双离合混合动力汽车驱动系统构型转让专利

申请号 : CN201610571383.7

文献号 : CN106183779B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 马芳武佘烁吴量葛林鹤于海峰

申请人 : 吉林大学

摘要 :

本发明涉及一种双离合混合动力汽车驱动系统构型,该构型由发动机、前行星排、发电机、制动器、第一离合器、后行星排、驱动桥总成、电动机、第二离合器和储能装置构成;本发明将发动机与齿圈相连,行星架与电动机相连作为输出,输出转矩大;增加了两个离合器,可以实现电动机与前行星排行星架的分离和发电机对电动机的辅助驱动,增强了车辆的动力性,同时减小了电动机的功率需求;增加了制动器,使得在发动机启动时不会对后行星排行星架产生阻力矩,不会产生模式切换冲击;由于加了制动器,在发动机启动时,发电机的转速不会太高。

权利要求 :

1.一种双离合混合动力驱动系统构型,其特征在于:该构型包括发动机(1)、前行星排(2)、发电机(6)、制动器(7)、第一离合器(8)、后行星排(9)、驱动桥总成(14)、电动机(15)、第二离合器(16)和储能装置(17);所述前行星排(2)由前齿圈(3)、前行星架(4)和前太阳轮(5)构成;后行星排(9)由后齿圈(10)、后行星架(11)和后太阳轮(13)构成;其中所述前行星排(2)的前齿圈与发动机(1)的输出轴相连,前行星排(2)的前太阳轮(5)与发电机(6)的输出轴相连,前行星排(2)的前行星架(4)与制动器(7)和第一离合器(8)相连;所述后行星排(9)的后齿圈(10)固定在车辆底盘上,后行星排(9)的后太阳轮(13)与电动机(15)相连,后行星排(9)的后行星架(11)与第一离合器(8)相连,后行星排(9)的后行星架(11)的后端与驱动桥总成(14)相连;所述发电机(6)和电动机(15)均与第二离合器(16)相连,同时,发电机(6)和电动机(15)均通过电路与储能装置(17)相连,可从储能装置(17)吸收能量或向储能装置(17)补充能量;所述前行星排(2)的前行星架(4)和后行星排(9)的后行星架(11)均与第一离合器(8)相连,可实现两者的同步运转和独立运动。

2.根据权利要求1所述的一种双离合混合动力驱动系统构型,其特征在于:该系统构型能够实现二种发动机启动模式,三种车辆起动模式,四种车辆正常运行模式,并能够根据需求功率、车速和电池SOC决定车辆的工作模式。

说明书 :

双离合混合动力汽车驱动系统构型

技术领域

[0001] 本发明涉及一种双离合混合动力汽车驱动系统构型,属于汽车技术领域。

背景技术

[0002] 混合动力汽车相对于传统汽车具有很大的节能减排优势,其节能效果得到汽车界的广泛认可,关于混合动力系统的研究也一直在进行。从理论上讲,行星排混联混合动力系统的基本构型有6种,现在研究和应用的只有两种,其发动机分别与行星排的行星架和齿圈相连。其中,发动机与行星架相连的构型综合性能最好,最典型的就是丰田的THS系统,行星排的太阳轮、齿圈和行星架分别与发电机、电动机和发动机相连,由行星架输入从齿圈输出。由于丰田的专利限制,基于THS系统的变型有很多,大多是在此基础上加行星排、离合器和制动器,增加系统的自由度和灵活性,所以系统的基本特性并没有改变。发动机与齿圈相连的构型的转速与转矩特性与THS相似,典型的就是Timken构型,二者各有优缺点。两种构型相比,发动机与行星架相连动力从齿圈输出的构型中,发电机的转速相对较低,但输出的转矩也低。
[0003] 目前的混合动力驱动系统存在以下问题:纯电动模式下只有一个电机工作,导致电动机功率需求较大,在混合电动模式下,电动机功率利用不充分;电动机,发电机和发动机与行星排一直有机械连接,导致在纯电动模式下,发电机在高速空转,增加了系统的惯性和响应时间,同时约束了纯电动行驶的最高车速;在由纯电动模式转换到混合动力模式时,发动机的启动阻力矩会抵消一部分电动机的力矩,导致对电动机的瞬时转矩要求较高,而且输出转矩会产生波动,影响平顺性;在现有的混合动力系统控制中,功率分离系数控制在机械点之后,但离机械点比较近,此时发电机的转速一般并不会达到其最高转速,所以发电机的转速不再是系统设计的限制,可以考虑用发电机与发动机转速杠杆比更大的构型。总结出来就是,现有的混合动力系统构型未能充分利用发电机的功率,发电机和电动机未能与发动机充分解耦,发动机与齿圈相连的构型不会受到电机转速的限制,尤其是电机与发动机转速解耦之后。

发明内容

[0004] 本发明所要解决的技术问题是克服现有混合动力系统中存在不能充分地利用发电机的功率、电机的功率和质量偏大以及模式切换过程中产生冲击等问题,提出了一种双离合混合动力驱动系统构型。
[0005] 本发明采用如下技术方案实现:该构型包括发动机、前行星排、发电机、制动器、第一离合器、后行星排、驱动桥总成、电动机、第二离合器和储能装置;所述前行星排由前齿圈、前行星架和前太阳轮构成;后行星排由后齿圈、后行星架和后太阳轮构成;其中所述前行星排的前齿圈与发动机的输出轴相连,前行星排的前太阳轮与发电机的输出轴相连,前行星排的前行星架与制动器和第一离合器相连;所述后行星排的后齿圈固定在车辆底盘上,后行星排的后太阳轮与电动机相连,后行星排的后行星架与第一离合器相连,后行星排的后行星架的后端与驱动桥总成相连;所述发电机和电动机均与第二离合器相连,同时,发电机和电动机均通过电路与储能装置相连,可从储能装置吸收能量或向储能装置补充能量;所述前行星排的前行星架和后行星排的后行星架均与第一离合器相连,可实现两者的同步运转和独立运动。
[0006] 该系统构型能够实现二种发动机启动模式,三种车辆起动模式,四种车辆正常运行模式,并能够根据需求功率、车速和电池SOC决定车辆的工作模式。
[0007] 与现有技术相比本发明的优点是:
[0008] 1、本发明所述的混合动力系统构型将发动机与齿圈相连,行星架与电动机相连作为输出,输出转矩大;增加了两个离合器,可以实现电动机与前行星排行星架的分离和发电机对电动机的辅助驱动,增强了车辆的动力性,同时减小了电动机的功率需求;增加了制动器,使得在发动机启动时不会对后行星排行星架产生阻力矩,不会产生模式切换冲击;由于加了制动器,在发动机启动时,发电机的转速不会太高。
[0009] 2、本发明所述的混合动力系统可以实现多种模式,可以覆盖车辆行驶过程中的各种工况,综合考虑功率需求、车速和电池SOC,根据不同的工况和车辆状况,切换不同的工作模式,通过合理的设计与控制,车辆大部分时间应该工作在运行模式中的第四种模式,提高了整车的经济性,同时提供了其他几种工作模式,能够保护电池,增加车辆对环境的适应性。

附图说明

[0010] 图1是本发明双离合混合动力驱动系统构型结构示意图。
[0011] 图2是本发明双离合混合动力驱动系统各种运行模式切换框图。

具体实施方式

[0012] 由附图1所示:一种双离合混合动力驱动系统构型,该构型包括发动机1、前行星排2、发电机6、制动器7、第一离合器8、后行星排9、驱动桥总成14、电动机15、第二离合器16和储能装置17;所述前行星排2由前齿圈3、前行星架4和前太阳轮5构成;后行星排9由后齿圈
10、后行星架11和后太阳轮13构成;其中所述前行星排2的前齿圈与发动机1的输出轴通过内外花键相连,前行星排2的前太阳轮5与发电机6的输出轴通过内外花键相连,前行星排2的前行星架4与制动器7和第一离合器8相连;所述后行星排9的后齿圈10固定在车辆底盘(图中未标示)上,后行星排9的后太阳轮13与电动机15通过内外花键相连,后行星排9的后行星架11与第一离合器8相连,后行星排9的后行星架11的后端通过花键与驱动桥总成14的主减速器主动小齿轮相连;所述发电机6和电动机15均通过花键与第二离合器16相连,即分别与第二离合器16的两个摩擦盘相连,可实现两者的同步运转和独立运动,同时,发电机6和电动机15均通过电路与储能装置17相连,可从储能装置17吸收能量或向储能装置17补充能量;所述前行星排2的前行星架4和后行星排9的后行星架11均与第一离合器8相连,可实现两者的同步运转和独立运动。
[0013] 所述的储能装置17可以是蓄电池、超级电容或飞轮电池,能向发电机6和电动机15提供电能,也能吸收发电机6和电动机15发电产生的电能。
[0014] 所述的双离合混合动力驱动系统构型能够实现二种发动机启动模式,三种车辆起动模式,四种车辆正常运行模式,并能根据车辆需求功率(P_need)、车速(V)和SOC(电池核电状态,State Of Charge)确定车辆的工作模式。
[0015] 二种发动机启动模式分别为发动机启动模式A和B。
[0016] 采用发动机启动模式A时,制动器7结合,第一离合器8和第二离合器16分离,发电机6电动,通过前行星排2拖动发动机1使其启动;
[0017] 采用发动机启动模式B时,制动器7和第二离合器16分离,第一离合器8结合,前后行星排2、9的行星架4、11固连,初始时发电机6空转,然后逐渐对发电机6施加转矩,并控制其转速,即车辆拖动发动机1和发电机6,从而将发动机1启动。
[0018] 启动模式A相对于现有技术能避免发动机启动时施加给输出端负的拖矩,从而不会对驱动转矩产生冲击和波动;启动模式B可用于车辆减速、滑行和下坡等工况,利用车辆动能启动车辆。
[0019] 三种车辆起动模式分别为车辆起动模式I、II、III。
[0020] 车辆起动模式I是直接用电动机15通过后行星排9起动车辆,即制动器7、第一离合器8和第二离合器16均处于分离状态;起动模式I用于低速起动车辆,功率需求小,如城市交通情况下跟车行驶;
[0021] 车辆起动模式II是将发电机6和电动机15串联之后通过后行星排9起动车辆,即制动器7和第一离合器8分离,第二离合器16结合;起动模式II用于快速起动车辆,功率需求大,如从静止状态开始进行急加速和坡道起动车辆;
[0022] 车辆起动模式III是用发动机1经前行星排2调速后通过后行星排9起动车辆,即制动器7和第二离合器16分离,第一离合器8结合。起动模式III是在电池SOC较低,采用发动机驱动车辆,同时通过发电机发电给电池充电,发动机的转速与车速可以通过发电机6解耦,此模式为必备模式。
[0023] 四种车辆正常运行模式分别为正常运行模式一、二、三和四。
[0024] 运行模式一、二和三分别对应于车辆起动模式I、II和III,制动器7和离合器的连接情况相同,不同的是车辆起动时和正常运行时上述三种模式中发动机、发电机和电动机的协调控制不同;
[0025] 运行模式四是发动机1、发电机6和电动机15同时工作,即制动器7和第二离合器16分离,第一离合器8结合,此时整个系统工作在混联功率分流模式下,发电机6调节输入输出的速比,电动机15补偿输出转矩,此模式为经济模式。上述四种模式,运行模式四最为经济,实际工作过程中应控制系统大多数(除了起动,停车等特殊情况)时间工作在此模式,另外三种模式能够使车辆适应所有的行驶工况,所以也是必需的。
[0026] 如图2所示(双离合混合动力驱动系统各种运行模式切换框图),SOC表示电池当前的电量,SOC_low1是电池能向电动机15供电的下限阈值,SOC_low2是电池能向双电机(发电机6和电动机15)供电的下限阈值,SOC_low3是为保证电池电量的波动在电池放电的安全范围内而设定的下限阈值,P_need是车辆的实时需求功率,P_m是电动机15的额定功率,V是车速,V_low是纯电动行驶的最高车速,即电池电量充足时发动机启动的最低车速。
[0027] 如图2所示,驾驶员发出车辆起动命令后,车辆检查电池SOC:当电池SOCSOC_low1时,若SOC>SOC_low2且P_need>P_m,即需求功率大于电动机15的额定功率且电池电量可供双电机同时工作,则采用车辆起动模式II,否则,采用车辆起动模式I工作;在完成起动之后,依旧按SOC和功率需求分为两种运行模式,在需求功率大于电动机功率时,采用双电机工作的运行模式二,否则采用运行模式一;在运行过程中,当车速未超过V_low且电池SOC还能给电机供电时,返回继续检查需求功率和SOC,并在运行模式一和二之间切换;直到V>V_low或SOCV_low、SOC>SOC_low3(即车速高于发动机启动车速且系统能够平衡功率分流模式时电池SOC的波动)时,采用运行模式四,否则(即不能平衡功率分流电池SOC的波动时),采用运行模式三;当工作在运行模式四时,若VV_low、SOC>SOC_low3(车速高于发动机启动车速且系统能够平衡功率分流模式时电池SOC的波动)时,切换至运行模式四,当V