用薄板坯直接轧制的抗拉强度≥1100MPa薄热成形钢及生产方法转让专利

申请号 : CN201610713632.1

文献号 : CN106086632B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 毛新平胡宽辉李立军汪水泽葛锐潘利波彭涛杜晓峰周少云

申请人 : 武汉钢铁有限公司

摘要 :

用薄板坯直接轧制的抗拉强度≥1100MPa薄热成形钢,其组分及wt%:C:0.12~0.16%,Si:0.15~0.20%,Mn:0.7~1.0%,P≤0.02%,S≤0.008%,Als:0.015~0.060%,Cr:0.15~0.20%,Ti:0.005~0.02%或Nb:0.005~0.02%或V:0.005~0.02%或其中两种以上以任意比例的混合,B:0.0005~0.0020%,N≤0.005%。生产步骤:铁水脱硫;电炉或转炉冶炼及精炼;连铸;入均热炉前的除鳞处理;均热;加热;进轧机之前的高压水除鳞;轧制;冷却;卷取;奥氏体化;模具冲压成形;淬火。本发明流程短,产品表面质量好,厚度精度高,能够达到冷轧产品的质量要求,能顺利完成复杂变形,且变形后无回弹,零件的尺寸精度高。

权利要求 :

1.用薄板坯直接轧制的抗拉强度≥1100MPa薄热成形钢的生产方法, 所述用薄板坯直接轧制的抗拉强度≥1100MPa薄热成形钢的组分及重量百分比含量为:C: 0.12~0.13%,Si:0.15~0.19%,Mn:0.7~1.0%,P≤0.02%,S≤0.008%,Als:0.046~0.060%,Cr:0.15~

0.20%,Ti:0.005~0.012%或Nb:0.005~0.02%或V:0.005~0.02%或其中两种以上以任意比例的混合,B:0.0005~0.0009%,N≤0.005%,余为Fe及不可避免的杂质;其步骤:

1)铁水脱硫,并控制S≤0.002%,扒渣后铁水裸露面不低于96%;

2)常规电炉或转炉冶炼,及常规精炼;

3)进行连铸,控制中包钢水过热度在15~30℃,铸坯厚度在55~60mm,拉坯速度在3.5~7.0 m/min;

4)进行铸坯入均热炉前的除鳞处理,并控制除鳞水的压力在300~400 bar;

5)对铸坯进行常规均热,控制均热炉内呈弱氧化气氛,即使炉内残氧量在0.5~5.0%;

6)对铸坯入进行加热,并控制铸坯入炉温度在780~1000℃,出炉温度为1170~1190℃;

7)进行进轧机之前的高压水除鳞,并控制除鳞水压力在280~420bar;

8)轧制,并控制第一道次压下率为:52~63%,第二道次压下率为:50~60%,末道次压下率为:10~16%;控制轧制速度在8~12 m/s;并在第一道次及第二道次之间进行中压水除鳞,除鳞水压力为200~280bar;控制终轧温度在830~870℃;

9)进行冷却,冷却方式为层流冷却、或水幕冷却、或加密冷却的方式冷却到卷取温度;

10)进行卷取,并控制卷取温度为685 715℃;

~

11)进行开卷落料后的奥氏体化,控制奥氏体化温度在905~920℃,并保温3~4.5 min;

12)模具冲压成形,并在模具内保压10~20 s;

13)进行淬火,控制淬火冷却速度在20~40 ℃/s;后自然冷却至室温。

2.如权利要求1所述的用薄板坯直接轧制的抗拉强度≥1100MPa薄热成形钢的生产方法,其特征在于:所述薄板坯的轧制过程在轧机布置形式为6F产线或1R+6F产线、或2R+6F产线、或7F产线、或3R+4F产线、或2R+5F产线、或1R+5F的短流程产线进行。

说明书 :

用薄板坯直接轧制的抗拉强度≥1100MPa薄热成形钢及生产

方法

技术领域

[0001] 本发明涉及一种汽车零部件用钢及其生产方法,具体地属于一种用薄板坯直接轧制的抗拉强度≥1100MPa薄热成形钢及生产方法,且适用于生产的产品厚度0.8至2mm。

背景技术

[0002] 随着汽车工业发展及汽车行业对汽车设计和制造逐渐向节能、环保、安全方向发展,汽车轻量化成为当前和今后相当长一段时间汽车设计的主流方向。
[0003] 研究发现,汽车的整车重量和能源消耗成线性关系。据统计,汽车重量每降低10%则燃油效率可提高6%~8%。汽车轻量化最重要的途径之一是采用高强度和超高强度钢,从而能使在不降低碰撞安全性和舒适性的同时,大幅降低汽车整备重量。但随着强度的不断提高,钢板的成形性能会越来越差,尤其是1100MPa以上的超高强度钢,在成形过程中会存在开裂、回弹和零件尺寸精度达不到要求等问题,并同时也对冲压设备提出了更高的要求,即需要大吨位的冲压机和高耐磨模具,并且对模具的使用周期还有较大的影响。目前国内也没有能成形1100MPa以上的冷成形冲压设备和模具。
[0004] 当前,国内外现有热成形钢均采用冷轧退火态或冷轧退火后预涂层。其生产工艺流程为:脱硫铁水→转炉冶炼→炉外精炼→连铸→板坯加热→热连轧→酸洗+冷连轧→连续退火→(预涂层)→精整包装→落料→加热→模具冲压淬火。存在生产工艺流程较长,成本较高的不足。对于有些抗碰撞或承载部件均采用多个零件组合构件来提高抗碰撞和承载能力,而又导致大大提高原材料成本和加工成本。
[0005] 随着钢铁工业的发展,中薄板坯连铸连轧工艺得到了长足发展,采用中薄板坯连铸连轧工艺可以直接轧制生产0.8~2 mm规格钢板及钢带,一些原来只能使用冷轧高强钢的薄规格零件或为增加强度采用多个零件组成的构件已逐步采用连铸连轧工艺直接轧制超高强度钢板所代替。如申请号为CN 102965573A的专利开发了屈服强度(ReL)≥700MPa,抗拉强度(Rm)≥750MPa的工程结构用高强度钢,其组分百分含量为:C:0.15~0.25%,Si:≤0.10%,Mn:1.00~1.80%,P: ≤0.020%,S≤0.010%,Ti: 0.09~0.20%,Als:0.02~0.08% ,N≤0.008%,其余为Fe及不可避免的夹杂;其生产步骤为冶炼并连铸成坯,进行均热,控制均热温度在1200~1300℃,均热时间为20~60min;进行轧制,并控制开轧温度不低于1200℃,终轧温度在870~930℃;进行层流冷却,在冷却速度为不低于20℃/s下冷却到卷取温度;进行卷取,并控制卷取温度在580~650℃。专利号为CN 103658178A的专利发明了一种短流程生产高强度薄带钢的方法,所发明的带钢屈服强度(ReL)≥550MPa,抗拉强度(Rm)≥600MPa,其化学成分质量百分比为:C:0.02~0.15%,Si:0.20~0.6%,Mn:0.2~1.50%,P: 0.02~
0.3%,S≤0.006%,Cr:0.40~0.8%,Ni:0.08~0.40%,Cu:0.3~0.80%,Nb:0.010~0.025%,Ti:0.01~0.03%,Al:0.01~0.06%,Re:0.02~0.25%;其余为Fe和不可避免杂质,冶炼后浇铸成1.0~2.0mm厚的铸带,浇铸速度60~150m/min,进行轧制,控制终轧温度850~1000℃;
采用雾化冷却,冷却速度50~100℃/s,进行卷取,控制卷取温度为520~660℃。
[0006] 上述两文献的抗拉强度均很低,不能满足高端汽车车身对1100MPa以上超高强度的需求。

发明内容

[0007] 本发明在于克服现有技术存在的强度级别低,不能满足用户对超高强度零件需求的不足,提供一种流程短,产品表面质量好,厚度精度高,能够达到冷轧产品的质量要求,能顺利完成复杂变形,且变形后无回弹,零件的尺寸精度高的抗拉强度≥1100MPa热成形钢及生产方法。
[0008] 实现上述目的的措施:
[0009] 用薄板坯直接轧制的抗拉强度≥1100MPa薄热成形钢,其组分及重量百分比含量为:C: 0.12~0.16%,Si:0.15~0.20%,Mn:0.7~1.0%,P≤0.02%,S≤0.008%,Als:0.015~0.060%,Cr:0.15~0.20%,Ti:0.005~0.02%或Nb:0.005~0.02%或V:0.005~0.02%或其中两种以上以任意比例的混合,B:0.0005~0.0020%,N≤0.005%,余为Fe及不可避免的杂质。
[0010] 生产用薄板坯直接轧制的抗拉强度≥1100MPa薄热成形钢的方法,其在于:其步骤:
[0011] 1)铁水脱硫,并控制S≤0.002%,扒渣后铁水裸露面不低于96%;
[0012] 2)常规电炉或转炉冶炼,及常规精炼;
[0013] 3)进行连铸,控制中包钢水过热度在15~30℃,铸坯厚度在55~60mm,拉坯速度在3.5~7.0 m/min;
[0014] 4)进行铸坯入均热炉前的除鳞处理,并控制除鳞水的压力在300~400 bar;
[0015] 5)对铸坯进行常规均热,控制均热炉内呈弱氧化气氛,即使炉内残氧量在0.5~5.0%;
[0016] 6)对铸坯进行加热,并控制铸坯入炉温度在780~1000℃,出炉温度为1170~1190℃;
[0017] 7)进行进轧机之前的高压水除鳞,并控制除鳞水压力在280~420bar;
[0018] 8)轧制,并控制第一道次压下率为:52~63%,第二道次压下率为:50~60%,末道次压下率为:10~16%;控制轧制速度在8~12 m/s;并在第一道次及第二道次之间进行中压水除鳞,除鳞水压力为200~280bar;控制终轧温度在830~870℃;
[0019] 9)进行冷却,冷却方式为层流冷却、或水幕冷却、或加密冷却的方式冷却到卷取温度;
[0020] 10)进行卷取,并控制卷取温度为685 715℃;~
[0021] 11)进行开卷落料后的奥氏体化,控制奥氏体化温度在850~920℃,并保温3~5 min;
[0022] 12)模具冲压成形,并在模具内保压10~20 s;
[0023] 13)进行淬火,控制淬火冷却速度在20~40 ℃/s;后自然冷却至室温。
[0024] 其在于::所述中薄板坯的轧制过程在轧机布置形式为6F产线或1R+6F产线、或2R+6F产线、或7F产线、或3R+4F产线、或2R+5F产线、或1R+5F短流程产线进行。
[0025] 本发明中各元素及主要工艺的作用及机理
[0026] C:碳是强固溶强化元素,对超高强度的获得起决定作用,碳含量对最终产品的组织形态和性能有较大影响,但是含量太高,在精轧后的冷却过程中易形成大量的珠光体或贝氏体、马氏体,其含量愈高,强度愈高,从而造成塑性降低,进行成形前的落料困难。所以在保证热处理强化的前提下,碳含量不易过高。故将其含量限定在0.12~0.16%范围。
[0027] Si:硅有较强的固溶强化效果,可提高钢的强度,同时,硅能提高钢的淬透性,有减少奥氏体向马氏体转变时体积变化的作用,从而有效控制淬火裂纹的产生;在低温回火时能阻碍碳的扩散,延缓马氏体分解及碳化物聚集长大的速度,使钢在回火时硬度下降较慢,显著提高钢的回火稳定性及强度。所以,将其含量限定在0.15~0.20%范围。
[0028] Mn:锰起固溶强化作用,同时能清除钢中的FeO,显著改善钢的质量。还能与硫化物生成高熔点的MnS,在热加工时,MnS有足够的塑性,使钢不产生热脆现象,减轻硫的有害作用,提高钢的热加工性能。锰能降低相变驱动力,使“C”曲线右移,提高钢的淬透性,扩大γ相区,另它可降低钢的Ms点,故可保证在合适的冷却速度下得到马氏体。所以,将其含量限定在0.7~1.0%范围。
[0029] C: 0.12~0.16%,Si:0.15~0.20%,Mn:0.7~1.0%,P≤0.02%,S≤0.008%,Als:0.015~0.060%,Cr:0.15~0.20%,Ti:0.005~0.02%或Nb:0.005~0.02%或V:0.005~0.02%或其中两种以上以任意比例的混合,B:0.0005~0.0020%,Mo:0.10~0.13%,N≤0.005%[0030] Cr:铬能降低相变驱动力,也降低相变时碳化物的形核长大,所以提高钢的淬透性。另外,铬能提高钢的回火稳定性。所以,将其含量限定在0.15~0.20%范围。
[0031] B: 硼是强烈提高淬透性元素,钢中加入微量的硼元素能显著提高钢的淬透性。但是其含量低于0.0005%,或者高于0.002%,对提高淬透性的作用不明显。所以,为考虑生产实际及淬透性效果,将其含量限定在0.0005~0.002%范围。
[0032] Als,其在钢中起脱氧作用,应保证钢中有一定量的酸溶铝,否则不能发挥其效果,但过多的铝也会使钢中产生铝系夹杂,且不利于钢的冶炼和浇铸。同时钢中加入适量的铝可以消除钢中氮、氧原子对性能的不利影响。故将其含量限定在0.015~0.060%范围。
[0033] P:磷是钢中的有害元素,易引起铸坯中心偏析。在随后的热连轧加热过程中易偏聚到晶界,使钢的脆性显著增大。同时基于成本考虑且不影响钢的性能,将其含量控制在0.02%以下。
[0034] S:硫是非常有害的元素。钢中的硫常以锰的硫化物形态存在,这种硫化物夹杂会恶化钢的韧性,并造成性能的各向异性,因此,需将钢中硫含量控制得越低越好。基于对制造成本的考虑,将钢中硫含量控制在0.008%以下。
[0035] N:氮在加钛的钢中可与钛结合形成氮化钛,这种在高温下析出的第二相有利于强化基体,并提高钢板的焊接性能。但是氮含量高于0.005%,氮与钛的溶度积较高,在高温时钢中就会形成颗粒粗大的氮化钛,严重损害钢的塑性和韧性;另外,较高的氮含量会使稳定氮元素所需的微合金化元素含量增加,从而增加成本。故将其含量控制在0.005%以下。
[0036] Ti:钛是强C、N化物形成元素,钢中加入Ti的目的是固定钢中的N元素,但是过量的Ti会与C结合从而降低试验钢淬火后马氏体的硬度和强度。另外,钛的加入对钢的淬透性有一定的贡献。所以,将其含量限定在0.005~0.02%范围。
[0037] Nb、V: 铌和钒也是强C、N化物形成元素,能起到细化奥氏体晶粒的作用,钢中加入少量的铌或钒就可以形成一定量的铌的碳、氮化物,从而阻碍奥氏体晶粒长大,因此,其淬火后的马氏体板条尺寸较小,大大提高钢的强度。故将其含量均控制在0.005~0.02%之间。
[0038] 本发明之所以在整个生产过程中采取三次除鳞,是由于通过控制除鳞道次和合适的除鳞水压力,可以尽可能的去除带钢表面的氧化铁皮,从而保证带钢具有良好的表面质量。另外通过一、二道及末道次压下率控制,可实现带钢的组织均匀和性能稳定。
[0039] 本发明与现有技术相比,流程短,产品表面质量好,厚度精度高,能够达到冷轧产品的质量要求,能顺利完成复杂变形,且变形后无回弹,零件的尺寸精度高。

附图说明

[0040] 图1为本发明产品金相组织图。

具体实施方式

[0041] 下面对本发明予以详细描述:
[0042] 表1为本发明各实施例及对比例的化学成分取值列表;
[0043] 表2为本发明各实施例及对比例的主要工艺参数取值列表;
[0044] 表3为本发明各实施例及对比例的性能检测情况列表。
[0045] 本发明各实施例均按以下工艺生产:
[0046] 1)铁水脱硫,并控制S≤0.002%,扒渣后铁水裸露面不低于96%;
[0047] 2)常规电炉或转炉冶炼,及常规精炼;
[0048] 3)进行连铸,控制中包钢水过热度在15~30℃,铸坯厚度在55~60mm,拉坯速度在3.5~7.0 m/min;
[0049] 4)进行铸坯入均热炉前的除鳞处理,并控制除鳞水的压力在300~400 bar;
[0050] 5)对铸坯进行常规均热,控制均热炉内呈弱氧化气氛,即使炉内残氧量在0.5~5.0%;
[0051] 6)对铸坯入进行加热,并控制铸坯入炉温度在780~1000℃,出炉温度为1170~1190℃;
[0052] 7)进行进轧机之前的高压水除鳞,并控制除鳞水压力在280~420bar;
[0053] 8)轧制,并控制第一道次压下率为:52~63%,第二道次压下率为:50~60%,末道次压下率为:10~16%;控制轧制速度在8~12 m/s;并在第一道次及第二道次之间进行中压水除鳞,除鳞水压力为200~280bar;控制终轧温度在830~870℃;
[0054] 9)进行冷却,冷却方式为层流冷却、或水幕冷却、或加密冷却的方式冷却到卷取温度;
[0055] 10)进行卷取,并控制卷取温度为685 715℃;~
[0056] 11)进行开卷落料后的奥氏体化,控制奥氏体化温度在850~920℃,并保温3~5 min;
[0057] 12)模具冲压成形,并在模具内保压10~20 s;
[0058] 13)进行淬火,控制淬火冷却速度在20~40 ℃/s;后自然冷却至室温。
[0059] 表1本发明各实施例及对比例的化学成分(wt.%)
[0060]
[0061] 表2本发明各实施例及对比例的主要工艺参数取值列表
[0062]
[0063] 表3本发明各实施例及对比例的的力学性能情况列表
[0064]
[0065] 从表3可以看出,通过薄板坯直接轧制的短流程工艺,实现了发明钢的强度达到了1100MPa以上,能够达到以热代冷的目的,同时其强度远远高于现有短流程产线产品强度,对于推进汽车轻量化发展具有重要意义。
[0066] 本具体实施方式仅为最佳例举,并非对本发明技术方案的限制性实施。