小型轮式装载机转让专利

申请号 : CN201580011898.5

文献号 : CN106104101A

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : P·费拉钦A·加拉莫内A·格拉维利G·内格里G·拉泽托M·里德M·P·恰罗基

申请人 : 凯斯纽荷兰(中国)管理有限公司

摘要 :

本发明公开了一种小型轮式装载机,该小型轮式装载机具有静液压传动装置和两种操作模式。在常规模式中,需求杆(42)被用于设置发动机速度,传动装置的液压泵(22)的斜盘的移位通过随发动机速度增大的先导液压(Ps)设置,使得传动比随发动机速度增大而自动减小。在爬行模式中,发动机被设置为以高速操作以满足装载机的被提供动力的器具的需求,并且轮子的速度由通过改变先导液压(Ps)设置传动比的需求杆(42)控制。

权利要求 :

1.一种工作车辆,包括:

液压操作的工作器具(18),

发动机(10),

泵(14),所述泵由发动机驱动以产生用于为所述工作器具提供动力的加压的液压流体,静液压传动装置,所述静液压传动装置具有可变排量液压泵(22)和连接到所述可变排量液压泵(22)并用于驱动车辆的液压马达(24),双动液压滑阀(30),所述双动液压滑阀被弹簧偏置到空档位置,以设置所述可变排量泵的排量,先导压力泵,所述先导压力泵用于向所述双动滑阀(30)供给随发动机速度变化的先导压力(Ps),和操作者控制的需求杆(42),用于控制车辆速度,

所述车辆具有常规操作模式,在所述常规操作模式中,所述需求杆(42)用于改变发动机速度,并且所述双动滑阀(30)接收取决于当前发动机速度的先导压力(Ps),并由此根据该当前发动机速度设置静液压传动装置的可变排量泵(22)的排量,其特征在于,

该工作车辆具有爬行操作模式,在爬行操作模式中,所述发动机(10)以可调节的恒定速度操作,该恒定速度不是由所述需求杆(42)设定,并且所述需求杆(42)用于改变由先导压力泵供给到所述双动滑阀(30)的先导压力(Ps),从而通过仅改变所述静液压传动装置传动比来改变工作车辆的速度。

2.根据权利要求1所述的工作车辆,其中,在爬行操作模式中,所述需求杆(42)作用于连接到先导压力管路(34)的减压阀门(40),所述先导压力管路从所述先导压力泵至所述双动滑阀(30),所述减压阀门(40)用于通过使所述先导压力管路中的一定比例的流体返回至贮液箱(38)来减小先导压力,所述一定比例的流体随着需求杆(42)致动的增大而减少。

3.根据权利要求2所述的工作车辆,所述工作车辆具有第三种操作模式,在该第三种模式中,所述减压阀门(40)包括电磁阀(44),该电磁阀可由电子控制单元操作以设置车辆速度,而无需致动所述需求杆(42)。

4.根据权利要求3所述的工作车辆,其中,所述电子控制单元响应于开关的致动而操作,以保持装载机以同一恒定速度运动,所述开关被致动以记忆当前运行速度并将信号施加到所述电磁阀(44)。

5.根据权利要求4所述的工作车辆,其中,所述电子控制单元包括用于增大和/或减小所述恒定速度的另一个操作者致动的开关。

6.根据权利要求4或5所述的工作车辆,其中,所述电子控制单元进一步连接到车辆速度传感器,并操作以用于通过所述电磁阀(44)的闭合环路控制来设置车辆速度,被施加到所述电磁阀(44)的信号使得在期望车辆速度与测得车辆速度之间的误差最小。

7.根据权利要求3至6中任一项所述的工作车辆,其中,响应于所述工作车辆的刹车,使得所述第三种操作模式失效。

8.根据前述权利要求中任一项所述的工作车辆,其中,所述工作车辆为小型轮式装载机。

说明书 :

小型轮式装载机

技术领域

[0001] 本发明涉及小型轮式装载机和具有静液压传动装置的所有工作车辆。

背景技术

[0002] 小型轮式装载机是具有车轮而非履带的小型车辆,并承载液压驱动的作业器具。该器具可以是由提升臂携带的吊斗或用于路面清扫的旋转扫帚。
[0003] 小型轮式装载机具有用于驱动液压泵以产生器具所需液压的马达。该马达也用于驱动通常由静液压传动装置驱动的轮子。该传动装置包括排量可变的马达驱动的液压泵,该液压泵连接到通常排量恒定的驱动轮子的一个或多个液压马达。可变排量泵的控制通过双动滑阀实现,该双动滑阀被弹簧偏置到中心位置中并连接到泵的斜盘上。双动滑阀具有被连接以接纳处于先导压力的液压流体的一个工作室和被连接到通向贮液箱的排放管路的另一工作室,该先导压力由发动机驱动的泵产生并因此随发动机速度变化。以这种方式,传动比随发动机速度自动变化,从而在低发动机速度下提供高传动比并随马达速度的增大提供逐步降低的传动比。
[0004] 当器具需要高流动速率时,装载机或任一其它工作车辆有时需要缓慢移动。在这种情况下,发动机速度需较高以产生期望的流体流动速率来支持载荷,而传动比也需较高以避免过高的车辆速度。因此,在从发动机到轮子的驱动系中的某处额外提供机械传动装置以在不同的速度范围之间转换也是已知的。此传动装置可处于驱动系的任一位置,例如在液压轮马达中,和/或在液压泵的阀门中,和/或在从发动机至液压泵的驱动装置中。然而,在全部速度范围内,车辆速度通过压下需求杆而改变,利如调整发动机速度的加速踏板。

发明内容

[0005] 根据本发明,提出一种小型轮式装载机,包括车轮、液压操作的作业器具、发动机、由发动机驱动以产生为器具提供动力的加压液压流体的泵、静液压传动装置、双动液压滑阀、先导压力泵和用于控制车辆速度的操作者控制的需求杆,所述静液压传动装置具有可变排量的液压泵和连接到可变排量的泵并用于驱动车轮的液压马达,所述双动液压滑阀被弹簧偏置到空档位置以设置可变排量泵的排量,所述先导压力泵用于将随发动机速度变化的先导压力供给到双动滑阀,所述装载机具有常规操作模式,在该常规操作模式中,需求杆用于改变发动机速度,并且双动滑阀接收取决于当前发动机速度的先导压力,从而设置取决于当前发动机速度的静液压传动装置的可变排量泵的排量,其特征在于,该装载机具有爬行操作模式,在该爬行操作模式中,发动机在不是由需求杆设置的恒定速度下运转,该需求杆用于改变由先导压力泵供给到双动滑阀的先导压力,以通过仅改变静液压传动装置的传动比而改变装载机的速度。
[0006] 与现有技术相比,当本发明中的装载机在爬行模式下操作时,发动机速度保持恒定不变且不由需求踏板控制。而需求踏板仅用于改变先导压力,先导压力又改变传动比以允许以期望的速度驱动装载机而不影响对被提供动力的器具的液压流体供给。
[0007] 在本发明的一些实施例中,对先导压力供应泵未作改进,而是采用减压阀门来通过根据需求杆的位置泵送先导压力管路中的一些流体而减小先导压力。
[0008] 在一些实施例中,减压阀门可包括电磁阀,使得其可选的被电子控制单元控制。在这种情况下,该电子控制单元可采用开环控制或闭环控制器控制装载机以恒定不变的速度运动。该速度可借助与用于装配有巡航控制装置的公路车辆中的开关相似的开关设置;这些开关包括记忆当前速度的“设置”开关,以及增大和减小预期速度的“+”“-”按钮。
[0009] 仍然以与公路车辆的巡航控制装置相似的方式,通过电子控制单元对速度的控制可通过操作者使用车辆制动器而被中断。

附图说明

[0010] 通过举例,参照作为小型轮式装载机的液压系统的示意图的附图,现将进一步描述本发明。

具体实施方式

[0011] 在附图中,内燃机10通过机械联动装置12连接以驱动液压泵14,该液压泵连接到流体贮器16并向液压驱动的附件18供应加压流体。另外,发动机10用于通过静液压传动装置驱动装载机的轮20,该静液压传动装置包括通过液压管路26和28连接到一个或更多个液压马达24的可变排量(斜盘swash plate)泵22,所述液压马达连接到或安装到轮上。
[0012] 泵22的斜盘的位置借助于双动滑阀30被设置,该双动滑阀具有布置在活塞的相对两侧的两个工作室,该活塞由活塞杆连接到泵22的斜盘。该活塞借助弹簧朝向中央空档位置偏置。当斜盘被移位到中心位置的一侧时,轮子沿一个方向旋转,而当斜盘被沿相反方向移位时,轮子旋转的方向被反转。活塞被距离其中央位置移位得越远,泵22的排量越大。
[0013] 借助于三位四通电磁阀操作的正向/反向阀门32,双动滑阀30的两个工作室能够选择性地连接到先导压力Ps管路34和通向贮液箱38的排放管路36。先导压力Ps由发动机驱动的先导压力泵(未显示)产生并由此随增大的发动机速度而增大。
[0014] 如上所述,液压系统是常规的,并且基于相对简洁的描述对本领域技术人员来说将是明了的。发动机10启动时阀门32处于图示位置,在该图示位置中,该双动滑阀30的两个工作室均被连接到排放管路,并且弹簧使泵22的斜盘处于空档的零排量位置。
[0015] 为了开始运动,操作者操作正向/反向开关,该正向/反向开关使阀门32的滑阀移动至其右侧位置或左侧位置,使得活塞的适当的一侧承受先导压力Ps,同时将活塞的相反侧上的工作室连接到排放管路36。这导致泵22的斜盘运动,运动的量取决于先导压力Ps并因此取决于发动机速度。最初,泵22的排量将较小,车辆将缓慢移动。随着操作者压下需求杆42(通常是加速器踏板),发动机速度增大,这继而增大先导压力Ps并增大泵的排量,由此增大传动比并增大车辆速度。
[0016] 因为该发动机10被用于驱动用于附件的液压泵14和驱动轮子的泵22两者,因此供应给附件的液压流体被车辆速度限制。例如,在道路清扫器中,大量的液压流体需被泵送以保持旋转刷的运动,而车辆同时需缓慢移动,为了满足这两个需求,图示液压系统包括了以下将描述的一些额外的部件,这些额外的部件允许装载机在爬行模式中被驱动,其中以足够大以满足附件18的需要的、可调节的恒定速度操作发动机。
[0017] 在本发明的图示实施例中,比例减压阀门40(也被称作微调电磁阀)被连接到先导压力管路34。该阀门可由标示的电磁阀44控制,在一个实施例中,该电磁阀接收来自与需求踏板相关联的电传感器42的电信号。当以爬行模式操作时,需求杆42不再被用于选择发动机速度,而是借助单独的面板安装的控制旋钮(在附图中标示为46)将发动机速度设置为期望的较高值,该控制旋钮连接到电子控制单元。
[0018] 通过以下方式而选择爬行模式:压下爬行速度开关并将阀门32置于中央空档位置(在该中央空档位置,泵22也以零排量工作),释放需求杆42以便发动机以怠速运转并选择提供最低速度范围的档位。
[0019] 当系统以爬行模式操作时,旋钮46转而提升马达速度至附件18正确运转所需的水平。随后借助激活阀门32的正向/反向开关选择驱动方向,但此时电磁阀44已使减压阀门40全开,减小先导压力Ps至与排放管路相同的水平。
[0020] 当需求踏板42随后被操作者压下以使车辆向前或向后移动时,减压阀门40将与需求杆按下程度成比例地被电磁阀44关闭,从而增大先导压力Ps。斜盘将因此移动到提供更高传动比但车辆缓慢运动(尽管发动机速度较高)的位置。随着压下需求杆42的程度增大,车辆速度将以由泵22增大的排量引起的传动比而逐步地增大。
[0021] 代替被从与需求杆相关联的传感器42接收的信号控制,在第三种操作模式中,电磁阀可被来自图中未显示的电子控制电路(ECU)的信号控制。该ECU可将信号施加到电磁阀44,该信号被计算以保持车辆速度处于恒定的期望值而无需调整发动机速度。
[0022] 如果操作者选择第三操作模式,充当设置按钮的开关被致动将使得施加到电磁阀44的信号的当前值被记忆并继续被施加到电磁阀44,即使需求杆被释放。当保持在自动速度控制状态时,如果操作者期望增大或减小速度,增大和减小信号可通过“+”和“-”按钮送达ECU,以将施加的电流重置为更高值或更低值。可使用一对位置不固定的开关,其中“+”按钮为向上而“-”按钮,并且记忆位置为向下。
[0023] 后者描述的控制是开放回路,因为施加到电磁阀44的电流被假定具有期望效果的车辆速度。然而,作为选择,对于ECU,根据来自探测实际车辆速度的传感器的反馈以封闭回路操作是可能的。在这种情况下,随后设置自动速度控制装置,ECU记忆速度传感器测得的实际车辆速度,并随后改变施加到电磁阀的电流,使得在记忆的期望车辆速度和测得的车辆速度之间的误差最小。自动速度控制装置的停用由踩刹车实现。终止爬行模式通过压下爬行速度开关或正向/反向开关的空档选择来实现。