一种钇掺杂铕配合物稀土磁性材料及其制备方法转让专利

申请号 : CN201610642037.3

文献号 : CN106279010B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 邓冬生吉保明

申请人 : 洛阳师范学院

摘要 :

本发明涉及一种钇掺杂铕配合物稀土磁性材料及其制备方法,其结构简式为:{[Eu1.1Y0.9(bptcH)(H2O)2]·H2O}n,其中bptcH为2,2’‑二吡啶基‑3,3’,6,6’‑四羧酸阴离子配体;基本结构是由双核的稀土结构单元构成一维的链状结构;该钇掺杂铕配合物与未掺杂用纯苦味酸铕所制得的配合物材料相比,用钇取代铕,所制得化合物与未掺杂的相比,不仅结构保持不变,且材料的磁性保持一致;本发明提供以较为廉价的钇金属掺杂铕配合物材料的制备方法,具有重现好、合成简单、操作方便和产率高等特点。

权利要求 :

1.一种钇掺杂铕配合物稀土磁性材料,其特征在于:其结构简式为:{[Eu1.1Y0.9(bptcH)2(H2O)4]·H2O}n,其中bptcH为2,2’-二吡啶基-3,3’,6,6’-四羧酸阴离子配体;基本结构是由双核的稀土结构单元构成一维的链状结构;所述磁性材料属于三斜晶系,空间群为Pī,晶胞参数为a = 9.2201(11)  Ǻ,b = 9.2462(11)  Ǻ,c = 9.4275(12)  Ǻ,α = 86.2180(10)°,β = 87.5050(10)°,γ = 85.4100(10)°,v = 798.79(17) Ǻ3。

2.一种如权利要求1所述的钇掺杂铕配合物稀土磁性材料的制备方法,其特征在于:将

2,2’-二吡啶基-3,3’,6,6’-四羧酸配体、苦味酸铕和苦味酸钇加入水中混合均匀后密封在反应釜内,在反应釜中加热到140 150°C,保温72小时后,自然冷却至室温,得到黄色晶体,~经过洗涤和干燥,即得钇掺杂铕稀土材料。

3.如权利要求2所述的钇掺杂铕配合物稀土磁性材料的制备方法,其特征在于:所述的苦味酸铕、苦味酸钇和2,2’-二吡啶基-3,3’,6,6’-四羧酸配体加入量分别为25mL水中加入

0.05 0.15mmol苦味酸铕、0.05 0.15mmol苦味酸钇 、0.1 0.3mmol 2,2’-二吡啶基-3,3’,~ ~ ~

6,6’-四羧酸。

4.如权利要求2或3所述的钇掺杂铕配合物稀土磁性材料的制备方法,其特征在于:所述2,2’-二吡啶基-3,3’,6,6’-四羧酸配体、苦味酸铕和苦味酸钇的摩尔比为1:0.5:0.5。

5.如权利要求2所述的钇掺杂铕配合物稀土磁性材料的制备方法,其特征在于:所述的苦味酸铕为11水合苦味酸铕,所述的苦味酸钇为11水合苦味酸钇。

6.如权利要求2所述的钇掺杂铕配合物稀土磁性材料的制备方法,其特征在于:所述的反应釜为内衬聚四氟乙烯的不锈钢高压。

说明书 :

一种钇掺杂铕配合物稀土磁性材料及其制备方法

技术领域

[0001] 本发明涉及稀土磁性材料领域,具体的说是一种钇掺杂铕配合物稀土磁性材料及其制备方法。

背景技术

[0002] 稀土元素因其具有未充满电子的4f轨道而能够形成较大的自旋基态值和磁各向异性,使得稀土离子拥有较大的磁矩。当稀土离子与有机配体配位后能够使得磁各向异性的稀土离子如Dy3+,Eu3+,Tb3+,Er3+等在一定的温度下展现出较好的磁性。
[0003] 在已经报道的稀土配合物材料中,一些能够实现和观察到磁现象的稀土材料不仅能提供新的分子磁体研究模型而且能用于新的分子磁性材料。
[0004] 稀土分子磁性材料是一类应用稀土金属离子与有机配体通过配位反应或控制组装而形成的稀土磁性配合物。具有高各向异性能垒和高阻塞温度的稀土分子磁性材料是近年来研究热点领域。一般而言,由Dy3+,Eu3+,Tb3+,Er3+等稀土离子制备的配合物具有上述特点。
[0005] 金属钇离子形成的化合物具有高熔点、热稳定性好等特点。同时,由于钇独特核外电子排布,在与其它金属离子所制得混合金属材料中具有较大的固溶度,能提高混合金属材料的室温和高温力学性能,在开发新型材料中具有独特的作用。
[0006] 金属钇离子与稀土金属离子具有相似的离子半径,能够实现在不改变材料的结构的基础上,可部分取代稀土金属离子,不仅能降低材料的价格,而且也能提高材料的磁性能和发光性能。

发明内容

[0007] 本发明是目的是提供一种钇掺杂铕配合物稀土磁性材料及其制备方法。
[0008] 为解决上述技术问题,本发明采用的技术方案为:
[0009] 一种钇掺杂铕配合物稀土磁性材料,其结构简式为:{[Eu1.1Y0.9(bptcH)(H2O)2]·H2O}n,其中bptcH为2,2’-二吡啶基-3,3’,6,6’-四羧酸阴离子配体;基本结构是由双核的稀土结构单元构成一维的链状结构。
[0010] 所述磁性材料属于三斜晶系,空间群为Pī,晶胞参数为a = 9.2201(11)  Ǻ,b = 9.2462(11)  Ǻ,c = 9.4275(12)  Ǻ,α = 86.2180(10)°,β = 87.5050(10)°,γ = 
85.4100(10)°,v = 798.79(17) Ǻ3。
[0011] 一种如上所述的钇掺杂铕配合物稀土磁性材料的制备方法,将2,2’-二吡啶基-3,3’,6,6’-四羧酸配体、苦味酸铕和苦味酸钇加入水中混合均匀后密封在反应釜内,在反应釜中加热到140 150℃,保温72小时后,自然冷却至室温,得到黄色晶体,经过洗涤和干燥,~
即得钇掺杂铕稀土材料。
[0012] 所述的苦味酸铕、苦味酸钇和2,2’-二吡啶基-3,3’,6,6’-四羧酸配体加入量分别为25mL水中加入0.05 0.15mmol苦味酸铕、0.05 0.15mmol苦味酸钇 、0.1 0.3mmol 2,2’-~ ~ ~二吡啶基-3,3’,6,6’-四羧酸。
[0013] 所述2,2’-二吡啶基-3,3’,6,6’-四羧酸配体、苦味酸铕和苦味酸钇的摩尔比为1:0.5:0.5。
[0014] 所述的苦味酸铕为11水合苦味酸铕,所述的苦味酸钇为11水合苦味酸钇。
[0015] 所述的反应釜为内衬聚四氟乙烯的不锈钢高压。
[0016] 本发明的有益效果:
[0017] 本发明提供的钇掺杂铕配合物稀土磁性材料,该钇掺杂铕配合物与未掺杂用纯苦味酸铕所制得的配合物材料相比,用钇取代铕,所制得化合物与未掺杂的相比,不仅结构保持不变,且材料的磁性保持一致。磁性研究表明,在室温下,钇金属掺杂铕的配合物的χmT值为1.58 cm3 K mol-1,而纯苦味酸铕与bptcH4配体制备的配合物的χmT值为1.35 cm3 K mol-1;本发明提供以较为廉价的钇金属掺杂铕配合物材料的制备方法,具有重现好、合成简单、操作方便和产率高等特点。

附图说明

[0018] 图1为实例1制备的钇金属掺杂铕配合物配位图;
[0019] 图2为实例1制备的钇金属掺杂铕配合物的一维链状结构;
[0020] 图3为实例1制备的钇金属掺杂铕配合物的磁性拟合图。

具体实施方式

[0021] 下面结合具体实施方式对本发明做进一步的阐述。
[0022] 一种钇掺杂铕配合物材料,其中含有2,2’-二吡啶基-3,3’,6,6’-四羧酸配体,以及Eu3+和Y3+两种金属离子。其结构简式为:{[Eu1.1Y0.9(bptcH)(H2O)2]·H2O}n。
[0023] 所述化合物的基本结构是由Eu3+和Y3+形成双核结构单元,再由双核结构单元形成一维的链状结构。不对称结构单元中,主要包含有0.55个Eu3+离子、0.45个Y3+离子、1个bptcH3-阴离子、2个配位水分子和1个结晶水分子。
[0024] 2 ,2’-二吡啶基-3,3’,6,6’-四羧酸配体(bptcH4)结构式为:
[0025]
[0026] 所述钇掺杂铕配合物材料的制备方法:在水热条件下,将苦味酸铕、苦味酸钇和2,2’-二吡啶基-3,3’,6,6’-四羧酸配体加入水中混合均匀后密封在一个内衬聚四氟乙烯的不锈钢高压反应釜,在高压反应釜中加热到140 150℃,保温72小时后,自然冷却至室温,得~
到黄色晶体,再经过洗涤和干燥,得到结构式为{[Eu3+1.1Y0.9(bptcH)(H2O)2]·H2O}n的钇掺杂铕配合物;所述的苦味酸铕、苦味酸钇和2,2’-二吡啶基-3,3’,6,6’-四羧酸配体加入量分别为25mL水中加入0.05 0.15mmol苦味酸铕、0.05 0.15mmol苦味酸钇和0.1 0.3mmol 2,~ ~ ~
2’-二吡啶基-3,3’,6,6’-四羧酸;所述的苦味酸铕为11水合苦味酸铕,所述的苦味酸钇为
11水合苦味酸钇。
[0027] 实施例1
[0028] 将0.05 mmol苦味酸铕(51.7毫克)、0.05 mmol苦味酸钇(48.6毫克)和0.1 mmol 2,2’-二吡啶基-3,3’,6,6’-四羧酸配体(33.2毫克)加入25 mL水中,混合均匀后密封在一个内衬聚四氟乙烯的不锈钢高压反应釜内,在高压反应釜中加热到140 150℃,保温72小时~
冷却至室温,得到块状黄色晶体,先经过少量DMF洗涤,再经过大量水洗涤和干燥,得到结构式为{[Eu3+1.1Y0.9(bptcH)(H2O)2]·H2O}n的钇掺杂铕配合物,产率为90%。
[0029] 钇掺杂铕配合物表征其过程如下:
[0030] (1)钇掺杂铕配合物的单晶结构测定
[0031] 选取质量较好和合适大小的晶体粘于一根玻璃丝上,置于Bruker SMART ApexII单晶衍射仪上进行单晶结构测定:23℃下,采用MoKa(λ= 0.71073 Å)射线作为光源,石墨作为单色器,检测面板为Bruker Smart CCD,用ω扫描方式对晶胞进行扫描测定并收集衍射强度数据。首先采用BrukerAPEXII 程序对采集好的数据进行晶胞精修、数据的吸收校准以及还原;然后通过 SHELXTL 软件中的 XS 程序对还原后的数据采用直接法解析结构,获得所有非氢原子的初始相位角,各向异性参数的精修则通过SHELXL-97 程序运行,使用全矩阵最小二乘法,直至数据收敛,最终对非氢原子坐标的进行确定。芳香环上与碳原子相连的氢均通过理论计算法加入。水分子上的氢原子通过差值Fourier合成法得到并将其固定在氧原子上进行精修。详细的晶体测试参数见表一,重要的选择性键长和键角见表二。晶体的结构图见图1,图2。
[0032] 表一 钇掺杂铕配合物的晶体学参数
[0033]
[0034] 表二 钇掺杂铕配合物的选择性键长和键角
[0035]
[0036] 对称操作:i x, y+1, z; ii -x+1, -y, -z; iii-x+1, -y+1, -z
[0037] (2)钇掺杂铕配合物的磁性测试
[0038] 将所得的钇掺杂铕配合物在一个量子设计MPMS7 SQUID磁性测定仪上进行磁性测定,用帕斯卡常数对所有样品进行抗磁校正,测定数据拟合谱图见图3所示。由图可知,室温3 -1 3
下,χMT为1.58 cm K mol ,随着样品冷却,χMT逐渐下降,在1.8k时,χMT为0.029 cm K mol-1。钇掺杂铕配合物的磁化率公式如下所示:
[0039]
[0040] 式中 ,N是阿伏伽德罗常数,β是玻尔磁子,k是玻尔兹曼常数,外斯常数θ相应于Eu3+之间的磁作用。
[0041] (3)钇掺杂铕配合物的元素分析测试
[0042] 钇掺杂铕配合物用意大利产的Flash EA-2000元素分析仪进行元素分析,测试表明C、N、H三元素的测定值与理论计算值相近,其测试结果数据如下:对分子式为C28H22Eu1.1N4O22Y0.9的钇掺杂铕配合物其理论值为:C 33.18, H 2.19, N 5.53;实验测值:C 33.46, H 2.31, N 5.65。
[0043] 实施例2
[0044] 将0.1 mmol苦味酸铕(103.4毫克)、0.1 mmol苦味酸钇(97.1毫克)和0.2 mmol 2,2’-二吡啶基-3,3’,6,6’-四羧酸配体(66.4毫克)加入25 mL水中,混合均匀后密封在一个内衬聚四氟乙烯的不锈钢高压反应釜内,在高压反应釜中加热到140 150℃,保温72小时冷~
却至室温,得到块状黄色晶体,先经过少量DMF洗涤,再经过大量水洗涤和干燥,得到结构式为{[Eu3+1.1Y0.9(bptcH)(H2O)2]·H2O}n的钇掺杂铕配合物,产率为88%。
[0045] 实施例3
[0046] 将0.15mmol苦味酸铕(155.1毫克)、0.15mmol苦味酸钇(145.7毫克)和0.3 mmol 2,2’-二吡啶基-3,3’,6,6’-四羧酸配体(99.7毫克)加入25 mL水中,混合均匀后密封在一个内衬聚四氟乙烯的不锈钢高压反应釜内,在高压反应釜中加热到140 150℃,保温72小时~
冷却至室温,得到块状黄色晶体,先经过少量DMF洗涤,再经过大量水洗涤和干燥,得到结构式为{[Eu3+1.1Y0.9(bptcH)(H2O)2]·H2O}n的钇掺杂铕配合物,产率为83%。
[0047] 实施例4
[0048] 将0.05 mmol苦味酸铕(51.7毫克)、0.05 mmol苦味酸钇(48.6毫克)和0.1 mmol 2,2’-二吡啶基-3,3’,6,6’-四羧酸配体(33.2毫克)加入25 mL水中,混合均匀后密封在一个内衬聚四氟乙烯的不锈钢高压反应釜内,在高压反应釜中加热到140 145℃,保温72小时~
冷却至室温,得到块状黄色晶体,先经过少量DMF洗涤,再经过大量水洗涤和干燥,得到结构式为{[Eu3+1.1Y0.9(bptcH)(H2O)2]·H2O}n的钇掺杂铕配合物,产率为88%。
[0049] 实施例5
[0050] 将0.05 mmol苦味酸铕(51.7毫克)、0.05 mmol苦味酸钇(48.6毫克)和0.1 mmol 2,2’-二吡啶基-3,3’,6,6’-四羧酸配体(33.2毫克)加入25 mL水中,混合均匀后密封在一个内衬聚四氟乙烯的不锈钢高压反应釜内,在高压反应釜中加热到145 150℃,保温72小时~
冷却至室温,得到块状黄色晶体,先经过少量DMF洗涤,再经过大量水洗涤和干燥,得到结构式为{[Eu3+1.1Y0.9(bptcH)(H2O)2]·H2O}n的钇掺杂铕配合物,产率为89%。