具有改进的清洁组合件的交叉流过滤器组合件转让专利

申请号 : CN201480076769.X

文献号 : CN106132498B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : R·蒂瓦里C·V·舒埃特P·J·舒尔茨M·O·拉博内维尔J·M·格赖德G·D·科克伦

申请人 : 陶氏环球技术有限责任公司

摘要 :

一种交叉流过滤器组合件(10),其包含:圆柱形过滤器(12),其具有内周边(14),所述内周边封围过滤器区(26),所述过滤器区沿着轴线(X)从相对的馈送末端(16)和流出物末端(18)延伸;以及清洁组合件(32),其在所述过滤器区(26)内轴向对准且包括抵靠着所述过滤器(12)的所述内周边(14)而偏置的至少一个径向延伸的清洁部件(34),其中所述清洁组合件(32)适于围绕所述轴线(X)旋转以从所述过滤器(12)的所述内周边(14)移除残渣;且特征在于压缩部件(40),所述压缩部件提供使所述清洁部件(34)抵靠着多孔筛(24)的所述内周边(14)而偏置的连续径向向外力。

权利要求 :

1.一种交叉流过滤器组合件(10),其包括:

(i)圆柱形过滤器(12),其包括多孔筛(24),所述多孔筛包含平均大小为10μm到100μm的多个孔且界定内周边(14),所述内周边封围过滤器区(26),所述过滤器区沿着轴线(X)从相对的馈送末端(16)和流出物末端(18)延伸;

(ii)邻近于所述馈送末端(16)而定位的馈送入口(20),以及邻近于所述流出物末端(18)而定位的流出物出口(22),其中所述馈送入口(20)和流出物出口(22)两者与所述过滤器区(26)成流体连通;以及(iii)清洁组合件(32),其在所述过滤器区(26)内轴向对准且包括抵靠着所述过滤器(12)的所述内周边(14)而偏置的至少一个径向延伸的清洁部件(34),其中所述清洁组合件(32)适于围绕所述轴线(X)旋转以从所述过滤器(12)的所述内周边(14)移除残渣;

(iv)清洁部件(34),其抵靠着所述多孔筛(24)的所述内周边(14)而偏置;且其中所述多孔筛(24)通过所述清洁部件(34)可逆地可变形平均微孔尺寸的0.1倍到10倍的径向距离(D)。

2.根据权利要求1所述的组合件(10),其中所述过滤器(12)进一步包括支撑所述多孔筛(24)的笼(13)以及位于所述笼(13)与多孔筛(24)之间的柔性部件(38),使得所述多孔筛(24)可以响应于所述清洁部件(34)而可逆地变形径向距离(D)。

3.根据权利要求1所述的组合件(10),其中所述过滤器组合件(10)特征在于压缩部件(40),所述压缩部件提供使所述清洁部件(34)抵靠着所述多孔筛(24)的所述内周边(14)而偏置的连续径向向外力。

4.根据权利要求3所述的组合件(10),其中所述压缩部件(40)包括弹簧加载装置。

5.根据权利要求1所述的过滤器组合件,其包括围绕所述多孔筛(24)的所述内周边(14)均匀隔开的多个清洁部件(34)。

6.根据权利要求5所述的组合件(10),其中所述清洁部件(34)每一者抵靠着所述多孔筛的所述内周边(14)施加大体上相等的径向向外力。

7.根据权利要求1所述的组合件(10),其中清洁组合件进一步包括叶轮(36),所述叶轮由于流动通过所述组合件的馈送流体而适于围绕所述轴线(X)旋转。

8.根据权利要求1所述的组合件(10),其中所述过滤器区(26)具有沿着其轴向长度(L)的轴向中点(MP),且界定与所述馈送入口(20)和流出物出口(22)两者成流体连通的自由体积;并且其中与所述中点(MP)与馈送末端之间的所述过滤器区(26)的自由体积相比,所述清洁组合件(32)占据所述中点(MP)与流出物末端(18)之间的所述过滤器区(26)的自由体积多至少2.5%。

说明书 :

具有改进的清洁组合件的交叉流过滤器组合件

技术领域

[0001] 本发明大体上涉及交叉流流体过滤器装置。

背景技术

[0002] 在交叉流过滤中,馈送液体的一部分作为“滤过物”通过多孔薄膜或筛,而剩余的残余混合物作为浓缩保留物或“流出物”流过薄膜。交叉流过滤装置的实例在US2011/0220586中描述。此装置包含环形交叉流过滤器,其中馈送液体流动到圆柱形过滤器的内周边中。滤过物径向向外通过过滤器,而流出物借助于流出物出口从过滤器轴向通过。所述装置包含位于过滤器内的圆柱形旋转清洁组合件,其进一步包含从过滤器的内表面移除残渣的清洁部件。在一个实施例中,所述清洁组合件由通过过滤器的馈送液体的流动来驱动。还参见WO2004/064978、US1107485和US5466384。虽然部分地有效,但颗粒物质仍会变为积留在过滤器的孔中,具体来说在清洁部件随时间而磨损时积留。还参见DE4308685、EP0557258和US5183568。

发明内容

[0003] 在一个实施例中,本发明包含一种交叉流过滤器组合件(10),其包含:
[0004] (i)圆柱形过滤器(12),其包括多孔筛(24),所述多孔筛界定内周边(14),所述内周边封围过滤器区(26),所述过滤器区沿着轴线(X)从相对的馈送末端(16)和流出物末端(18)延伸;
[0005] (ii)邻近于所述馈送末端(16)而定位的馈送入口(20),以及邻近于所述流出物末端(18)而定位的流出物出口(22),其中所述馈送入口(20)和流出物出口(22)两者与所述过滤器区(26)成流体连通;以及
[0006] (iii)清洁组合件(32),其在所述过滤器区(26)内轴向对准且包括抵靠着所述过滤器(12)的所述内周边(14)而偏置的至少一个径向延伸的清洁部件(34),其中所述清洁组合件(32)适于围绕所述轴线(X)旋转以从所述过滤器(12)的所述内周边(14)移除残渣;
[0007] 其中所述过滤器组合件(10)特征在于压缩部件(40),所述压缩部件提供使所述清洁部件(34)抵靠着所述筛(24)的所述内周边(14)而偏置的连续径向向外力。
[0008] 描述了额外实施例。

附图说明

[0009] 图并未按比例绘制并且包括理想化视图以便于描述。在可能的情况下,已在整个图式和书面描述中使用相同的编号来指示相同或相似的特征。
[0010] 图1是本发明的实施例的分解透视图。
[0011] 图2是说明通过图1的实施例的流体流的横截面正视图。
[0012] 图3是清洁组合件(32)的实施例的透视图。
[0013] 图4是清洁组合件(32)的替代实施例的正视图,示出了通过压缩部件(40)而抵靠着多孔筛(24)的内周边(14)偏置的清洁部件(34)。
[0014] 图5A是多孔筛(24)的放大简化立面图,示出了随孔(25)积留的理想化颗粒(42)。
[0015] 图5B是图5A的实施例的视图,示出了多孔筛(24)响应于抵靠着筛(24)偏置且移动越过所述筛的清洁部件(34)而径向变形且移出颗粒(42)形成孔(25)。
[0016] 图6是过滤器组合件(12)的另一实施例的分解透视图。
[0017] 图7是本发明的另一实施例的横截面正视图。

具体实施方式

[0018] 参考图1和2,交叉流过滤器组合件的优选实施例一般地示出于10,其包含过滤器(12),所述过滤器包含多孔筛(24),所述多孔筛界定沿着轴线(X)延伸的内周边(14),且封围相对的馈送末端(16)与流出物末端(18)之间的轴向对准过滤器区(26)。虽然示出为圆柱形的,但过滤器(12)及其内周边(14)可独立地具有替代的配置,例如截头圆锥形、椭圆形、多边形等。然而,在优选实施例中,内周边(14)具有椭圆形横截面,且更优选地具有圆形横截面。过滤器(12)可任选地包含用于支撑相对较精细的多孔筛(24)的笼或外壳(13)(参考图6论述)。在未图示的替代实施例中,所述笼(13)和多孔筛(24)可形成单个一体式组件零件。
[0019] 多孔筛(24)可以由包含聚合物、玻璃、陶瓷和金属的广泛多种材料制造。筛(24)的微孔尺寸(例如,由SEM测得的1到500微米)、形状(例如,V形、圆柱形、槽形、网状等)和均匀性可取决于应用而变化。在许多优选实施例中,筛(24)相对薄,例如从0.1mm到0.4mm,且包括防腐的金属(例如,电成型镍筛),其包含大小从10到100微米的均匀大小的孔(25)。以下各者描述了这些材料的代表性实例:US6478958、US7632416、US7896169、US8201697、US2005/0252838、US2012/0010063、US2012/0145609、US2013/0126421和WO2012/154448(US13/581578),其中的每一者的整个标的物以引用的方式并入本文中。尽管多孔筛(24)可以铸造、模制或以其它方式制造为连续的圆形组件,但是在优选实施例中,所述筛由弯曲成圆形且在其末端处固定以形成圆形配置的材料带制造。
[0020] 组合件(10)进一步包含邻近于馈送末端(16)定位的馈送入口(20)以及邻近于流出物末端(18)定位的流出物出口(22),其中馈送入口(20)和流出物出口(22)两者与过滤器区(26)流体连通。虽然示出为轴向对准,但馈送入口(20)和流出物出口(22)中的任一者或两者可替代地分别位于靠近馈送末端(16)和流出物末端(18)定位的径向位置处。
[0021] 过滤器(12)可任选地形成伸长(例如,圆柱形)主体(28)的一部分,其包含邻近于馈送末端(16)定位的馈送区段(30),其中过滤器(12)位于馈送区段(30)与流出物末端(18)之间。在此上下文中,术语“之间”指代过滤器(12)的相对位置,且不一定要求过滤器(12)如图中所示从馈送区段(30)延伸到流出物末端(18)。馈送区段(30)和过滤器(12)可为一体单件式单元(例如,注射模制),或者可制造为例如经由匹配螺纹、粘合剂、焊缝、扣件、夹具等而互连的单独零件。替代地,馈送区段(30)和过滤器(12)可联合地连接到中间部件(未图示)。在所说明的实施例中,馈送入口(20)邻近于馈送末端(16)而定位,且流出物出口(22)邻近于在主体(28)的相对末端处的流出物末端(18)而定位。如图2的实施例中所示,馈送区段(30)优选地包含实心或非渗透性外周边。在未图示的替代实施例中,主体(28)仅包含过滤器(12),即过滤器(12)从入口连续地延伸到流出物末端(16,18)。
[0022] 组合件10优选地包含位于过滤器区(26)内的清洁组合件(32)。清洁组合件(32)包含中央轴向轴杆或基座(33),具有直接沿着基座(33)的轴向长度延伸的至少一个径向延伸的清洁部件(34),例如毛刷、刮片等。在未图示的替代实施例中,清洁部件(34)可延伸沿着基座(33)的长度的螺旋路径。清洁组合件(32)适于围绕轴线(X)旋转以过滤器(12)的多孔筛(24)的内周边(14)移除残渣。在一个实施例中,由例如电动机等电力源围绕中央轴向轴杆(33)驱动清洁组合件(32)。在替代实施例中,清洁组合件(32)包含叶轮(36),其沿着主体(28)的至少一部分例如图1和2中的馈送部分(30)轴向延伸。由于从馈送入口(20)进入组合件(10)且流动通过内周边(14)的馈送流体,叶轮(36)适于使基座(33)围绕轴线(X)旋转。
[0023] 在图3和4中说明的另一个实施例中,清洁部件(34)在径向方向中可移动,且清洁组合件(32)进一步包含压缩部件(40),所述压缩部件提供连续径向向外的力,所述力使清洁部件(34)抵靠着多孔筛(24)的内周边(14)而偏置。压缩部件(40)不受特别限制并且包含弹簧加载装置,包含各种类型的弹簧,例如线圈、悬臂、螺旋管、扭转、气体(具有压缩气体的圆柱体)等等。在优选实施例中,甚至在清洁部件(34)与筛(24)之间的接合部分开始磨损时,压缩部件(40)也提供抵靠着清洁部件(34)的连续(例如,+/-10%)径向向外力。以此方式,清洁部件(34)维持抵靠着筛(24)的内周边(14)的所需预定偏置力,且提供较长周期的最佳操作。可以选择压缩部件(40)的压缩力以基于微孔尺寸、残渣的尺寸和性质、过滤器类型以及清洁部件的类型(例如,黄铜纤维、尼龙纤维等)来优化性能。优选的压缩力范围在0.049牛顿至1牛顿之间。在另一优选实施例中,清洁组合件(32)包含围绕过滤器(12)的内周边(14)均匀隔开且抵靠着所述内周边以可压缩方式加载的多个清洁部件(34)。在再一个优选实施例中,清洁部件(34)中的每一者抵靠着过滤器(12)的内周边(14)施加大体上相等的径向向外力(例如,+/-5%)。此实施例在扰流流体通过组合件(10)且清洁部件(34)移动越过过滤器(12)时使过滤器组合件(12)稳定(例如,减少振动)。当利用具有锥形或非均匀尺寸(如下所述)的清洁组合件(32)时此稳定尤其有益。此稳定性会减少磨损和操作低效并且当在高馈送速率下操作时尤其有益,其中清洁部件(34)超过60RPM、100RPM以及甚至
1000RPM围绕过滤器(12)旋转。
[0024] 在图5A和5B中说明的又一实施例中,响应于清洁部件(34)正抵靠着其内周边(14)而偏置,多孔筛(24)可逆地可变形预定径向距离(D)。径向变形距离(D)优选地是平均微孔尺寸的0.1倍到10倍(更优选地为0.25倍到2倍)。此程度的变形更改孔(25)的形状和/或大小,以使得夹带的颗粒(42)可以从孔(25)移出,同时防止筛(24)的过量的断裂或开裂。
[0025] 在图6中说明的又一实施例中,笼(13)在操作期间以一般圆柱形配置维持多孔筛(24),但允许多孔筛(24)响应于清洁部件(34)抵靠着过滤器(12)的大约内周边(14)偏置而可逆地变形径向距离(D)。柔性部件(38)(例如,弹性O形环、泡沫、3/32ODViton A中空管等)可位于笼(13)与多孔筛(24)之间。虽然取决于应用,但柔性部件(38)优选地具有通过ASTM D2240-05(2010)测得的从20°到100°的肖氏硬度硬度计A值。
[0026] 如图7中说明的实施例中所示,过滤器区(26)具有半径(R)和沿着其轴向长度(L)的轴向中点(MP)。此区(26)内的空间界定与馈送入口(20)和流出物出口(22)两者成流体连通的自由体积。位于中点(MP)与馈送末端(16)之间的过滤器区(26)的自由体积(即,位于图2中所示的过滤器(12)的上部部分中的自由体积)比中点(MP)与流出物末端(18)之间的过滤器区(26)的自由体积(即,如图2所示的过滤器(12)的底部的自由体积)优选地大至少
2.5%,且更优选地大至少5%、10%,且在一些实施例中大至少15%。优选地选择此自由体积的“分数改变”以近似在滤过物沿着过滤器(12)的轴向长度通过多孔筛(24)时液体体积的损失。以此方式,操作压力的损失至少部分得到补偿,且组合件的总分离效率改进。用于减少中点(MP)与流出物末端(18)之间的过滤器区(26)的自由体积的一种方式涉及利用清洁组合件(32),其与中点(MP)与馈送末端(16)之间的区相比占据中点(MP)与流出物末端(18)之间的更大量的空间(自由体积)。例如,清洁组合件(32)的轴向中心基座(33)可从馈送末端(16)到流出物末端(18)向外成锥形。替代地,清洁部件(34)可具有靠近流出物末端(18)比馈送末端(16)更大的尺寸。在此实施例中,与中点与馈送末端(18)之间的过滤器区(26)的自由体积相比,清洁组合件(32)占据中点(MP)与流出物末端(16)之间的过滤器区(26)的自由体积多至少2.5%、5%、10%或甚至至少15%。
[0027] 如图2中的点线箭头所说明,在操作期间馈送液体借助于馈送入口(20)进入主体(28)的内周边(14),在所述馈送入口处所述馈送液体通过馈送区段(30)到过滤器(12)的过滤器区(26)。滤过物通过过滤器(12)的多孔筛(24)且退出组合件(10),而残余流出物借助于流出物出口(22)退出过滤器区(24)。在通过馈送区段(30)的过程中,馈送液体驱动清洁组合件(32)的叶轮(36),所述叶轮又使清洁部件(34)围绕中心轴线(X)旋转以移除或另外防止多孔筛(24)上的残渣的积聚。滤过物或流出物可再循环且多次通过组合件(10)。在任何单个遍次期间组合件(10)的回收是所产生滤过物的体积速率与进入组合件(10)的总馈送液体的体积速率的比率。在优选实施例中,在单个遍次期间的回收大于5%且小于50%,更优选地其大于10%且小于30%。在操作中,单个遍次回收与先前界定的自由体积的分数改变的比率在1到3之间。
[0028] 如图1和2中所示,组合件(10)可更包含外壳(42),例如围绕主体(28)配合的轴向对准圆柱形管或壳体。所述外壳(42)包含允许进出主体(28)的流体流动的端口。外壳(42)可包含任选的密封件,其限制馈送流使其不会绕过馈送入口(22)且另外沿着馈送区段(30)的外侧通过。也可以包含密封件以使得从过滤器区(26)退出且通过过滤器(12)的滤过物被收集在过滤器(12)的外周边与外壳的内周边之间的滤过物收集区中。外壳(42)可另外包含与滤过物收集区成流体连通以用于从组合件(10)移除滤过物的端口(44)。
[0029] 组合件(10)可用以过滤广泛多种液体混合物,包含固体颗粒从液体混合物的分离以及包含不同密度的液体(例如,油和水)的混合物的分离。特定应用包含以下处理:造纸厂的纸浆流出物产生,油气回收所产生的工艺用水,食品处理(橄榄油),舱底污水以及城市和工业废水。
[0030] 已经描述了本发明的多个实施例并且在一些情况下已经将某些实施例、选择、范围、成分或其它特征表征为“优选的”。“优选的”特征的此类指代决不应解释为本发明的必需或重要方面。尽管在垂直定向(即,X轴是垂直的)上示出,但是组合件(10)可采用替代定向,例如,水平定向。尽管示出为单个操作单元,但是多个组合件可以通过并联和串联布置耦合,其中滤过物或流出物用作下游组合件的馈送。