发地在涓流充电模式中工作。在这些实施方案中,便携式电子设备可以相对低的电流将从感应式功率接收器接收的功率引导至内部电池。在一个示例中,涓流充电可被用于以基本上等于内部电池的自放电速率的速率来加满完全充电电池。在另一个示例中,涓流充电可被用于再装满基本上耗尽的电池。对许多电池类型来说,对显著耗尽的涓流充电可延长电池的寿命。在涓流充电期间,便携式电子设备可从感应式功率接收器汲取相对低的功率。
[0028] 此外,便携式电子设备可包括恒定电流充电模式。在此类实施方案中,便携式电子设备可将以恒定电流将从感应式功率接收器接收的功率引导至内部电池。在许多示例中,所汲取的电流可高于用于对相同的电池进行涓流充电的电流。在这些示例中,便携式电子设备可从感应式功率接收器汲取相对高的功率。
[0029] 作为另一个选项,便携式电子设备可包括引导功率模式,其中便携式电子设备的部件可完全地或者基本上通过从感应式功率接收器接收的功率而被操作。在这些实施方案中,便携式电子设备可包括可使用不同量的功率的一个或多个部件。例如,一些便携式电子设备可包括其功率消耗可为所需的亮度的函数的具有背光源的显示器。又如,一些便携式电子设备可包括其功率消耗可在处理任务之间变化的一个或多个处理器。又如,电子设备在可操作模式中比在待机模式中消耗更多的功率。
[0030] 针对每个不同的功率模式,功率消耗并且因此由便携式电子设备所呈现的电阻性负载可变化,在一些情况下,这可减小功率传输的效率。在许多情况下,电阻性负载的差异一般可被细分为操作电阻性负载部分和瞬时电阻性负载部分。操作电阻性负载部分和瞬时电阻性负载部分被组合在一起,以组成由便携式电子设备呈现的电阻性负载。
[0031] 在许多示例中,操作电阻性负载部分可大于瞬时电阻性负载部分。操作电阻性负载部分可至少部分地由便携式电子设备的功率模式限定。例如,当便携式电子设备处于涓流充电模式中时相比于当便携式电子设备处于引导功率模式中时便携式电子设备可具有不同的操作电阻性负载。在这些示例中,便携式电子设备可将有关操作电阻性负载的信息传送到感应式功率发射器,因为在许多情况下,便携式电子设备在功率模式之间切换相对不频繁。
[0032] 瞬时电阻性负载部分可至少部分地由便携式电子设备的异步方式或者以其他方式不可预测的功能变化来限定。例如,当耦接到便携式电子设备的显示器被启用并打开时,例如当用户正在与设备进行交互时,瞬时电阻性负载可增大。在其他示例中,当设备的一个或多个传感器正在工作时瞬时电阻性负载可增大。在其他示例中,当设备的定时器超时使得设备发出声音、提供触觉响应、点亮通知灯、或者点亮屏幕时,瞬时电阻性负载可增大。在其他示例中,当设备在确定设备空闲之后进入较低的功率模式时瞬时电阻性负载可减小。然而,在许多实施方案中,不同于操作电阻性负载,对于便携式电子设备来说将瞬时电阻性负载的变化传达到感应式功率发射器可是困难的。因此,针对本文所述的许多实施方案,便携式电子设备可内部地对瞬时电阻性负载作出说明而无需比传送到感应式功率发射器。
[0033] 尽管上面列出了瞬时负载变化和操作负载变化的许多示例,但可以理解的是这些示例不是限制性的并且也不是穷举性的。
[0034] 在许多实施方案中,感应式功率发射器可考虑到感应式功率接收器和便携式电子设备的瞬时功率需求来调整功率传输的一个或多个特性(例如,可选择的和/或可控的占空比、电压、电流、频率等),以改善传输效率。在许多示例中,感应式功率发射器对感应式功率接收器的功率需求的变化的反应可一定程度地被延缓。例如,感应式功率发射器在增大或者减小所发射的功率之前可需要来自感应式功率接收器的通信。在许多示例中,这些延迟可导致无效量的功率在感应式功率发射器正在确认或者以其他方式发现感应式功率接收器的功率需求的周期期间被传输。例如,感应式功率发射器在功率传输的合适的特性被调整之前的一段时间可发射过多或过少的功率。
[0035] 因此,本文所讨论的许多实施方案包括感应式功率接收装置内的阻抗控制器。阻抗控制器可直接响应于便携式电子设备的功率需求的变化而动态地调整感应式功率接收器的阻抗。这样,独立于感应式功率接收器或者便携式电子设备内的瞬时变化,感应式功率发射器可看到连续且一致的负载。
[0036] 图1是样本感应式功率传输系统的简化信号流程框图。感应式功率传输系统100可包括感应式功率发射器102和感应式功率接收器104。感应式功率发射器102和感应式功率接收器104可被间隙106隔开。在许多实施方案中,间隙106可为气隙和/或可包括一个或多个外壳诸如用于发射器和/或接收器的外壳(其示例包括平台外壳和设备外壳)。
[0037] 感应式功率接收器104可为任何合适的电子设备,诸如可穿戴通信设备、可穿戴健康助理、智能电话或者媒体播放器。例如,可穿戴健康助理可将与健康相关的信息(实时或者非实时)提供到用户、被授权的第三方和/或相关联的监视设备。该设备可被配置为提供与健康相关的信息或数据,诸如但不限于心率数据、血压数据、温度数据、含氧量数据、饮食/营养信息、医疗提醒、与健康相关的提示或信息,或者其他与健康相关的数据。相关联的监视设备可为例如平板计算设备、电话、个人数字助理、计算机等等。
[0038] 又如,可穿戴通信设备可包括一个或多个通信接口、输出设备(诸如显示器和扬声器)、一个或多个输入设备、以及与存储器耦接或与存储器进行通信的处理器。一个或多个通信接口可提供通信设备与任何外部通信网络、设备或平台之间的电子通信,该通信接口诸如但不限于无线接口、蓝牙接口、USB接口、Wi-Fi接口、TCP/IP接口、网络通信接口或者任何常规的通信接口。除了通信以外,可穿戴通信设备可提供消息、视频、操作命令、与时间、健康、状态或者外部连接的设备或正在进行通信的设备和/或在该设备上运行的软件相关的信息等等(并且可从外部设备接收上述各项中的任一者)。
[0039] 感应式充电系统100可包括振荡器,诸如操作地连接到控制器102-10和直流转换器102-6的时钟电路102-2。时钟电路102-2可生成用于感应式充电系统100的一个或多个定时信号。
[0040] 控制器102-10可被耦接到电源102-4。电源102-4可为直流电源,尽管这不是必要的。在某些实施方案中,控制器102-10可控制可从电源102-4获取功率输入的直流转换器102-6的状态。在一个实施方案中,时钟电路102-2生成周期性信号,该周期性信号被控制器
102-10用于以每循环为基础激活和禁用直流转换器102-6中的开关。开关可将来自电源
102-4的直流转换成适于激励发射线圈102-12的交流。
[0041] 任何合适的直流转换器102-6可被用于感应式充电系统100中。例如,在一个实施方案中,H桥可被用作直流转换器。
[0042] 在一些实施方案中,可不需要H桥。例如,单个开关可控制来自直流转化器102-6的电流的流动。这样,直流转换器102-6可用作方波生成器。
[0043] 由直流转换器102-6所产生的时变信号或者方波信号可被输入到变压器中。通常,诸如在上面参考的栓系的功率传输系统中使用的那些变压器的变压器包括耦接到接收线圈的发射线圈,其中每个线圈缠绕共同的芯。然而,本文所述的感应式充电系统100通常包括由间隙106隔开的主线圈102-12和接收线圈104-12以及在一些实施方案中包含每个线圈的相应的外壳。如图所示,变压器可不必为物理元件,而是指两个感应地靠近的电磁线圈诸如发射线圈102-12和接收线圈104-12之间的关系和交接。
[0044] 上述是对发射器和其与感应式功率传输系统的接收线圈104-12之间的交互的简化的描述。发射器可被配置为将时变电压提供到发射线圈102-12以便在接收线圈104-12中感应电压。尽管交流和方波被用作具体示例,但可以理解的是可设想其他波形。在此类情况下,控制器102-10可控制直流转换器102-6的多个状态。例如,控制器102-10可控制电压、电流、占空比、波形、频率、或它们的任意组合。
[0045] 控制器102-10可周期性地修改被施加到发射线圈102-12的波形的各种特性,以便增大功率发射电路的操作的效率。各种修改可实时地、以预先确定的序列被作出或者可不时地被固定。可以理解的是针对特定的情况可期望特定的修改。
[0046] 例如,在某些情况下,如果确定接收线圈104-12没有感应地靠近发射线圈102-12,则控制器102-10可中断至发射线圈102-12的所有功率。该确定可以任何数量的合适的方式实现。例如,控制器102-10可被配置为检测发射线圈102-12上的感应式负载。如果感应式负载下降到低于某个所选择的阈值,在控制器102-10可推断接收线圈104-12可没有感应地接近发射线圈102-12(例如,足够接近发射线圈以接收功率,或者接收高于阈值的功率)。在此类情况下,控制器102-10可中断至发射线圈102-12的所有功率。
[0047] 在其他情况下,在一个实施方案中,控制器102-10可将占空比设定为变压器的共振频率或者接近该共振频率。又如,定义占空比的启用状态(例如,高的)的波形的周期可被选择为变压器的共振频率或者接近该共振频率。可以理解的是,此类选择可增大发射线圈102-12和接收线圈104-12之间的功率传输效率,并且因此减小系统内的热损耗。
[0048] 在另选的示例中,如果感测到感应式负载中的突然的峰值,则控制器102-10可中断至发射线圈102-12的所有功率。例如,如果感应式负载以特定的速率迅速上升到高于某个所选择的阈值,则控制器102-10可推断中间对象可感应地邻近发射线圈102-12被放置。在此类情况下,控制器102-10可中断至发射线圈102-12的所有功率。作为另外一种选择,感应式负载中的此类峰值可被用作用于激活感应式充电并因此对发射线圈102-12供电的信号。
[0049] 在另外的示例中,控制器102-10可修改被施加到发射线圈102-12的波形的其他特性。例如,如果接收器电路要求附加功率,则控制器102-10可增大被施加到发射线圈102-12的波形的占空比。在相关的示例中,如果接收器电路要求较少的功率,则控制器102-10可减小被施加到发射线圈102-12的占空比。在这些示例中的每个示例中,被施加到发射线圈102-12的时间平均功率可被修改。
[0050] 又如,控制器102-10可被配置为修改被施加到发射线圈102-12的波形的振幅。在此类示例中,如果接收器电路要求附加功率,则控制器102-10可放大被施加到发射线圈102-12的波形的最大电压。在相关情形中,如果接收器电路要求较少的功率,则波形的最大电压可被减小。
[0051] 感应式功率传输系统100的发射器102部分可被配置为将时变信号提供到发射线圈102-12,以便通过发射线圈102-12和接收线圈104-12之间的感应式耦接在接收器中的接收线圈104-12内感应电压。这样,功率可通过由时变信号在发射线圈102-12中的时变磁通量的产生来从发射线圈102-12传输到接收线圈104-12。
[0052] 在接收线圈104-12中产生的时变信号可由将时变信号转换成直流信号的直流转换器104-6接收。任何合适的直流转换器104-6可被用于感应式充电系统100中。例如,在一个实施方案中,整流器可被用作直流转换器。直流信号可然后通过可编程的负载104-12被接收。
[0053] 在一些实施方案中,接收器直流转换器104-6可为半桥。在此类示例中,接收线圈104-12可具有增大的绕组数量。例如,在一些实施方案中,接收线圈可具有两倍多的绕组。
这样,可以理解的是,在整个接收线圈104-12上所感应出的电压可通过半桥整流器有效地被减小一半。在某些情况下,该配置可要求显著更少的电子部件。例如,半桥整流器可要求全波桥整流器的一半多的晶体管。作为更少的电子部件的结果,电阻性损耗可被显著减小。
[0054] 在某些一些实施方案中,接收器还可包括用于去除或者减小在发射器内存在的磁化电感的电路。一般来讲,磁化电感可导致变压器内由不完美地耦接的线圈形成的损耗。在其他漏电感中间,该磁化电感可显著减小发射器的效率。可进一步理解的是,因为磁化电感可为发射线圈和接收线圈之间的耦接的函数,所以在发射器自身内部这并不必须被完全补偿。因此,在本文所讨论的某些实施方案中,调谐电路可被包括在接收器内。例如,在某些实施方案中,电容器可平行于可编程负载104-12被定位。
[0055] 在另外的示例中,上面参考的样本修改的组合可由控制器作出。例如,除减小占空比之外,控制器102-10可使电压加倍。又如,控制器可随着时间推移增大电压,同时随着时间推移减小占空比。可以理解的是,本文可设想任何数量的合适的组合。
[0056] 图2是被适配为动态地调整接收器阻抗的感应式功率接收器的一个示例的简化信号流程图。感应式功率接收器200可包括被耦接到整流器206的接收线圈210,该整流器206继而可耦接到可将直流电压输出到可变电阻性负载214的阻抗控制器212。在许多示例中,接收线圈210可被连接到谐振电容器,以有利于感应式功率接收器200和相关联的感应式功率发射器的谐振。可以理解的是,在谐振时,从感应式功率发射器到感应式功率接收器的功率传输效率可被增大。
[0057] 接收线圈210可被耦接到整流器206。在某些实施方案中,整流器可为全波整流器、半波整流器、无源整流器、或有源整流器。整流器206可被配置为将从接收线圈210接收的交流转换成便携式电子设备可用的直流。在许多实施方案中,滤波电容器216可被耦接到整流器206的输出端,以将某些噪声从整流器206的输出端过滤掉。这样,滤波电容器216可使从整流器206输出的直流平滑。
[0058] 整流器206可被耦接到阻抗控制器212。阻抗控制器可被配置为并适配为响应于可变电阻性负载214表现出的负载状况的改变而提供由相关联的发射线圈通过整流器206和接收线圈210所看到的恒定的或者基本上恒定的阻抗。例如,在某些实施方案中,可变电阻性负载214可为便携式电子设备。如上所述,针对便携式电子设备的不同功能便携式电子设备可表现出不同的负载状况。
[0059] 例如,如果便携式电子设备包括显示器,则当显示器被启用并打开时例如当用户正在与设备进行交互时,便携式电子设备可要求更多的功率(因此具有较低的有效电阻)。在其他示例中,当设备的一个或多个传感器正在工作时,便携式电子设备可要求更多的功率(因此具有较低的有效电阻)。在其他示例中,当设备的定时器超时使得设备发出声音、提供触觉响应、点亮通知灯或者点亮屏幕时,便携式电子设备可要求更多的功率。在其他示例中,当便携式电子设备在确定设备空闲之后进入较低的功率模式时,设备可要求较少的功率(因此具有较高的有效电阻)。
[0060] 在这些示例中,不同的负载状况之间的快速转变可使得便携式电子设备表现出快速变化的阻抗,如上所述,这可显著地影响从功率发射器到感应式功率接收器的功率传输的效率。
[0061] 响应于使可变电阻性负载214的功率需求不同,阻抗控制器212可调整其自身以进行补偿。例如,如果可变电阻性负载214要求已建立的输出电压处的附加功率,则电流可增大并且负载阻抗可减小。阻抗控制器212可通过增大负载阻抗进行反应来保持效率。类似地,如果可变电阻性负载214要求更少的功率,则有效负载阻抗将增大。阻抗控制器212可通过减小负载阻抗进行反应来保持效率。
[0062] 图3为被适配为动态地减小接收器阻抗的感应式功率接收器的一个示例的简化信号流程图。感应式功率接收器300可包括被耦接到整流器306的接收线圈310,该整流器306继而可耦接到可将直流电压输出到可变电阻性负载314的升压转换器312。
[0063] 升压转换器312可操作以升高到可变电阻性负载314的电压。在许多实施方案中,升压转换器312的转换因子可动态地变化。例如,在某些实施方案中,升压转换器312的转换因子可随着由可变电阻性负载314呈现的负载改变而被连续地调整。这样,由整流器所看到的电路的等效电阻保持恒定。
[0064] 当可变电阻性负载314表现出特别高的电阻从而消耗相对低的电流时,升压转换器312可被调整。通过动态地调整升压转换器312的转换因子,可变电阻性负载314的有效电阻(例如,阻抗)可被减小。
[0065] 在其他示例中,从升压转化器312输出的电压可通过动态地调整升压转换器312的转换因子而被减小。例如,在第一模式中,升压转换器312的转换因子可被设置成大于1.0的第一值。然后,如果从升压转换器312输出的电压应当被减小,则升压转换器312的转换因子可朝1.0被减小。
[0066] 在许多实施方案中,滤波电容器316可被耦接到整流器306的输出端,以将某些噪声从整流器306的输出端过滤掉。这样,滤波电容器316可使从整流器306输出的直流平滑。
[0067] 可以理解的是,对于直流电路或者电路的直流部分来说,术语“阻抗”和“电阻”基本上可互换。这是因为不存在交流,所以电路的谐振可基本上被忽略。
[0068] 图4为被适配为动态地增大接收器阻抗的感应式功率接收器的一个示例的简化信号流程图。感应式功率接收器400可包括被耦接到整流器406的接收线圈410,该整流器406继而可耦接到可将直流电压输出到可变电阻性负载414的降压转换器412。
[0069] 降压转换器412可工作以减小到可变电阻性负载414的电压。在许多实施方案中,降压转换器412的转换因子可动态地变化。例如,正如图3中所示的升压转换器,降压转换器412的转换因子可随着由可变电阻性负载414所呈现的负载改变而被调整。这样,由整流器
406所看到的电路的等效电阻保持恒定。通过动态地调整升压转换器412的转换因子,可变电阻性负载414的有效电阻(例如,阻抗)可被增大。
[0070] 在其他示例中,从降压转换器412输出的电压可通过动态地调整降压转换器412的转换因子而增大。例如,在第一模式中,升升压转换器412的转换因子可被设置成小于1.0的第一值。然后,如果从降压转换器412输出的电压应当被减小,则降压转换器412的转换因子可被朝1.0增大。
[0071] 在许多实施方案中,滤波电容器416可被耦接到整流器406的输出端,以将某些噪声从整流器406的输出端过滤掉。这样,滤波电容器416可使从整流器406输出的直流平滑。
[0072] 图5为被适配为动态地减小接收器阻抗的感应式功率接收器的一个示例的简化信号流程图。例如,感应式功率接收器500可包括被耦接到可变电阻性负载514的阻抗控制整流器506。在某些实施方案中,阻抗控制整流器506可为适于升高到可变电阻性负载514的电压以向接收线圈510呈现相同的有效阻抗的升压转换器。
[0073] 在某些另外的实施方案中,阻抗控制整流器506可为集成在有源整流电路内的升压转换器。例如,有源整流器的开关可被用作升压转换器的开关元件。在许多实施方案中,有源整流器内的升压转换器的组合可被适配为以多种方式改善效率。用于有源整流器的开关的使用代替用于无源整流器的二极管减小了由每个二极管所要求的打开电压导致的效率损耗。又如,升压转换器和有源整流器的组合可减小复杂性和感应式功率接收器500内需要的部件的数量。
[0074] 升压转换器和有源整流器的组合可采用多种合适的形式。例如,在一个实施方案中,有源整流器可包括四个开关S1-S4。在一个典型示例中,每当接收线圈510的第一端子是正极时(例如,一个全波或周期的一半)S1和S3可为打开的,而每当接收线圈510的第二端子是正极时(例如,全波或周期的另一半)S2和S4可为打开的。这样,交替的或者转换的电流可被转换成可变电阻性负载514可用的直流。
[0075] 然而,在某些实施方案中,与有源整流器相关联的开关元件可比每半周期一次更加频繁地被切换。例如,针对循环的特定部分S1可被周期性地关闭,在该特定部分期间接收线圈510的第一端子是正极。当在相同的循环期间开关S1被关闭时,作为响应,漏电感中的电流可增大。当在相同的循环期间开关S1再次被打开时,调谐电容器可开始收集电荷。这样,在有源整流器开关的50%的占空比的情况下,电压在阻抗控制整流器506的输出端可被加倍。同时,负载电流在阻抗控制整流器506的输入端可被加倍。这样,阻抗控制整流器506和可变电阻性负载514的有效输入电阻保持恒定。
[0076] 换句话讲,接收线圈510的漏电感被用作升压转换器所需要的电感器。类似地,有源整流器的开关可被用作升压转换器的开关元件。因此,通过动态地调整与阻抗控制整流器506相关联的升压转换器的转换因子,可变电阻性负载的有效电阻(例如,阻抗)可对可变电阻性负载514的功率需求的变化进行补偿。
[0077] 在另外的实施方案中,与阻抗控制整流器506相关联的开关针对每个循环的一部分可有效地使接收线圈506的两个端子接地。这样,阻抗控制整流器510向漏电感呈现较低的阻抗,这继而可增大可被释放到可变电阻性负载514的电流。
[0078] 图6为被适配为动态地改变接收器阻抗的感应式功率传输系统的一个示例的简化信号流程示意图。例如,感应式功率传输系统600可包括发射器和接收器部分,每一者分别包括发射器线圈610和接收器线圈612。电阻器614和电感器616表示系统600内的漏电感。为了描述的简单性,示出了感应式功率传输系统600的某些未标记的部件。可以理解的是,作为理想的电子部件示出的这些元件可表示感应式功率传输系统600的一个或多个部分的电特性。
[0079] 发射器线圈610与接收器线圈612的线匝比可因实施方案不同而不同,但是在许多实施方案中可被优化以用于传输接收器部分所要求的功率。在另外的示例中,接收器部分可要求在接收器线圈612中感应出的交流被整流成直流。因此,接收器部分可包括整流器606,在一些实施方案中整流器606可为全波整流器。在许多实施方案中,整流器606可为无源整流器,诸如所示出的。
[0080] 耦接到整流器的输出端的可为阻抗控制器,在这里被示出为降压转换器608。降压转换器608的输出端可将功率引导到可变电阻性负载,诸如便携式电子设备。
[0081] 在这些实施方案中,感应式功率传输系统600可针对高阻抗被最优化。降压转换器608可减小电压并提高通过可变电阻性负载的电流。例如,当可变电阻性负载高时,低频率可被用于将功率从感应式功率发射器传输到感应式功率接收器。类似地,当可变电阻性负载低时,较高频率可被使用。发射器和接收器之间的功率传输的效率可针对可变电阻性负载的所有负载特性而被优化。应当理解,可编程升压-降压转换器可在一些实施方案中被使用,以便控制转换器的逐步减小/逐步升高。在一些实施方案中,可编程升压-降压转换器可被动态地控制(例如,通过反馈环),以对负载的变化进行补偿。在一些实施方案中,可采用固定的降压转换器。
[0082] 图7为被适配为动态地改变接收器阻抗的感应式功率传输系统的一个示例的简化信号流程示意图。正如图6,感应式功率传输系统700可包括发射器线圈710和接收器线圈712,接收器线圈712耦接到整流器706,该整流器706的输出端通过阻抗控制器708耦接到可变电阻性负载。然而,如图所示,整流器706可为有源整流器。例如,控制器(未示出)可被耦接到整流器706中所示的四个开关中的每个开关。控制器可选择性地打开或者关闭整流器
706的开关中的一个或多个开关。这样,整流器706的开关可表示同步整流器。然而,在许多实施方案中,开关的控制信号可被修改,以便将输出电压升高到高于常规的有源整流器所处的电压。因此,整流器706可用作升压转换器。
[0083] 正如图6,为了描述的简便性,示出了感应式功率传输系统700的某些未标记的部件。可以理解,作为理想的电子部件示出的这些元件可表示感应式功率传输系统700的一个或多个部分的电特性。
[0084] 图8为示出了动态地调整接收器阻抗的方法的示例性操作的简化的流程图。个方法可以感应式功率接收器能够操作以从感应式功率发射器接收感应式功率开始。在操作802处,感应式功率可由感应式功率接收器接收。然后,在804处,感应式功率接收器可确定负载状况已改变。例如,感应式功率接收器可要求较少的功率。在操作806处,感应式功率接收器的有效阻抗可作为在804处确定的负载状况的函数或者响应于在804处确定的负载状况而改变。
[0085] 在本公开中,本发明所公开的方法可被实现为设备可读的指令集或软件。另外,应当理解,本发明所公开的方法中的操作的特定顺序或分级结构为样本方法的示例。在一些实施方案中,当保持在本发明所公开的主题内时,可重新布置方法中的步骤的特定顺序或分级结构。所附方法权利要求呈现样本顺序中的各种步骤的元素,并且并不一定意味着局限于所呈现的特定顺序或分级结构。
[0086] 在上述描述中,为了进行解释,所使用的特定命名提供对所述实施方案的彻底理解。然而,对于本领域的技术人员而言将显而易见的是,实践所述实施方案不需要这些具体细节。因此,出于说明和描述的目的呈现了对本文所述的具体实施方案的上述描述。它们并非旨在是穷举性的或将实施方案限制为所公开的精确形式。对于本领域的普通技术人员而言将显而易见的是,根据上述教导内容,许多修改和变型是可能的。