具有透明导电和低折射率栅极的MOS电容式光学调制器转让专利

申请号 : CN201580018242.6

文献号 : CN106170865B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 陈宏民徐千帆杨莉沈晓安

申请人 : 华为技术有限公司

摘要 :

一种金属氧化物半导体(MOS)光学调制器,包括:具有波导结构的掺杂半导体层;设置在所述掺杂半导体层的波导结构上的介电层;设置在所述介电层上的栅极区,其中所述栅极区包括折射率比硅低的透明导电材料;以及设置在所述栅极区上的金属接触。所述金属接触、所述栅极区和所述掺杂半导体层的波导结构彼此可以垂直排列。

权利要求 :

1.一种金属氧化物半导体MOS电容式光学调制器,包括:具有波导结构的掺杂半导体层;

设置在所述掺杂半导体层的波导结构上的介电层;

设置在所述介电层上的栅极区,其中所述栅极区包括折射率比硅低的透明导电材料;

设置在所述栅极区上的金属接触;以及

覆层材料,其中所述覆层材料覆盖所述波导结构的侧壁、所述栅极区的侧壁和所述金属接触的侧壁,并且所述波导结构的侧壁、所述栅极区的侧壁和所述金属接触的侧壁共面。

2.根据权利要求1所述的MOS电容式光学调制器,其中,所述金属接触、所述栅极区和所述掺杂半导体层的波导结构彼此垂直排列。

3.根据权利要求1所述的MOS电容式光学调制器,其中,所述透明导电材料为n-掺杂氧化锌ZnO。

4.根据权利要求1所述的MOS电容式光学调制器,其中,所述掺杂半导体层为p-掺杂硅,并且所述透明导电材料为n-掺杂氧化锌ZnO、n-掺杂碳化硅SiC和n-掺杂铟锡氧化物ITO中的一种。

5.根据权利要求1所述的MOS电容式光学调制器,其中,所述透明导电材料在光通信波段为1.3微米μm至1.55μm之间是透明的。

6.根据权利要求1所述的MOS电容式光学调制器,其中,所述覆层材料是二氧化硅SiO2覆层材料,并且所述透明导电材料的折射率比所述SiO2覆层材料的更高。

7.根据权利要求1所述的MOS电容式光学调制器,其中,所述介电层包含硅石和氮化硅之一。

8.根据权利要求1所述的MOS电容式光学调制器,其中,所述金属接触直接设置在所述栅极区上,并且所述栅极区直接设置在所述掺杂半导体层的波导结构上。

9.根据权利要求1所述的MOS电容式光学调制器,其中,所述掺杂半导体层为绝缘体上半导体SOI晶片的上层。

10.一种金属氧化物半导体MOS电容式光学调制器,包括:绝缘体上半导体SOI晶片部分,具有设置在半导体衬底上形成的掩埋氧化层上的上半导体层,其中所述上半导体层包括波导结构;

设置在所述上半导体层的波导结构上的介电层;

设置在所述介电层上的栅极区,其中所述栅极区包括折射率比硅低的透明导电材料;

设置在所述栅极区上的金属接触,其中所述金属接触直接设置在所述栅极区和所述上半导体层的波导结构上;以及覆盖所述波导结构的侧壁、所述栅极区的侧壁和所述金属接触的侧壁的覆层材料,其中所述波导结构的侧壁、所述栅极区的侧壁和所述金属接触的侧壁共面。

11.根据权利要求10所述的MOS电容式光学调制器,其中,所述上半导体层为p-掺杂含硅材料,并且所述透明导电材料为n-掺杂氧化锌ZnO。

12.根据权利要求10所述的MOS电容式光学调制器,其中,所述透明导电材料在光通信波段为1.3微米μm至1.55μm之间是透明的。

13.根据权利要求10所述的MOS电容式光学调制器,其中,所述覆层材料是二氧化硅SiO2覆层材料,并且所述透明导电材料的折射率比所述SiO2覆层材料的更高。

14.根据权利要求10所述的MOS电容式光学调制器,其中,邻近所述MOS电容式光学调制器的源极的所述上半导体层的掺杂浓度小于邻近所述MOS电容式光学调制器的漏极的所述上半导体层的掺杂浓度。

15.根据权利要求10所述的MOS电容式光学调制器,其中,第二金属接触通过覆层材料与所述栅极区横向间隔开,并设置在所述上半导体层上。

16.根据权利要求10所述的MOS电容式光学调制器,其中,所述栅极区和所述掩埋氧化层被所述上半导体层沿所述栅极区的整个底表面物理隔开。

17.一种形成金属氧化物半导体MOS电容式光学调制器的方法,包括:在半导体层中形成波导结构;

在所述半导体层的波导结构上形成介电层;

在所述介电层上沉积栅极区材料,其中所述栅极区材料包括折射率比硅低的透明导电材料;在所述栅极区材料上形成金属接触;以及形成覆盖所述波导结构的侧壁、所述栅极区的侧壁和所述金属接触的侧壁的覆层材料,其中所述波导结构的侧壁、所述栅极区的侧壁和所述金属接触的侧壁共面。

18.根据权利要求17所述的方法,还包括将所述金属接触、所述栅极区材料和所述半导体层的波导结构垂直排列。

19.根据权利要求17所述的方法,还包括:通过金属有机化学气相沉积MOCVD、射频RF溅射和等离子体增强原子层沉积中的一种沉积所述栅极区材料。

20.根据权利要求17所述的方法,还包括蚀刻所述半导体层以形成所述波导结构,并且将第一掺杂剂植入所述栅极区材料并将不同于所述第一掺杂剂的第二掺杂剂植入所述半导体层。

说明书 :

具有透明导电和低折射率栅极的MOS电容式光学调制器

[0001] 相关申请交叉引用
[0002] 本专利申请要求由陈宏民等人于2014年4月18日提交的申请号为61/981,517、发明名称为“具有透明导电和低折射率栅极的MOS电容式光学调制器”的美国临时专利申请的优先权,其全部内容通过引用就像复制一样结合在本申请中。
[0003] 关于联邦政府资助的研究或开发的声明
[0004] 不适用。
[0005] 参照缩微胶片附录
[0006] 不适用。

背景技术

[0007] 硅(Si)光子设备可以指采用硅作为芯片中光学介质的光子设备。硅光子设备可在光纤通信系统通常使用的红外线波长区域中工作。硅可位于二氧化硅(SiO2)或硅石层的顶层,并起到绝缘体上硅(SOI)的作用。硅光子设备可以采用现有的半导体制造技术来制造。
[0008] 由于硅通常用作集成电路的基板,所以混合型设备可以包括集成到单个芯片上的光学和电子器件。这种混合型设备可以提供电气数据操作,而且还提供可以使芯片间及芯片内的数据传输更快的光学互连。因此,增加了对硅光子的兴趣。

发明内容

[0009] 在一个实施例中,本公开包括一种金属氧化物半导体(MOS)光学调制器,包括:具有波导结构的掺杂半导体层;设置在所述掺杂半导体层的波导结构上的介电层;设置在所述介电层上的栅极区,其中所述栅极区包括折射率比硅低的透明导电材料;以及设置在所述栅极区上的金属接触。
[0010] 在一个实施例中,本公开包括一种金属氧化物半导体(MOS)光学调制器,包括:绝缘体上半导体(SOI)晶片部分,具有设置在半导体衬底上形成的掩埋氧化层上的上半导体层,其中所述上半导体层包括波导结构;设置在所述上半导体层的波导结构上的介电层;设置在所述介电层上的栅极区,其中所述栅极区包括折射率比硅低的透明导电材料;以及设置在所述栅极区上的金属接触,其中所述金属接触的侧壁与所述栅极区的侧壁和所述上半导体层的波导结构的侧壁是共面的。
[0011] 在一个实施例中,本公开包括一种形成金属氧化物半导体(MOS)光学调制器的方法,包括:在半导体层中形成波导结构;在所述半导体层的波导结构上形成介电层;在所述介电层上沉积栅极区材料,其中所述栅极区材料包括折射率比硅低的透明导电材料;以及在所述栅极区材料上形成金属接触。

附图说明

[0012] 图1为根据本公开实施例的MOS电容式光学调制器的示意图。
[0013] 图2为硅和氧化锌的折射率与载流子密度的曲线图。
[0014] 图3为硅和氧化锌的损耗与载流子密度的曲线图。
[0015] 图4为图1的调制器的光学模式的曲线图。
[0016] 图5为沿图1的调制器的垂直方向在波导中心处的载流子密度分布的曲线图。
[0017] 图6为沿图1的调制器的垂直方向在波导中心处的载流子密度分布的另一曲线图。
[0018] 图7为示出了图1的调制器的调制效率与施加电压的曲线图。
[0019] 图8为示出了图1的调制器的插入损耗与施加电压的曲线图。
[0020] 图9为示出了根据本公开实施例的形成图1的MOS电容式光学调制器的方法的流程图。

具体实施方式

[0021] 在本文开始时应当理解,尽管下面给出了一个或多个实施例的说明性的实现,但是所公开的系统和/或方法可应用各种当前已知的或现有的技术来实现。不能将本公开限制在下文所述的说明性的实现方式、附图和技术中,包括本文所示和所述的示例性设计方案和实现方式,而是可以在所附权利要求的范围内连同其等同物的全部范围内对其进行修改。
[0022] 光学调制器是SOI平台上的硅光子设备的主要组成部分。可以采用诸如马赫-曾德尔(Mach-Zehnder)干涉仪等干涉仪和环形振荡器来形成光学调制器。调制器效率、光插入损耗和调制带宽可以由干涉仪内的相位剖面(phase section)限定。相位剖面的折射率可通过施加电压来改变,这可改变电子和空穴密度。折射率的改变可以改变干涉仪输出的强度和相位。
[0023] 目前,采用两种主要的光学调制器:PN结光学调制器和MOS电容式光学调制器。PN结光学调制器可通过载流子耗尽效应获得高速调制,而MOS电容式光学调制器可通过载流子累积效应获得高速调制。然而,MOS电容式光学调制器通常比PN结光学调制器具有更高的调制效率。较高的调制效率可以允许较小的尺寸和较低的驱动电压,从而使MOS电容式光学调制器更有吸引力。
[0024] MOS电容式光学调制器基于电容器电极上的电压变化所引起的载流子密度变化。现有的MOS电容式光学调制器通常包括在栅极氧化层上的植入多晶硅,用以将金属电极与栅极连接。栅极区的金属接触设置成相对横向远离波导区域,以避免光插入损耗,但这是以串联电阻为代价完成的,从而需要适当平衡光损耗与电阻。另外,金属接触的设置会导致明显的寄生电容,这会限制调制带宽。
[0025] 图1为根据本公开实施例的MOS电容式光学调制器100的示意图。调制器100为现有MOS电容式光学调制器提供改进。调制器100提供多种益处和优点,包括:例如,相对于现有MOS电容式光学调制器来说更高的调制效率(例如,VπL,其中Vπ是实现调制器相位剖面L的给定长度的π相移的施加电压)、更低的光插入损耗(例如,VπLoss,其中Vπ是实现调制器相位剖面L的给定长度的π相移的施加电压,Loss是相位剖面的传播损耗)和更高的调制带宽(例如,1/(2πRC),其中R是电阻,C是电容)。
[0026] 如图1所示,调制器100形成在具有半导体衬底104、绝缘体106和上半导体层108的SOI晶片102的一部分上。在一实施例中,半导体衬底104由硅、含硅材料或另一种合适的衬底材料形成。绝缘体106设置在半导体衬底104上。在一实施例中,绝缘体106为掩埋氧化物(BOX),比如:例如,二氧化硅或其它合适的绝缘体。上半导体层108设置在绝缘体106上。在一实施例中,上半导体层108由硅或其它合适的半导体材料形成。
[0027] 上半导体层108包括波导结构110。所述波导结构110可以通过,例如,蚀刻掉上半导体层108的一些部分而形成。在一实施例中,波导结构110限定侧壁112。虽然上半导体层108的侧壁112在图1中绘制为垂直的,但应当认识到,鉴于半导体制造工艺,侧壁112可以是略圆或倾斜的。
[0028] 在一实施例中,上半导体层108包括其中植入p型杂质(例如,硼、铟镓等)的硅。在一实施例中,掺杂浓度在上半导体层108内变化。例如,邻近调制器100的源极(S)的上半导体层108的掺杂浓度可以小于邻近上半导体层108的漏极(D)的上半导体层108的掺杂浓度。通过给邻近漏极的上半导体层108提供更高的掺杂浓度,可以降低调制器100内的串行和金属收缩电阻。
[0029] 在一实施例中,邻近波导结构110的源极的掺杂浓度约为每立方厘米(cm3)5×1017个原子。在一实施例中,波导结构110的厚度114在约100纳米(nm)至约220nm之间。在一实施例中,波导结构110的宽度116在约300nm至约1000nm之间。
[0030] 介电层118(例如,栅极氧化层)设置在上半导体层108的波导结构110上。在一实施例中,通过对波导结构110的硅进行氧化形成介电层118,由此形成较薄的二氧化硅层。在其它实施例中介电层118还可以包括硅石、氮化硅或另一种合适的材料。在一实施例中,介电层118的厚度120在约5nm至约10nm之间。在一实施例中,介电层118的宽度122等于波导结构110的宽度116。
[0031] 栅极区124设置在介电层118上。栅极区124、介电层118和上半导体层108的波导结构110共同形成调制器100的波导126的所有或一部分。利用波导126来通过调制器100以期望的方式传播光信号。调制器100的光学模式可由光学波导126横向限制,其可以通过蚀刻栅极区124并部分蚀刻上半导体层108来形成。此外,调制器100的光学模式可由波导结构110垂直限制,其可以具有高折射率。
[0032] 在一实施例中,栅极区124由导电材料形成。在一实施例中,栅极区124由这一材料形成,即,其在光通信波段为1.3微米(μm)至1.55μm之间是透明的。在一实施例中,栅极区124具有比硅(例如,约3.5)更低的折射率(例如,约1.9)。当栅极区124满足这些参数时,调制器100具有低插入损耗和高调制速度。
[0033] 在一实施例中,栅极区124由氧化锌(ZnO)、碳化硅(SiC)、氧化铟锡(ITO)或满足上述参数的另一种合适材料形成。例如,栅极区124可以由具有其中植入的n型杂质(例如,磷、砷、锑、铝、钼等)的氧化锌形成。在一实施例中,栅极区124的掺杂浓度为约5×1018个原子/cm3。
[0034] 在一实施例中,栅极区124直接设置在介电层118上,使得栅极区124的底表面抵靠介电层118的顶表面。在一实施例中,栅极区124直接垂直地设置在介电层118和波导结构110上。换言之,栅极区124、介电层118和波导结构110彼此垂直排列。在一实施例中,栅极区
124的侧壁128一般或基本上与下面的波导结构110的侧壁112共面。虽然栅极区124的侧壁
128在图1中描绘为垂直的,但是应当认识到,鉴于半导体制造工艺,侧壁128可以是略圆或倾斜的。在一实施例中,栅极区124的厚度130在约200nm至约1000nm之间。在一实施例中,栅极区124的宽度132等于介电层118的宽度122和波导结构110的宽度116。
[0035] 金属接触134设置在栅极区124上。所述金属接触134可以由,例如,铝、钨、铜或其它合适的导电材料形成。在一实施例中,金属接触134直接设置在栅极区124上,使得金属接触134的底表面抵接栅极区124的顶表面。在一实施例中,金属接触134直接垂直地设置在栅极区124、介电层118和波导结构110上。换言之,金属接触134、栅极区124、介电层118和波导结构110彼此垂直排列。这种构造可提供更高的调制效率(VπL)、更低的光插入损耗(VπLoss)和更高的调制带宽(1/(2πRC))。另外,光被垂直限制在上半导体层108的波导结构110中,并且由于栅极区124而不被金属接触134吸收。
[0036] 在一实施例中,金属接触134的侧壁136一般或基本上与下面的栅极区124的侧壁128共面。虽然金属接触134的侧壁136在图1中描绘为垂直的,但是应当认识到,鉴于半导体制造工艺,侧壁136可以是略圆或倾斜的。如图1所示,金属接触134可以与电压源138电性耦合。
[0037] 金属接触140设置在邻近调制器100的漏极的上半导体层108上。金属接触140可以由,例如,铝、钨、铜或其它合适的导电材料形成。如图1所示,金属接触140可以与地面142电性耦合。覆层材料144可形成在波导126、金属接触134和金属接触140的周围。这样,上半导体层108的波导结构110的侧壁112、栅极区124的侧壁128和金属接触134的侧壁136由覆层材料144所覆盖。在一实施例中,覆层材料144的折射率(例如,约1.45)比栅极区124(例如,约1.9)的要低。在一实施例中,覆层材料144为二氧化硅或另一种合适的覆层材料。
[0038] 通过具有比上半导体层108更低的折射率,在不引入过多光学损耗的情况下,栅极区124的顶部可以设置有金属接触134。垂直设置金属接触134可以减小串联电阻和寄生电容,从而使得调制器100具有更高的调制带宽。相比于硅,氧化锌可具有类似的有效质量,但折射率较低,与n-掺杂硅相比可能导致高电光效率和较低的插入损耗。
[0039] 如图1所示,金属接触134位于波导126的顶部,可以增加栅极区124中串联电阻路径的面积,从而可能导致栅极区124的串联电阻降低。另外,现有方式可使金属接触仅位于波导的一侧上。相反地,两个金属接触140与波导126平行,调制器100可减少波导126的串联电阻约一半。
[0040] 图2为硅和氧化锌的折射率与载流子密度的曲线图200。例如,随着载流子密度增大,图1中氧化锌栅极区124的折射率要比上半导体层108的硅在源极和漏极的折射率以及半导体衬底104中硅的折射率变化的多。对于氧化锌,折射率与载流子密度基于德鲁德(Drude)模型,其类似于埃亚勒·费根鲍姆(Eyal Feigenbaum)等人在美国化学学会-2010中题为《透明导电氧化物在可见光频率下的统一性折射率变化》(Unity-Order Index Change in Transparent Conducting Oxides at Visible Frequencies)的一文中描述的模型,该文章的全部内容结合在本申请中。对于硅,折射率与载流子密度基于索里夫(Soref)模型,其类似于理查德·A·索里夫(Richard A.Soref)等人在电气与电子工程师协会(IEEE)杂志1987年1月第QE-23卷量子力学中题为《硅的电光效应》(Electrooptical Effects in Silicon)的一文中描述的模型,该文章的全部内容结合在本申请中。
[0041] 图3为硅和氧化锌的损耗与载流子密度的曲线图300。对于氧化锌,损耗与载流子密度基于Xu(Guoyang Xu)等人在美国光学学会-2005中题为《使用透明导电氧化物作为电极的有机电光调制器》(Organic electro-optic modulator using transparent conducting oxides as electrodes)”的一文。Xu提供了20厘米-1(cm-1)的损耗与载流子密度,其中n-掺杂浓度在波长为1550nm时为3×1019个原子/cm3。如S·M·施(S.M.Sze)等人在威利出版社(Wiley)2007年的《半导体设备的物理》(Physics of Semiconductor Devices)第三版中所提供的,氧化锌的有效质量为0.27。对于硅,损耗与载流子密度仍基于索里夫模型。
[0042] 图4为图1的调制器100的光学模式的曲线图400。如图所示,经蚀刻的波导426(例如,类似于图1的波导126)可以横向限制光场,硅410(例如,类似于图1的上半导体层108的波导结构110)可以垂直限制光场。可以明显减少波导顶部的光,使得其不会被栅极的金属接触434(例如,图1的金属接触134)吸收。
[0043] 图5为沿图1的调制器100的垂直方向在波导中心处(例如,图1所示波导126)的载流子密度分布的曲线图500。所述曲线图500可以用于零伏(V)的施加电压。图6为沿图1的调制器100的垂直方向在波导中心处的载流子密度分布的另一曲线图600。所述曲线图600可以用于-2V的施加电压。如曲线图500,600集中所示,当施加电压时,载流子密度可明显增加。所施加的电压可以改变波导的有效折射率,从而可以改变波导的相位。
[0044] 图7为示出了图1的调制器100的调制效率与施加电压的曲线图700。调制效率可以限定为Vπ*L并以伏*毫米(mm)进行测量。图8为图1的调制器100的插入损耗与施加电压的曲线图800。插入损耗可限定为Vπ*Loss并以伏*分贝(dB)进行测量。计算出的3dB调制带宽在-1.5V时约为18千兆赫(GHz)。因此,图1的调制器100可以表现出高效率和低损耗。应理解,通过进一步优化尺寸和掺杂,调制器100可以提供更加改进的调制效率和带宽。对掺杂进行优化可以提供更高的速度,并且对与栅极氧化区相重叠的光学模式进行优化可以提供更高的效率。表1示出了调制器100在各种频率下的调制速度值。
[0045]
[0046]
[0047] 表1:调制速度值
[0048] 其中,pF代表微微法拉。
[0049] 图9为示出了根据实施例的形成图1的调制器100的方法的流程图。在块902中,在半导体层(例如,上半导体层108)中形成波导结构(例如,波导结构110)。在块904中,在半导体层的波导结构上形成介电层(例如,介电层118)。在块906中,在介电层上沉积栅极区材料(例如,氧化锌)。栅极区材料包括折射率比硅低的透明导电材料。在一实施例中,栅极区材料通过以下工艺中的一种进行沉积:金属有机化学气相沉积(MOCVD)、射频(RF)溅射或等离子体增强原子层沉积。在块908中,在栅极区材料上形成金属接触(例如,金属接触134)。
[0050] 尽管本公开已经提供了一些实施例,应理解,在不脱离本公开的精神或范围,公开的系统和方法可在许多其他特定的形式中体现。本实施例被看作是说明性的,而不是限制性的,目的不是要限制在本文给出的细节。例如,多种元件或组件可被组合或集成在另一系统中,或者可省略或不实施特定的特征。
[0051] 此外,在不脱离本公开的范围内,可将在各个实施例中描述并示出为离散的或独立的技术、系统、子系统及方法组合或与其它系统、模块、技术或方法集成。示出或讨论的彼此耦合或直接耦合或通信的其它项可通过不管是电、机械或其它的某个接口、设备或中间组件间接耦合或通信。本领域技术人员可以想到并且在不脱离本文公开的精神和范围的情况下,可作出变化、替换和改变的其它实例。