陶瓷部件与金属部件的接合体及其制法转让专利

申请号 : CN201580023187.X

文献号 : CN106255674A

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 南智之川尻哲也

申请人 : 日本碍子株式会社

摘要 :

本发明的接合体(10)是在设置于板状的氧化铝或氮化铝的陶瓷部件(12)上的凹部(12a)上,介由接合层(16)接合了具有Ni被膜、Au被膜或Ni-Au被膜(基底为Ni)的Mo或Ti制的端子(14)的接合体。接合层(16)含有Au、Sn、Ag、Cu以及Ti,并与凹部(12a)的侧面的至少一部分(此处是全部)以及底面相接。在该接合层(16)中的与陶瓷部件(12)的接合界面中富含Ti。此外,将接合体截面积的总和在接合层(16)的截面积中所占的比例(气孔率)为0.1~15%。(10)在接合体(10)的厚度方向上切断时,气孔的

权利要求 :

1.一种接合体,其是在设置于氧化铝或氮化铝的陶瓷部件上的凹部上,介由接合层而接合了具有Ni被膜、Au被膜或Ni-Au被膜的Mo或Ti制的金属部件的接合体,其中,所述Ni-Au被膜的基底为Ni,所述接合层含有Au、Sn、Ag、Cu以及Ti,并与所述凹部的侧面的至少一部分以及底面相接,在所述接合层中的与所述陶瓷部件的接合界面中富含Ti,

将所述接合体在所述接合体的厚度方向上切断时,所述气孔的截面积的总和在所述接合层的截面积中所占的比例即气孔率为0.1~15%。

2.根据权利要求1所述的接合体,其中,Ti聚集于所述接合层的内部中存在的气孔的周围。

3.一种接合体的制法,其包含如下工序:

(a)准备设置有凹部的氧化铝或氮化铝的陶瓷部件的工序,

(b)在所述凹部的侧面的至少一部分以及底面涂布Ag-Cu-Ti糊剂,在真空气氛下加热到800℃~900℃,从而在所述凹部的侧面的至少一部分以及底面形成金属化层的工序,(c)在形成了所述金属化层的所述凹部的底面设置Au-Sn片材,在其上设置具有Ni被膜、Au被膜或Ni-Au被膜的Mo或Ti制的金属部件,其中,所述Ni-Au被膜的基底为Ni,在真空气氛下加热到290~420℃,从而在所述金属部件与所述陶瓷部件之间形成使所述金属化层与所述Au-Sn片材浑然一体而成的接合层的工序。

4.根据权利要求3所述的接合体的制法,其中,在所述工序(b)中,将所述金属化层的厚度设为5~75μm。

5.根据权利要求3或4所述的接合体的制法,其中,在所述工序(b)中,所述Ag-Cu-Ti糊剂含有1.50~2.10wt%的Ti。

6.根据权利要求3~5中任一项所述的接合体的制法,其中,所述接合体是权利要求1或

2所述的接合体。

说明书 :

陶瓷部件与金属部件的接合体及其制法

技术领域

[0001] 本发明涉及陶瓷部件与金属部件的接合体及其制法。

背景技术

[0002] 以往,作为陶瓷部件与金属部件的接合体,已知介由接合部而将金属部件的端部与陶瓷部件接合的接合体(专利文献1)。在该接合体中,接合部具备:形成在陶瓷部件上的金属化层、介于金属化层与金属部件的端部之间的钎焊层。这样的接合体通过以下那样地操作而制造。即,首先,在为AlN烧结体制且圆盘状的陶瓷部件的接合面上,设置包含Cu-Al-Si-Ti的环状的第1焊料。接着,将该第1焊料在1050℃、真空气氛下加热5分钟,形成金属化层。接着,在金属化层上设置包含Ag-Cu的环状的第2焊料,在其上设置筒状的金属部件的端面,在金属部件上设置压铁。将其在800℃、真空气氛下加热5分钟,形成钎焊层。通过这样操作而获得的接合体几乎没有氦气泄漏量,即使在热循环后,也没有裂纹并且几乎没有氦气泄漏量。
[0003] 现有技术文献
[0004] 专利文献
[0005] 专利文献1:日本特开2000-219578号公报

发明内容

[0006] 发明想要解决的课题
[0007] 但是,这样的接合体有时会无法获得充分的强度。
[0008] 本发明是为了解决这样的课题而完成的,其主要目的在于充分提高将陶瓷部件与金属部件接合而成的接合体的强度。
[0009] 用于解决问题的方案
[0010] 本发明的接合体是在设置于氧化铝或氮化铝的陶瓷部件上的凹部上,介由接合层而接合了具有Ni被膜、Au被膜或Ni-Au被膜(基底为Ni)的Mo或Ti制的金属构件的接合体,其中,
[0011] 前述接合层含有Au、Sn、Ag、Cu以及Ti,并与前述凹部的侧面的至少一部分以及底面相接,
[0012] 在前述接合层中的与前述陶瓷部件的接合界面中富含Ti,
[0013] 将前述接合体在前述接合体的厚度方向上切断时,前述气孔的截面积的总和在前述接合层的截面积中所占的比例(气孔率)为0.1~15%。
[0014] 根据该接合体,将陶瓷部件与金属部件接合而成的接合体的强度变得充分高。其理由可如以下那样推测。首先可认为,对于氧化铝或氮化铝的陶瓷部件与具有Ni被膜、Au被膜或Ni-Au被膜(基底为Ni)的Mo或Ti制的金属部件的接合,含有Au、Sn、Ag、Cu以及Ti的接合层是适合的。此外可认为,由于在接合层中的与陶瓷部件的接合界面中富含Ti,因而在该接合界面中Ti与陶瓷反应而发挥连接接合层的作用。进一步,由于气孔率为0.1~15%,因而无论在初始还是在热循环后,强度都高,而且可以防止裂纹产生。予以说明的是,如果气孔率低于0.1%,则会产生裂纹或者热循环后的强度与初始相比大幅降低,因而不优选。此外,如果气孔率超过15%,则强度极端变低因而不优选。
[0015] 本发明的接合体中,Ti优选聚集于前述接合层的内部中存在的气孔的周围。对于这样的Ti的聚集,可从将接合体在接合体的厚度方向上切断时的切断面的Ti分布图像予以确认。
[0016] 本发明的接合体的制法包含如下工序:
[0017] (a)准备设置有凹部的氧化铝或氮化铝的陶瓷部件的工序,
[0018] (b)在前述凹部的侧面的至少一部分以及底面涂布Ag-Cu-Ti糊剂,在真空气氛下加热到800℃~900℃,从而在前述凹部的侧面的至少一部分以及底面形成金属化层的工序,
[0019] (c)在形成了前述金属化层的前述凹部的底面设置Au-Sn片材,在其上设置具有Ni被膜、Au被膜或Ni-Au被膜(基底为Ni)的Mo或Ti制的金属部件,在真空气氛下加热到290~420℃,从而在前述金属部件与前述陶瓷部件之间形成使前述金属化层与前述Au-Sn片材浑然一体而成的接合层的工序。
[0020] 根据该接合体的制法,所获得的接合体的强度变得充分大。此外,该制法适于制造上述的接合体。
[0021] 本发明的接合体的制法中,在前述工序(b)中,优选将前述金属化层的厚度设为5~75μm。如果这样设定,则可使接合体的强度变得更大。此外,可防止在陶瓷部件中产生裂纹。
[0022] 本发明的接合体的制法中,在前述工序(b)中,前述Ag-Cu-Ti糊剂优选含有1.50~2.10wt%的Ti。如果Ti的含有率低于下限值,则所获得的接合体的强度与初始相比在热循环后大幅降低,或者在热循环后产生裂纹。另外,如果Ti的含有率超过上限值,则所获得的接合体的强度无论在初始还是在热循环后都变小(不产生裂纹)。

附图说明

[0023] 图1:接合体10的制造工序图。
[0024] 图2:将代表例的接合体在接合体的厚度方向上切断时的截面照片。

具体实施方式

[0025] 以下,一边参照附图一边说明本发明的优选的一个实施方式。图1为本实施方式的接合体10的制造工序图。
[0026] 如图1(d)所示那样,本实施方式的接合体10是在设置于板状的氧化铝或氮化铝的陶瓷部件12上的凹部12a上,介由接合层16接合了具有Ni被膜、Au被膜或Ni-Au被膜(基底为Ni)的Mo或Ti制的端子14的接合体。接合层16含有Au、Sn、Ag、Cu以及Ti,并与凹部12a的侧面的至少一部分(此处是全部)以及底面相接。在该接合层16中的与陶瓷部件12的接合界面中存在富Ti。此外,将接合体10在接合体10的厚度方向上切断时,气孔的截面积的总和在接合层16的截面积中所占的比例(气孔率)为0.1~15%。
[0027] 予以说明的是,气孔可作为将接合层16的截面进行了二值化处理时的暗部而求出。二值化处理可以例如通过如下方法进行,针对接合层16的截面整体的像素制作亮度的直方图,将直方图中出现的2个峰之间(谷)的部分的亮度值设定为阈值,将亮度比阈值小的像素设为0,将亮度在阈值以上的像素设为255。在后述的实施例中,将亮度值的阈值设为80而进行二值化处理,算出了气孔率。
[0028] 这样的接合体10例如可如以下那样操作而制造。首先,准备具有凹部12a的陶瓷部件12(参照图1(a))。接着,在凹部12a的侧面的至少一部分以及底面涂布Ag-Cu-Ti糊剂20,涂布完毕后进行干燥,通过在真空气氛下加热到800~900℃而进行烘烤(参照图1(b))。其结果,在凹部12a的侧面的至少一部分以及底面形成金属化层22。如果烘烤时的温度低于800℃,则糊剂材料的反应性变差,因而不优选,如果超过900℃,则反应产物增加,由热膨胀差的增加、杨氏模量的增加导致残留应力变大,成为裂纹产生、强度降低的原因,因而不优选。接着,在形成有金属化层22的凹部12a的底面设置Au-Sn片材24(参照图1(c))。然后,在Au-Sn片材24上装载端子14,在端子14上装载未图示的压铁,在该状态下,在真空气氛下加热到290~420℃。由此,在端子14与陶瓷部件12之间形成使金属化层22与Au-Sn片材24浑然一体而成的接合层16。其结果,获得接合体10(参照图1(d))。如果加热时的温度低于290℃,则焊料(Au-Sn片材)的反应性变差,因而不优选,如果超过420℃,则反应产物增加,由热膨胀差的增加、杨氏模量的增加导致残留应力变大,成为裂纹产生、强度降低的原因,因而不优选。
[0029] 根据以上进行了说明的接合体10,将陶瓷部件与金属部件接合而成的接合体的强度变得充分高。其理由可如以下那样推测。首先可认为,对于陶瓷部件12与端子14的接合,含有Au、Sn、Ag、Cu以及Ti的接合层16是适合的。此外可认为,由于在接合层16中的与陶瓷部件12的接合界面中存在富Ti,因而在该接合界面中Ti与陶瓷反应而发挥将接合层16牢固地连接于陶瓷部件12的作用。进一步,由于气孔率为0.1~15%,因而无论在初始还是在热循环后,强度都高,而且还可防止产生裂纹。
[0030] 予以说明的是,不言而喻,本发明不受上述实施方式的任何限定,只要属于本发明的技术范围就可以以各种方式实施。
[0031] 例如,在上述的实施方式中,也可以使用在内部埋设有电极的陶瓷部件作为陶瓷部件12,事先使与该电极连接的导电部件露出凹部12a的底面,并介由接合层16将端子14接合于该导电部件。在该情况下,端子14用来向电极进行供电。予以说明的是,作为电极,可举出例如加热器电极(电阻发热体)、静电卡盘用电极、等离子体产生用电极等。
[0032] 实施例
[0033] [代表例]
[0034] 准备设置有直径6mm、深度0.5mm的凹部(端子孔)的氧化铝陶瓷部件。利用掩模胶带将该氧化铝陶瓷部件的凹部的周围进行掩蔽,利用分配器装置在该凹部的侧面以及底面涂布Ag-Cu-Ti糊剂。涂布完毕后,自然放置10分钟,其后,利用无尘烘箱在120℃(物温)干燥1小时。将掩模胶带剥离,并且以烧成温度850℃、烧成时间10分钟、真空度5×10-5Torr以下进行了烘烤。由此,在凹部的侧面以及底面形成了Ag-Cu-Ti的金属化层。金属化层的膜厚为
30μm。予以说明的是,将Ag-Cu-Ti糊剂的Ti含有率设为1.7wt%。
[0035] 接着,用丙酮擦拭凹部,由N2进行鼓泡。其后,在凹部的底面设置直径5.5mm、厚度0.15mm的Au-Sn片材。在该片材上设置具有Ni被膜的Mo制的端子(直径5.8mm、厚度6mm),在装载压铁之后进行了水平调平以及位置校准。其后,以烧成温度350℃、烧成时间10分钟,真空度5×10-5Torr以下进行了处理。由此,获得了在端子与氧化铝陶瓷部件之间形成使金属化层与Au-Sn片材浑然一体而成的接合层的接合体。接合层与凹部的侧面以及底面相接。
[0036] 用EPMA对接合层的构成元素进行解析,结果包含有Au、Sn、Ag、Cu以及Ti。此外,在接合层中的与氧化铝陶瓷部件的接合界面中富含Ti。具体而言,对将接合体在接合体的厚度方向上切断了的截面的Ti分布图像进行观察,结果在氧化铝陶瓷部件与接合层的界面存在有Ti层,在气孔周围观察到Ti的聚集。在氧化铝陶瓷部件与接合层的界面存在Ti层是由于Ti与氧化铝发生了反应,可认为该Ti层发挥将氧化铝陶瓷部件与接合层进行连接的作用。进一步,在接合层中分布有小的气孔,气孔率为5.9%。对于气孔率,将对接合层的截面进行了二值化处理时的暗部作为气孔的截面,气孔率设为气孔的截面积的总和相对于接合层的截面积的比例。将接合层的截面照片示于图2。使用HALCON11.0进行二值化处理(HALCON是MVTec Software GmbH的注册商标)。
[0037] [关于金属化层的膜厚]
[0038] 在上述的代表例中,按照在凹部形成金属化层时的膜厚成为表1所示的值的方式制作接合体。测定制成的接合体的断裂强度,并且检查了在刚刚接合之后的接合体的氧化铝陶瓷部件中是否观察到裂纹。其结果示于表1。予以说明的是,断裂强度与拉伸断裂负荷是同义的,按照使氧化铝陶瓷部件成为下方的方式将接合体牢固地固定在支撑台上,以使接合体在上下方向上不移动,将拉伸棒的前端拧入从端子的上表面垂直向下地设置的螺纹孔中,对该拉伸棒施加垂直向上的负荷,将接合层断裂时的负荷设为断裂强度。
[0039] 在表1中,裂纹的指标具有如下含义,○:没有观察到裂纹,△:虽然观察到裂纹,但是程度轻微且不对接合特性造成影响,×:观察到裂纹,并带来致命性影响。
[0040] 表1
[0041]金属化层的膜厚(μm) 断裂强度(kgf) 裂纹
0 0 -
2 47 ○
3 91 ○
5 142 ○
10 158 ○
30 172 ○
50 161 ○
75 142 ○
80 98 ○
[0042] 由表1可知,形成于凹部的金属化层的膜厚为2~80μm时,断裂强度高达50kgf以上,也没有观察到裂纹。特别是,其膜厚为5~75μm时,断裂强度更高(140kgf以上)。予以说明的是,在上述的代表例中,使用Ag-Cu-Ti片材来替代涂布Ag-Cu-Ti糊剂而仅在底面形成金属化层时,即使金属化层的膜厚为25μm也观察到了裂纹。根据以上内容可知,金属化层不仅仅形成于凹部的底面,还需要形成于侧面的至少一部分。此外可知,在金属化层的膜厚为2~80μm,优选为5~75μm时,断裂强度高并且也没有观察到裂纹。如果金属化膜厚低于2μm,则形成于氧化铝陶瓷部件的金属化层变得不充分并且强度降低,相反地,如果金属化膜厚超过80μm,则产生裂纹并且强度降低。予以说明的是,在金属化层的膜厚为2~80μm的情况下,在接合层与氧化铝陶瓷部件的接合层中富含Ti。
[0043] [关于气孔率]
[0044] 在上述的代表例中,按照气孔率成为表1所示的0~35%的方式调整Ag-Cu-Ti糊剂中的Ti含有率而制作接合体。测定了刚制成时的接合体的断裂强度与裂纹的有无。此外,还测定了热循环试验后的接合体的断裂强度与裂纹的有无。对于热循环试验,将从室温加热至200℃之后冷却至室温的操作作为1个循环,将其反复进行1000个循环。将其结果示于表2。
[0045] 予以说明的是,将使用了Ti含有率0%的糊剂的例子进行了1次,将使用了Ti含有率0.5%、1.5%的糊剂的例子各进行了2次,将使用了这些含有率以外的糊剂的例子各进行了3次。
[0046] 在表2中,裂纹的指标具有如下含义,○:没有观察到裂纹,△:虽然观察到裂纹,但是程度轻微且不对接合特性造成影响,×:观察到裂纹,并带来致命性影响。
[0047] 表2
[0048]
[0049] ※1该糊剂包含61.50~65.50wt%的Ag、22.70~26.70wt%的Cu。
[0050] 由表2可知,具有气孔率为0.1~15%的接合层的接合体(主要使用Ti含有率1.50~2.10wt%的Ag-Cu-Ti糊剂而制造的接合体),在初始以及热循环后的断裂强度均高达150kgf以上,在初始以及热循环后均未观察到裂纹。此外,在具有气孔率为0.1~15%的接合层的接合体中,与代表例同样地,在接合层与氧化铝陶瓷部件的接合界面中富含Ti。进一步确认到在气孔率为0.1~15%的接合层中,与代表例同样地,包含有Au、Sn、Ag、Cu以及Ti。
[0051] 此外,在上述的代表例中,使用氮化铝陶瓷部件来替代氧化铝陶瓷部件,使用具有Au被膜的Mo端子来替代具有Ni被膜的Mo端子,将Ag-Cu-Ti糊剂的Ti含有率设为1.8wt%,除此以外,与上述代表例同样地操作,制作接合体。予以说明的是,金属化层的厚度为30μm。该接合体中,也在端子与陶瓷部件之间形成有使金属化层与Au-Sn片材浑然一体而成的接合层。此外,在该接合层中的与陶瓷部件的接合界面中富含Ti。气孔率为3.1%。关于该接合体,刚制成时的断裂强度与热循环试验后的断裂强度分别为167kgf、172kgf,具有充分的强度。此外,在刚制成时与热循环试验后均未观察到裂纹。作为获得了这样的结果的理由,可列举出:氮化铝陶瓷陶瓷也与氧化铝陶瓷同样地,在接合层与陶瓷部件的接合界面中富含Ti,此外,关于Au被膜,与Ni被膜同样地,与接合层的润湿性良好。
[0052] 此外,在上述代表例中,使用具有Ni被膜的Ti端子来替代具有Ni被膜的Mo端子,将Ag-Cu-Ti糊剂的Ti含有率设为1.8wt%,除此以外,与上述的代表例同样地操作,制作接合体。予以说明的是,金属化层的厚度为30μm。该接合体中,也在端子与陶瓷部件之间形成有使金属化层与Au-Sn片材浑然一体而成的接合层。此外,在该接合层中的与陶瓷部件的接合界面中富含Ti。气孔率为4.1%。关于该接合体,刚制成时的断裂强度与热循环试验后的断裂强度分别为165kgf、177kgf,具有充分的强度。另外,在刚制成时与热循环试验后均未观察到裂纹。
[0053] 本申请将在2014年4月30日申请的日本国专利申请第2014-93587号作为优先权主张的基础,通过引用将其内容的全部包含于本说明书。
[0054] 予以说明的是,不言而喻,上述实施例对本发明没有任何限定。
[0055] 产业上的可利用性
[0056] 本发明可应用于例如陶瓷加热器、静电卡盘、基座等半导体制造装置用部件。
[0057] 符号说明
[0058] 10接合体、12陶瓷部件、12a凹部、14端子、16接合层、20Ag-Cu-Ti糊剂、22金属化层、24Au-Sn片材。