可挠性安装模块体的制造方法转让专利

申请号 : CN201580014359.7

文献号 : CN106105404B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 松岛隆行

申请人 : 迪睿合株式会社

摘要 :

使采用各向异性导电膜(12)的电子部件(9)与电极(6)之间的电连接可靠。先在可挠性基板(11)的安装区域(10)的背面侧粘贴粘附膜(20),在表面侧搭载电子部件(9)。粘附膜(20)在基体材料膜(22)上形成有粘附剂层(21),在粘附剂层(21)的粘附剂(26)中,含有一次粒径小于100nm的硅石微粒子(25),在160℃中的剪切储能模量为0.15MPa以上。在安装区域(10)上配置各向异性导电膜(12)并在其上加热扩按压而搭载电子部件(9)时,粘附剂层(21)中的粘附剂(26)不会挤出很多,而夹在凸块(13)与电极(6)之间的导电粒子(19)被按压而压垮,因此电连接变得可靠。

权利要求 :

1.一种可挠性安装模块体(15)的制造方法,具有:

各向异性导电膜配置工序,在设于可挠性基板(11)的一个表面即配置面(7)的安装区域(10),配置含有导电粒子(19)的热固化性的各向异性导电膜(12);

电子部件配置工序,在配置于所述安装区域(10)的所述各向异性导电膜(12)上配置电子部件(9);以及安装工序,在使所述电子部件的凸块(13)与所述各向异性导电膜(12)接触的状态下,将所述电子部件(9)加热并按压,经由导电粒子(19)电连接所述凸块(13)与设在所述安装区域(10)的电极(6),其特征在于还具有:粘附膜粘贴工序,与所述配置面(7)相反侧的面即所述可挠性基板(11)的支撑面(8)之中,至少在位于所述安装区域(10)的正背面的部分,粘贴层叠了含有粘附剂(26)的粘附剂层(21)和基体材料膜(22)的粘附膜(20),所述粘附剂层(21)含有一次粒径小于100nm的硅石微粒子(25),使得所述粘附剂层(21)在160℃下具有0.15MPa以上的剪切储能模量,在所述安装工序之前进行所述粘附膜粘贴工序。

2.如权利要求1所述的可挠性安装模块体(15)的制造方法,其中,所述粘附剂(26)的玻化温度在-60℃以上20℃以下的范围。

3.如权利要求1或权利要求2的任一项所述的可挠性安装模块体(15)的制造方法,其中,在所述安装工序中,对所述电子部件(9)进行加热并按压时,将所述电子部件(9)加热到

150℃以上170℃以下的温度范围。

4.如权利要求1或权利要求2的任一项所述的可挠性安装模块体(15)的制造方法,其中,所述粘附膜粘贴工序中,使粘贴所述粘附膜(20)的所述支撑面(8)的部分包含位于图像显示区域(16)的正背面的部分。

5.如权利要求1或权利要求2的任一项所述的可挠性安装模块体(15)的制造方法,其中,所述粘附剂(26)为丁腈橡胶。

6.如权利要求4所述的可挠性安装模块体(15)的制造方法,其中,在所述粘附剂层(21)中的丁腈橡胶中,以18重量%以上40.5重量%以下的比例含有丙烯丁腈。

7.如权利要求1或权利要求2的任一项所述的可挠性安装模块体(15)的制造方法,其中,还具有粘附剂层形成工序,将相对于粉体的状态的所述粘附剂(26)100重量份含有5重量份以上的所述硅石微粒子(25)的所述粘附剂(26)的溶液,配置在所述基体材料膜(22)上,形成所述粘附剂层(21)。

说明书 :

可挠性安装模块体的制造方法

技术领域

[0001] 本发明涉及制造安装电子部件的具有可挠性的基板的技术。

背景技术

[0002] 从利便性、便携性的观点来看,如薄膜液晶显示器或柔性有机EL显示器那样,图像显示部具有可挠性(柔性)的显示装置备受瞩目。
[0003] 这样的显示装置的主体部件使用可挠性显示基板。该可挠性显示基板在具有可挠性且透明性高的如塑料膜那样的可挠性基板,具有显示图像的图像显示区域、和安装对图像显示装置的影像信号进行处理的电子部件(例如,驱动器IC)的安装区域。而且,在安装电子部件时,一般在安装区域配置热固化性的各向异性导电膜,从而在各向异性导电膜上配置电子部件,然后加热及按压并固定。此外,为了进一步提高可挠性显示基板的可挠性,而减薄成为基板的塑料膜,或者减小其刚性,则在上述加热及按压时,会发生基板的变形、应变,基于此,显示图像有劣化的倾向。
[0004] 另一方面,有这样的技术:使其领域不同于上述可挠性显示基板,但是在使用可挠性基板这一点上共同的布线板的领域,即柔性印刷布线板的技术领域中,通过对形成在该布线板的端部的外部端子区域的背面粘贴增强板(衬里板),由背面的增强板支持施加在该端部的热、应力,从而避免在向其他部件插入或向布线板上安装电子部件时产生的应变、变形。
[0005] 具体而言,上述增强板有文献1~文献3这样的热固化性类型的增强板,即热固化性片或文献4及文献5这样的粘附片。
[0006] 现有技术文献
[0007] 专利文献
[0008] 专利文献1:日本特开2012-219154号公报
[0009] 专利文献2:日本特开2012-116870号公报
[0010] 专利文献3:日本特开2011-79959号公报
[0011] 专利文献4:日本特开2006-332187号公报
[0012] 专利文献5:日本特开2006-173535号公报。

发明内容

[0013] 发明要解决的课题
[0014] 于是,考虑了在上述可挠性显示基板的安装区域,通过文献1~5这样的增强板来对其背面侧进行衬里,然后安装电子部件的情形。
[0015] 然而,在将文献1~文献3这样的热固化性片用作为增强板时,为了减少对配置在可挠性显示基板的图像显示区域的显示元件(例如,液晶元件、EL元件)的影响,需要在低温下进行短时间的处理(100℃以下/数分钟),但是在上述热固化性片中,存在反应速度不充分且不会热固化到所需要程度的课题。
[0016] 另一方面,虽然在以文献4及5这样的粘附片为增强板的情况下没有上述问题,但是,如果在安装区域配置各向异性导电膜而对IC等的电子部件进行加热(170℃/5sec)及加压,则存在粘附片因该热而产生变形、安装状态缺乏可靠性的课题。特别是,形成在IC等的电极或凸块下表面的各向异性导电膜的导电粒子不会充分地变形,而在加压时,粘附片变形,其结果,能够推测到对该导电粒子不会施加充分的压力。
[0017] 于是,可以考虑取代文献1~文献3的热固化性片,为了提高反应速度以能够低温连接而增加固化剂,但这样则降低热固化性片的保存稳定性。
[0018] 另一方面,可以考虑将文献4及5的粘附片中的粘附剂的玻化温度向高处转移的情形,但是,仅仅提高玻化温度,不能避免因各向异性导电膜的加热及加压而造成的粘附片的变形,另外,若使玻化温度高,总的来说会降低粘附片的剥离强度。
[0019] 用于解决课题的方案
[0020] 为了解决如上所述的课题,本发明为一种可挠性安装模块体(15)的制造方法,具有:各向异性导电膜配置工序,在设于可挠性基板(11)的一个表面即配置面(7)的安装区域(10),配置含有导电粒子(19)的热固化性的各向异性导电膜(12);电子部件配置工序,在配置于所述安装区域(10)的所述各向异性导电膜(12)上配置电子部件(9);以及安装工序,在使所述电子部件的凸块(13)与所述各向异性导电膜(12)接触的状态下,将所述电子部件(9)加热并按压,经由导电粒子(19)电连接所述凸块(13)与设在所述安装区域(10)的电极(6),其特征在于还具有:
[0021] 粘附膜粘贴工序,与所述配置面(7)相反侧的面即所述可挠性基板(11)的支撑面(8)之中,至少在位于所述安装区域(10)的正背面的部分,粘贴层叠了含有粘附剂(26)的粘附剂层(21)和基体材料膜(22)的粘附膜(20),
[0022] 所述粘附剂层(21)含有一次粒径小于100nm的硅石微粒子(25),使得所述粘附剂层(21)在160℃下具有0.15MPa以上的剪切储能模量(せん断貯蔵弾性率),在所述安装工序之前进行所述粘附膜粘贴工序。
[0023] 另外,本发明的可挠性安装模块体(15)的制造方法,所述粘附剂(26)玻化温度为-60℃以上20℃以下的范围。
[0024] 本发明的可挠性安装模块体(15)的制造方法,在所述安装工序中,对所述电子部件(9)进行加热并按压时,将所述电子部件(9)加热到150℃以上170℃以下的温度范围。
[0025] 本发明的可挠性安装模块体(15)的制造方法,其特征在于:所述粘附膜粘贴工序中,使粘贴所述粘附膜(20)的所述支撑面(8)的部分包含位于所述图像显示区域(16)的正背面的部分。
[0026] 本发明的可挠性安装模块体(15)的制造方法,所述粘附剂(26)为丁腈橡胶。
[0027] 本发明的可挠性安装模块体(15)的制造方法,在所述粘附剂层(21)中的丁腈橡胶中,以18重量%以上40.5重量%以下的比例含有丙烯丁腈。
[0028] 本发明的可挠性安装模块体(15)的制造方法,还具有粘附剂层形成工序,将相对于粉体状态的所述粘附剂(26)100重量份含有5重量份以上的所述硅石微粒子(25)的所述粘附剂(26)的溶液,配置在所述基体材料膜(22)上,形成所述粘附剂层(21)。
[0029] 如上所述的本发明,在薄膜液晶显示器、柔性有机EL显示器等中使用的可挠性显示基板或柔性印刷布线板等的成为基体材料的“可挠性基板”的背面侧粘贴成为增强板的粘附膜,并使用各向异性导电膜安装IC等的电子部件时,以显示既定剪切储能模量的方式调整该粘附膜的粘附剂层,因此在加热及按压时,根据IC等的电极,粘附剂层的变形较少。
[0030] 另外,通过选择粘附剂层的既定材质,能够提高对于可挠性基板的剥离强度。
[0031] 发明效果
[0032] 因而,依据本发明的可挠性安装模块的制造方法,通过各向异性导电膜来加热按压电子部件时,作为增强板,使用粘附剂层的变形较少的粘附膜,因此能够以使存在于各向异性导电膜的导电粒子变形或压垮的程度可靠地施加压力,使得模块的电连接可靠。

附图说明

[0033] 图1(a)~(d)是用于说明本发明的工序的图(1)
[0034] 图2(e)、(f)是用于说明本发明的工序的图(2)
[0035] 图3(e)、(f)是用于说明在支撑面之中、图像显示区域的背面位置不配置粘附膜的情况下的工序的图。

具体实施方式

[0036] 图2(f)的标号15是根据本发明能得到的可挠性安装模块体,具有:由聚酰亚胺膜或聚碳酸酯膜、聚醚砜膜、聚酯膜等构成的可挠性基板(11);作为集成电路的电子部件(9);具有柔软性的显示装置(5);以及作为增强板的粘附膜(20)。
[0037] 在由聚酰亚胺或聚酯膜构成的可挠性基板(11)的单面的配置面(7),设有图像显示区域(16)和安装区域(10),显示装置(5)配置在图像显示区域(16),电子部件(9)配置在安装区域(10),电子部件(9)的显示装置(5)通过构图的布线膜(未图示)来电连接,以通过包含电子部件(9)的电气电路向显示装置(5)输出的电信号,在显示装置(5)显示字符、影像等。
[0038] 显示装置(5)具有柔软性,能够与可挠性基板(11)一起弯曲。
[0039] 粘附膜(20)具有:如聚酯膜、OPP膜、PE膜、PVA膜、PVC膜等的具有柔软性的基体材料膜(22)、和配置在基体材料膜(22)上的具有柔软性的粘附剂层(21)。标号8是可挠性基板(11)的与配置面(7)相反侧的面即支撑面,在支撑面(8)之中安装区域(10)的正背面位置的部分,接触粘附剂层(21)而粘贴有粘附膜(20)。
[0040] 在支撑面(8)之中,不仅安装区域(10)的正背面位置的部分,而且在图像显示区域(16)的正背面位置的部分也粘贴有粘附膜(20)。
[0041] 粘附剂层(21)具有:由非热固化性的树脂构成的粘附剂(26);以及分散在粘附剂(26)的一次粒径小于100nm的硅石微粒子(25)。
[0042] 直径小于100nm的硅石微粒子(25)的形状无特别限定,能够使用球状、不定形、鳞片状等各种形状。这样的硅石微粒子可以得到且使用例如日本AEROSIL株式会社销售的注册商标AEROSIL系列、或株式会社TOKUYAMA的注册商标REOLOSIL系列等的出售商品。
[0043] 另外,非热固化性的树脂能够从具有-60℃以上20℃以下的范围玻化温度的树脂选择,使得作为粘附剂能得到充分的剥离强度、在加热及按压各向异性导电膜时达到的高温时(160℃左右),变形也较少。
[0044] 具体而言,能够根据与丁腈橡胶(NBR:丙烯腈和1,3-丁二烯的共聚合物)、丁基橡胶、乙烯丙烯橡胶等的橡胶类聚合物或用于普通粘附剂的丙烯聚合物等可挠性基板(11)的材质的关系选择并使用。
[0045] 对将电子部件(9)搭载于可挠性基板(11)的顺序进行说明。
[0046] 图1(a)的可挠性基板(11)在图像显示区域(16)设有显示装置(5),处于未搭载电子部件(9)的状态。该状态的可挠性基板(11)中,在配置面(7)的安装区域(10)内,露出由构图的金属薄膜或ITO、IZO等构成的电极(6)的表面。
[0047] 使该可挠性基板(11)的支撑面(8)之中至少安装区域(10)的正背面位置的支撑面(8)与粘附剂层(21)接触,将粘附膜(20)和可挠性基板(11)互相按压并且加热粘附膜(20),使粘附膜(20)成为第一粘贴温度,如同图1(b)所示,将粘附膜(20)粘贴在可挠性基板(11)。
[0048] 在进行该粘贴时,由于粘附剂层(21)的粘附剂不是热固化性树脂,所以第一粘贴温度接近室温,是比可挠性基板(11)变形的温度还低的温度。
[0049] 接着,如同图1(c)所示,在电极(6)上,使在环氧树脂、丙烯树脂等的热固化性树脂组合物中分散导电粒子(19)的各向异性导电膜(12)接触而配置在电极(6)的表面。
[0050] 而且,如同图1(d)所示,使电子部件(9)承载到各向异性导电膜(12)上。
[0051] 在电子部件(9)中,在内置半导体芯片的元件主体(14)的底面,设有与半导体芯片电连接的凸块(13),当朝着可挠性基板(11)侧将凸块(13)配置在安装区域(10)上时,使电极(6)位于凸块(13)与配置面(7)之间。
[0052] 以使粘附膜(20)的基体材料膜(22)与台(30)的表面接触的方式,将粘贴粘附膜(20)的可挠性基板(11)配置在台(30)上,并以使凸块(13)位于电极(6)上的方式,将电子部件(9)配置在各向异性导电膜(12)上,在电子部件(9)的元件主体(14)的表面上,如图2(e)所示,在使按压部件(31)接触并且使电子部件(9)的凸块(13)与各向异性导电膜(12)接触的状态下,通过按压部件(31)来按压电子部件(9)。
[0053] 在按压部件(31)的内部设有发热装置,按压部件(31)被发热装置加热,升温至既定温度,电子部件(9)接触用于按压的按压部件(31),因热传导而加热、升温。
[0054] 各向异性导电膜(12)与凸块(13)接触,若按压电子部件(9),则各向异性导电膜(12)被凸块(13)按压。该各向异性导电膜(12)、电极(6)、可挠性基板(11)、和粘附膜(20),在凸块(13)和各向异性导电膜(12)接触的部分与台(30)之间排成一条直线,台(30)静止而电子部件(9)被按压,从而凸块(13)与台(30)互相按压,则电极(6)、可挠性基板(11)、和粘附膜(20)也被按压。另外,当被加热的电子部件(9)升温时,因来自电子部件(9)的热传导而各向异性导电膜(12)、电极(6)、可挠性基板(11)、和粘附膜(20)也通过热传导加热、升温。
[0055] 被按压的粘附膜(20)的粘附剂层(21)中,因按压力而粘附剂层(21)中的粘附剂(26)也升温并软化,从而粘附剂变得容易变形。
[0056] 用于各向异性导电膜的导电粒子(19)的树脂粒子,对照热固化性即粘接剂特性而适当选择环氧树脂、酚醛树脂、丙烯酸树脂、丙烯腈苯乙烯(AS)树脂、苯代三聚氰胺树脂、二乙烯基苯类树脂、苯乙烯类树脂等的材质。
[0057] 若电子部件(9)按压到台(30),则凸块(13)与导电粒子(19)接触而按压导电粒子(19),从而将导电粒子(19)按压到电极(6)。
[0058] 此时,在电极(6)的、导电粒子(19)按下的部分的正下方位置,粘附剂层(21)被较强地按压,从而粘附剂(26)会比其周围的粘附剂层(21)更大地变形。其结果,在粘附剂层(21)和其上的部分的电极(6),产生比周围更加凹陷的凹部,若导电粒子(19)进入电极(6)的凹部之中,则导电粒子(19)不会被较强地按压。
[0059] 然而,在本发明中,粘附剂层(21)含有硅石微粒子(25),剪切储能模量设为在160℃中成为0.15MPa以上。
[0060] 即便电子部件(9)按压,被按压的粘附剂(26)也不会从可挠性基板(11)与基体材料膜(22)之间挤出,在粘附剂层(21)和电极(6)不会产生凹部,而导电粒子(19)被夹在凸块(13)与电极(6)而压垮,从而凸块(13)与电极(6)之间电连接。
[0061] 总之,若电子部件(9)被电子部件(9)上的按压部件(31)加热及按压,则因按压部件(31)的按压力而位于凸块(13)与电极(6)之间的导电粒子(19)被压垮,能得到凸块(13)与电极(6)之间的电连接可靠的可挠性安装模块体(15)(图2(f))。
[0062] 此外,为了通过各向异性导电膜(12)将电子部件(9)电气、机械地连接到电极(6),通常,电子部件(9)升温至150℃以上170℃以下的范围,粘附膜(20)也升温到与此相近的温度。
[0063] 因而,本发明所使用的粘附剂层(21)优选通过调整硅石微粒子(25)的含有量来使升温至接近电子部件(9)的温度时的剪切储能模量成为0.15MPa以上。
[0064] 具体而言,优选在上述升温范围内,粘附剂层中以0.5重量%以上20重量%以下的范围含有。
[0065] 另一方面,关于粘附剂(26),为了得到较强的粘附力,最好使玻化温度在-60℃以上20℃以下的范围,在本发明中,即便为流动性较大的粘附剂(26),也通过含有小于100nm的硅石微粒子(25),使粘附剂层(21)的剪切储能模量成为0.15MPa以上。
[0066] 另外,在本发明中,在可挠性基板(11)的背面露出聚酰亚胺膜,在该聚酰亚胺膜粘附有粘附剂层(21)的情况下,粘附剂(26)最好为丁腈橡胶,另外,丁腈橡胶中的丙烯丁腈量优选以18重量%以上40.5%重量以下的比例含有。
[0067] 此外,上述丙烯丁腈量为结合丙烯丁腈量平均值(JISK 6384)。
[0068] 此外,如图3(e)那样,在支撑面(8)之中安装区域(10)的背面侧配置有粘附膜(20),使图像显示区域(16)的背面侧的表面露出,使图像显示区域(16)的背面侧的表面和粘附膜(20)的基体材料膜(22)与台(30)接触,用按压部件(31)按压配置在安装区域(10)上的电子部件(9),也能得到如同图3(f)所示,使支撑面(8)之中图像显示区域(16)的背面侧的部分露出,粘附膜(20)位于安装区域(10)的背面侧的部分而不位于图像显示区域(16)的背面侧的部分的可挠性安装模块体15’。
[0069] 总之,本发明至少在安装区域(10)的正背面位置配置粘附膜(20)即可。
[0070] 此外,如图2(f)那样,如果在图像显示区域(16)的正背面位置的部分也粘贴粘附膜(20),由于粘附膜(20)位于图像显示区域(16)的背面侧和安装区域(10)的背面侧两处,因此在平坦面上配置可挠性基板(11)也不会发生阶梯差等的变形。实施例
[0071] 以下利用实施例,更具体地进行说明。
[0072] 首先,一边搅拌向作为溶剂的MEK(甲基乙基酮)中溶解丙烯腈橡胶(NBR-1,结合丙烯丁腈量的中心值为18%)100质量份的树脂溶液,一边添加5质量份左右的一次粒径12nm的硅石微粒子(25)(日本AEROSIL社,AEROSILR-974)后,进一步进行分散处理,得到了丙烯丁腈树脂溶液中分散硅石微粒子的分散液。
[0073] 接着,将上述分散液投入涂敷装置,并涂敷在基体材料膜(22)(聚对苯二甲酸乙二醇酯膜,75μm厚),用干燥炉使上述MEK挥发,得到了形成有厚度约17μm(与基体材料膜一起约92μm厚)的粘附剂层(21)的实施例1的粘附膜(20)。
[0074] 接着,除了将上述硅石微粒子的添加量改变为10质量份、15质量份以外,通过与实施例1同样的方法,得到了实施例2及实施例3的粘附膜(20)。
[0075] 接着,除了将丙烯丁腈橡胶中的丙烯含有量如表2那样改变以外,通过与实施例1同样的方法,得到了实施例4及实施例5的粘附膜(20)。
[0076] 另一方面,除了不添加硅石微粒子以外,通过与实施例1同样的方法,得到了作为比较例的粘附膜。
[0077] (剥离强度测定)
[0078] 在常温下,制成将各实施例的粘附膜(20)及比较例的粘附膜,按照常温、压力0.34MPa及500mm/min的条件对可挠性基板(11)(约10μm厚的聚酰亚胺膜基板)层压后的样品片,使用剥离强度测定器(ORIENTEC公司(オリエンテック社),TENSILON(テンシロン))测定该样品片的剥离强度(180℃剥离强度),并对其结果进行了评价。此时的评价基准如下述。
[0079] 评价基准
[0080] 在12N/2cm以上的情况下评价为表示很优异的特性的“◎”。
[0081] 在8N/2cm以上、小于12N/2cm的情况下评价为表示优异的特性的“○”。
[0082] 在5N/2cm以上、小于8N/2cm的情况下评价为表示通常的特性的“△”。此外,即便评价为“△”,也能通过通常的检查来判别良品及次品,因此实质上能够使用。
[0083] 在小于5N/2cm的情况下,评价为表示差的特性的“×”。
[0084] (导通电阻及压接状态)
[0085] 另外,按照制成上述样品片的条件在可挠性基板(11)(在此,在约10μm厚度聚酰亚胺膜设置连接用电极的样品基板)的电极(6)的背面侧粘贴各实施例及比较例的粘附膜,接着,在该电极(6)上配置各向异性导电膜(12)(DP3342MS,DEXERIALS公司(デクセルアルズ社)),将电阻值测定用的电子部件(9)加热及压接(160℃-1MPa-6sec),用金属显微镜,进行电子部件(9)的凸块(13)与电极(6)之间的导通电阻值测定和根据截面的压接状态的确认(导电粒子的变形或压垮程度)。
[0086] 此外,在上述各向异性导电膜(12)中含有的导电粒子(19),对树脂粒子实施了镍/金镀敷,其平均粒径为4μm。
[0087] 压缩状态的评价基准
[0088] 将导电粒子压缩变形或压垮30%以上的评价为表示优异的“○”。
[0089] 将导电粒子变形未达到30%的评价为表示差的“×”。
[0090] (剪切储能模量的测定)
[0091] 对于实施例及比较例的粘附膜,利用粘弹性测定装置(HAAKE公司制,件号RS-150)得到了160℃下的剪切储能模量G’。
[0092] 而且,改变实施例及比较例的粘附膜的粘附剂层的成分并记载于表1中,并且将通过上述方法得到的测定及观察结果也一并记载于表1中。
[0093] [表1]  实施例1 实施例2 实施例3 实施例4 实施例5 比较例
NBR-1 100 100 100     100
NBR-2       100    
NBR-3         100  
AEROSIL R974(硅石微粒子) 5 10 15 5 5  
160℃的G’:剪切储能模量(MPa) 0.18 0.37 0.5 0.22 0.31 0.1
180°剥离强度 ◎ ○ △ ○ △ ◎
凸块电极间的导通电阻值 ○ ○ ○ ○ ○ ×
凸块电极间的导电粒子压垮(截面) ○ ○ ○ ○ ○ ×
[0094] [表2]  结合丙烯丁腈量中心值(%)
NBR-1 18
NBR-2 29
NBR-3 40.5
[0095] 如表1那样,在不含有硅石微粒子的比较例中,剥离强度为良好“◎”,但是不含有硅石微粒子,因此剪切储能模量较低。其结果,可知因各向异性导电膜造成的导电粒子的变形不充分,凸块与电极之间的电连接不充分。
[0096] 另一方面,在具有含有硅石微粒子、其剪切储能模量超过0.15MPa的粘附剂层的各实施例中,可知电连接及剥离强度均良好。
[0097] 此外,若在18重量%以上40.5重量%以下的范围使用丙烯丁腈量,则能够调整对于可挠性基板(11)的剥离强度,特别是在下限侧的18%的情况下,可知若被粘体为聚酰亚胺基板,则能得到较高的剥离强度。
[0098] 标号说明
[0099] 7 配置面;8 支撑面;9 电子部件;10 安装区域;11 可挠性基板;12 各向异性导电膜;13 凸块;20 粘附膜;21 粘附剂层;22 基体材料膜;25 硅石微粒子;26 粘附剂。