一种多孔吸附材料的制备方法转让专利

申请号 : CN201610377724.7

文献号 : CN106046374B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 孙姣霞马希钦刘雪莲陈晴空潘瑾樊建新胡霞

申请人 : 重庆交通大学

摘要 :

本发明公开了一种新型多孔吸附材料的制备方法。本方法以氨基封端的聚乙二醇(ATPEG)、丁二胺(BDA)和均苯四甲酸二酐(PMDA)为原料采用溶液热缩聚法合成PI,再将PI溶于有机溶剂,采用冷冻干燥法得到新型多孔吸附材料。本发明合成的多孔吸附材料对难降解有机微污染物性的针对性吸附能力强、吸附速率快,合成路线简单易行。

权利要求 :

1.一种多孔吸附材料的制备方法,其特征在于,包括以下步骤:

1)将PMDA 溶于甲有机溶剂中,并在保护气的保护下加入氨基封端聚乙二醇和丁二胺,得到原始反应溶液;其中,所述氨基封端聚乙二醇的分子量为500,氨基封端聚乙二醇与丁二胺的摩尔比为1:1,氨基总量和PMDA的摩尔比为2:1,甲有机溶剂为沸点高于180℃且能溶解PMDA 和氨基封端聚乙二醇的有机溶剂;

2)将原始反应溶液依次在室温下反应2 4小时,在40℃下反应8 12小时,在120℃下反~ ~应4 6小时,在150℃下反应2 4小时,在180℃下反应2小时,得到反应后溶液;

~ ~

3)将反应后溶液倒入蒸馏水中沉淀,再用蒸馏水洗涤生成的沉淀物,将沉淀物经真空干燥,得到PI;

4)将PI溶于乙有机溶剂中,得预干燥溶液;再将预干燥溶液进行冷冻干燥,制得多孔吸附材料。

2.根据权利要求1所述的多孔吸附材料的制备方法,其特征在于,步骤4)中的冷冻干燥的操作为:将预干燥溶液置于-40℃下冷冻24小时,再置于冷冻干燥箱中干燥48 72小时。

~

3.根据权利要求1所述的多孔吸附材料的制备方法,其特征在于,步骤4)中所述的预干燥溶液中的PI的浓度为0.1 0.25g/mL。

~

4.根据权利要求1所述的多孔吸附材料的制备方法,其特征在于,所述的甲有机溶剂为N-甲基吡咯烷酮或二甲基亚砜。

5.根据权利要求1所述的多孔吸附材料的制备方法,其特征在于,所述的乙有机溶剂为二氯甲烷、二甲基亚砜或四氢呋喃。

说明书 :

一种多孔吸附材料的制备方法

技术领域

[0001] 本发明属于高分子材料领域,具体涉及一种多孔吸附材料的制备方法。

背景技术

[0002] 中国是一个水资源短缺、水灾害频繁的国家,多年来,中国水资源质量不断下降,水环境持续恶化,由于污染所导致的缺水和事故不断发生,不仅使工厂停产、农业减产甚至绝收,而且造成了不良的社会影响和较大的经济损失,严重地威胁了社会的可持续发展,威胁了人类的生存。
[0003] 目前,有机物对水源的污染十分严重,据统计受到有机物污染的饮用水人口约为1.6亿。因此,必须采取有效的方案来解决有机物对水源的污染。其中,水质处理的一大难题是难降解的有机微污染。水中难降解有机微污染物多为脂溶性化合物,这类化合物难降解,且在水中总含量较低,容易在水循环过程中逐渐积累。
[0004] 普通的水处理方法不能十分有效的去除水中的难降解有机微污染物,很容易造成它们在环境中的残留。因而,水中难解有机微污染物的去除是水处理中的一大难题。常见的去除方式主要有:吸附、膜分离、生物降解、高级氧化、膜反应器等。膜分离、高级氧化、膜反应器等方法处理,虽然效果好,但是对设备、工艺的要求都比较高,投资大,处理成本很高;而生物降解法会水中的溶解氧,而且处理周期较长。
[0005] 相对而言,吸附是一种较为经济的方法。因为吸附材料来源广泛、吸附量大、速度快、效率高,使用过程具有操作简单、不需要复杂的装置、不需要添加额外化学试剂等优点。然而,现在常见的吸附材料的及吸附作用没有针对性,且存在吸附速率慢、吸附能力有限等问题,不能很好地处理水中难降解有机微污染物。

发明内容

[0006] 针对现有技术存在的上述不足,本发明提供一种多孔吸附材料的制备方法,以解决现有的吸附材料吸附速率慢、吸附能力有限且吸附针对性差的问题。
[0007] 为了实现上述目的,本发明采用的技术方案如下:
[0008] 一种多孔吸附材料的制备方法,包括以下步骤:
[0009] 1)将PMDA(均苯四甲酸二酐)溶于甲有机溶剂中,并在保护气的保护下加入ATPEG(氨基封端聚乙二醇),得到原始反应溶液;其中,甲有机溶剂为沸点高于180℃且能溶解PMDA和ATPEG的有机溶剂。保护气体可以为Ar或N2。
[0010] 2)将原始反应溶液在保护气体的保护下依次在室温下反应2~4小时,在40℃下反应8~12小时,在120℃下反应4~6小时,在150℃下反应2~4小时,在180℃下反应2小时,得到反应后溶液。通过高温直接溶液脱水实现酰亚胺环的形成,无需催化剂。升高反应温度和延长反应时间可使酰亚胺化程度趋于完全。采用逐步升温过程使酰亚胺形成过程中产生的水及时排除,不会导致因水长时间残存体系中而导致分子量降解,有助于生成高分子量的PI(聚酰亚胺)。
[0011] 3)将反应后溶液倒入蒸馏水中沉淀,再用蒸馏水洗涤生成的沉淀物,将沉淀物经真空干燥,得到PI。
[0012] 4)将PI溶于乙有机溶剂中,得预干燥溶液;将预干燥溶液置于-40℃下冷冻,然后进行冷冻干燥,制得多孔吸附材料。
[0013] 采用冷冻干燥法可以快速、方便使PI形成有利于吸附的多孔形状材料。所制得的多孔材料由亲水嵌段和疏水苯酰亚胺环组成,材料中含有亲水嵌段,因而具有很好的水通透性,而材料中的疏水苯酰亚胺环以及醚键等有助于对有机微污染物的吸附。因此,制备的多孔吸附材料具有较好的水通透性,对含苯类难降解有机微污染物具有强的吸附作用。
[0014] 其中,步骤1)中的ATPEG的分子量不大于900,优选ATPEG-500;为了得到尽可能高的分子量,其中氨基总量和PMDA按摩尔比1:1投加。
[0015] 在保护气的保护下还可以加入BDA(丁二胺),ATPEG与BDA的摩尔比为1:1,为保证氨基总量和PMDA按摩尔比1:1投加,ATPEG、BDA与PMDA的摩尔比调整为1:1:2。
[0016] 步骤4)中的冷冻干燥的操作为:将预干燥溶液置于-40℃下冷冻24小时,再置于冷冻干燥箱中干燥48~72小时。
[0017] 步骤4)中所述的预干燥溶液中的PI的浓度为0.1~0.25g/mL。
[0018] 所述的甲有机溶剂为N-甲基吡咯烷酮或二甲基亚砜。
[0019] 所述的乙有机溶剂为二氯甲烷、二甲基亚砜或四氢呋喃。PI不溶于水,但溶于二氯甲烷、二甲基亚砜等溶剂。将其溶于一定体积的二氯甲烷,冷冻干燥后,才能得到多孔的吸附材料。
[0020] 难降解有机微污染物多为带基团和芳香环的疏水性化合物,它们可通过疏水相互作用、氢键作用、π-π堆积、π阳离子/阴离子相互作用、偶极作用等而产生吸附。因而苯环、酯键、醚键、酰胺键以及羟基、氨基等官能团都可能促进有机微污染物的吸附。难降解有机微污染物分散于水中,含量极低,因而吸附材料对水的亲和作用有利于有机微污染物与材料的接触,产生快速吸附。考虑以上两点因素,本发明构建了一种两亲性高分子材料,该高分子材料由亲水嵌段聚乙二醇组成,而疏水嵌段为苯酰亚胺环,亲水嵌段的引入增加了水的通透性,且亲水嵌段由醚键连接,可通过氢键作用增加对污染物的吸附,而疏水嵌段为苯酰亚胺环能通过疏水相互作用、π-π堆积等对有机微污染物尤其是带芳香环的有机污染物产生吸附。该高分子吸附材料由氨基封端的小分子聚乙二醇(ATPEG)、丁二胺(BDA)和均苯四甲酸二酐(PMDA)通过溶液热缩聚法直接合成,合成路线简单易行。
[0021] 与现有的技术相比,本发明具有如下有益效果:
[0022] 1、本发明合成的新型多孔材料针对性吸附能力强。由亲水嵌段聚乙二醇组成,而疏水嵌段为苯酰亚胺环,亲水嵌段的引入增加了水的通透性,且亲水嵌段由醚键连接,可通过氢键作用增加对污染物的吸附,而疏水嵌段为苯酰亚胺环能通过疏水相互作用、π-π堆积等对有机微污染物尤其是带芳香环的有机污染物产生吸附。
[0023] 2、本发明合成的多孔材吸附速率高。难降解有机微污染物分散于水中,含量极低,因而吸附材料对水的亲和作用有利于有机微污染物与材料的接触,产生快速吸附。
[0024] 3、本发明由氨基封端的小分子聚乙二醇(ATPEG)、丁二胺(BDA)和均苯四甲酸二酐(PMDA)通过溶液热缩聚法直接合成,合成路线简单易行。

附图说明

[0025] 图1为实施例1制得的PI的红外光谱图;
[0026] 图2为实施例2所制备的多孔吸附材料的电镜扫描图。

具体实施方式

[0027] 下面结合具体实施例对本发明作进一步详细说明。
[0028] 实施例一
[0029] 采用以下方法制备新型多孔吸附材料:
[0030] 1)取0.1mol PMDA(均苯四甲酸二酐)溶解于200mLN-甲基吡咯烷酮(NMP)中,并在氮气保护下加入0.1molATPEG-500,得到原始反应溶液。
[0031] 2)将原始反应溶液在氮气保护下依次在室温下反应4小时,在40℃下反应8小时,在120℃下反应4小时,在150℃下反应4小时,在180℃下反应2小时,得到反应后溶液。
[0032] 3)将反应后溶液倒入蒸馏水中沉淀,再用蒸馏水洗涤生成的沉淀物,将沉淀物经真空干燥,得到PI;其红外光谱图如附图1所示,其中1770.4cm-1和1718.3cm-1是典型的酰亚胺环上面的羰基的对称与不对称伸缩振动峰。
[0033] 4)取2g PI溶解于4mL二甲基亚砜中,溶解完全后,放入-40℃冰箱中急剧冷冻24小时。然后放置于冷冻干燥箱中干燥48小时,制得多孔吸附材料。
[0034] 实施例二
[0035] 采用以下方法制备多孔吸附材料:
[0036] 1)取0.1mol PMDA溶解于200mLNMP中,并在氮气保护下加入0.05mol ATPEG-500和0.05mol BDA(丁二胺),得到原始反应溶液。
[0037] 2)将原始反应溶液在氮气保护下依次在室温下反应2小时,在40℃下反应8小时,在120℃下反应4小时,在150℃下反应4小时,在180℃下反应2小时,得到反应后溶液。
[0038] 3)将反应后溶液倒入蒸馏水中沉淀,再用蒸馏水洗涤生成的沉淀物,将沉淀物经真空干燥,得到PI。
[0039] 4)取2g PI溶解于10mL二氯甲烷中,溶解完全后,放入-40℃冰箱中急剧冷冻24小时。然后放置于冷冻干燥箱中干燥48小时,制得多孔吸附材料,其表面结构如图2所示。
[0040] 实施例三
[0041] 采用以下方法制备多孔吸附材料:
[0042] 1)取0.1mol  PMDA溶解于200mL二甲基亚砜中,并在氩气保护下加入0.05molATPEG-500和0.05mol BDA(丁二胺),得到原始反应溶液。
[0043] 2)将原始反应溶液在氩气保护下依次在室温下反应4小时,在40℃下反应12小时,在120℃下反应6小时,在150℃下反应4小时,在180℃下反应2小时,得到反应后溶液。
[0044] 3)将反应后溶液倒入蒸馏水中沉淀,再用蒸馏水洗涤生成的沉淀物,将沉淀物经真空干燥,得到PI。
[0045] 4)取2g PI溶解于10mL四氢呋喃,溶解完全后,放入-40℃冰箱中急剧冷冻24小时,然后放置于冷冻干燥箱中干燥48小时,制得多孔吸附材料。
[0046] 实施例四
[0047] 多孔吸附材料吸附测试
[0048] 以罗丹明B为吸附对象,将其配制成10mg/L的罗丹明B水溶液。取0.5g多孔吸附材料浸泡于20ml 10mg/L罗丹明B水溶液中,每隔10分钟取样,采用紫外可见分光光度计测定吸附速率及吸附量。结果表明,30分钟后达到吸附平衡,罗丹明B几乎达到全部吸附。
[0049] 本发明的上述实施例仅仅是为说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化和变动。这里无法对所有的实施方式予以穷举。凡是属于本发明的技术方案所引申出的显而易见的变化或变动仍处于本发明的保护范围之列。