贵金属回收用玻璃纤维毡转让专利

申请号 : CN201610883478.2

文献号 : CN106282580B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 吴立生张敏王磊曾红城文飞王咏梅高应梅

申请人 : 昆明南铂再生资源技术研究有限公司

摘要 :

本发明是贵金属回收用玻璃纤维毡。它以玻璃纤维为基体原料,用刺针方法对沉降后的短切玻纤棉床进行针刺,使毡层玻纤之间的纤网得以加固而制成毡状非织造捕集材料。通过硝酸铁溶液浸泡而获得纤维复合料,通过硝酸和磷酸二者混合液的浸蚀使毡体表层的纤维复合料得以粗糙化。本发明玻璃纤维毡不仅具有玻纤织物耐高温、耐腐蚀、伸长率收缩率小、强度高的优点,而且毡层纤维呈现为单纤维、三维微孔结构,其孔隙率高,对氮氧化物的气流阻力小,是一种高速、高效、高温捕集贵金属的材料。

权利要求 :

1.贵金属回收用玻璃纤维毡,其特征在于通过以下步骤获得:

①制取浓度5%wt~17%wt的硝酸铁溶液;

②将玻璃纤维和玄武岩纤维分别放入由步骤①所得分成两份的硝酸铁溶液中浸泡10小时~12小时,取出晾干后于650℃~750℃分别煅烧8小时~10小时,分别制得玻璃纤维复合料和玄武岩纤维复合料;

③将步骤②所得玻璃纤维复合料和玄武岩纤维复合料按照重量份数比例7~9∶1~3混合,随即沉降成网后再经针刺即制得复合毡体,在所述复合毡体中所述玻璃纤维复合料和所述玄武岩纤维复合料的单丝直径分别为4微米~14微米;

④用含有硝酸和磷酸的混合液对步骤③所得复合毡体进行喷雾处理,所述混合液中硝酸和磷酸之间的重量份数比例为8~9∶1~2,所述混合液中硝酸和磷酸二者的重量之和占所述混合液总重量的9%~11%,喷雾处理时所述混合液的用量为70毫升/平方米~120毫升/平方米,晾干后制得所述玻璃纤维毡。

说明书 :

贵金属回收用玻璃纤维毡

技术领域

[0001] 本发明涉及用于回收贵金属的玻璃纤维毡,特别是在硝酸生产过程中用来对作为催化剂而被消耗掉的贵金属铂、钯、铑进行回收的玻璃纤维毡;属回收贵金属用设备技术领域。

背景技术

[0002] 硝酸(HNO3)是制备化肥、炸药、人造纤维和其他化工产品的重要原材料。现代工业制备硝酸的方法是1908年W.Ostwald发明的氨氧化法。它是把按照一定比例混合的空气和氨的混合物通过灼热(760~840℃)的氧化催化剂金属铂网、铂铑合金网、铂钯铑合金网,使氨被氧化成一氧化氮(NO),反应后残余的氧气继续把一氧化氮氧化为二氧化氮(NO2),二氧化氮被通入水中制取硝酸。氨氧化生成硝酸的反应式如下:
[0003] 4NH3+5O2→4NO+6H2O   (1)
[0004] 2NO+O2→2NO2   (2)
[0005] 2NO2+H2O→2HNO3   (3)
[0006] 在上述氨氧化生成氮氧化物的反应中,所使用的催化剂是由金属Pt丝、Pt-Rh合金丝或者Pt―Pd―Rh合金丝编织成的催化网。催化网会因贵金属Pt、Pd、Rh的损耗而渐趋报废。
[0007] 催化网上贵金属Pt、Pd、Rh的损失是由多种原因造成的。以催化网上贵金属Pt的损失为例,除了催化网的装拆清洗等原因外,最主要的就是Pt的挥发性损失。催化网在高温强氧化气氛下工作时,会生成铂金属蒸气和挥发性铂氧化物PtO2。在此过程中,挥发性铂氧化物PtO2少部分被还原成金属铂并沉积于催化网丝材表面,形成“笼状物”,大部分的挥发性PtO2被气流载走而形成铂金属的损耗。铂金属蒸气的大部分则会在适宜的温度压力下形成离散的固体颗粒。当前,国内年硝酸的总产量约计有1000万吨,由此产生的铂耗约计为每年700kg。铂耗在生产成本中占据了较大的比重。
[0008] 对包括离散的铂固体颗粒和挥发损失的铂等在内的贵金属予以回收处理有利于降低生产成本。常用的贵金属回收方法包括炉灰回收法、过滤回收法、捕集网回收法。其中,捕集网回收法是在含有二氧化氮(NO2)的气流通道中设置捕集装置,通过捕集装置中玻璃纤维毡的滤过、吸附作用来吸收挥发性的氧化物PtO2,同时捕集和保留离散的铂颗粒,以达到回收金属铂的目的。这种回收方式,一般仅能实现铂耗量16%的较低回收率。中国专利CN202226897U号《贵金属回收装置》一文公开了一种回收铂的装置,其回收率达到了30%,该装置中配备有捕集装置。

发明内容

[0009] 针对上述现有技术中贵金属回收率较低的问题,本发明目的在于提供一种用于回收贵金属的玻璃纤维毡。该玻璃纤维毡用于回收在硝酸生产中作为催化剂使用而被消耗掉的金属铂、钯、铑,其回收率高。
[0010] 为实现上述目的,本发明开发了一种贵金属回收用玻璃纤维毡,它通过以下步骤获得:
[0011] 首先,制取浓度5%wt~17%wt的硝酸铁溶液;
[0012] 随后,将玻璃纤维和玄武岩纤维分别放入由前述步骤得到并分成两份且未经使用的硝酸铁溶液中浸泡10小时~12小时,取出晾干后于650℃~750℃分别煅烧8小时~10小时,分别制得玻璃纤维复合料和玄武岩纤维复合料;
[0013] 接着,将上述步骤得到的玻璃纤维复合料和玄武岩纤维复合料按照重量份数比例7~9∶1~3混合,随即沉降成网后再经针刺即制得复合毡体;在该复合毡体中,玻璃纤维复合料和玄武岩纤维复合料的单丝直径分别为4微米~14微米;
[0014] 最后,用含有硝酸和磷酸的混合液对前述步骤得到的复合毡体进行喷雾处理;在该混合液中,硝酸和磷酸之间的重量份数比例为8~9∶1~2;在该混合液中,硝酸和磷酸二者的重量之和占混合液总重量的9%~11%;喷雾处理时混合液的用量为70毫升/平方米~120毫升/平方米;喷雾完毕后晾干复合毡体就最终制得本发明目的物玻璃纤维毡。
[0015] 针对现有技术中贵金属回收率较低的问题,本发明贵金属回收用玻璃纤维毡以玻璃纤维为基体原料,用刺针方法对沉降后的短切玻纤棉床进行针刺,使毡层玻纤之间的纤网得以加固而制成毡状非织造捕集材料。通过硝酸铁溶液浸泡而获得纤维复合料,通过硝酸和磷酸二者混合液的浸蚀使毡体表层的纤维复合料得以粗糙化,如此,使本发明玻璃纤维毡不仅具有玻纤织物耐高温、耐腐蚀、伸长率收缩率小、强度高的优点,而且毡层纤维呈现为单纤维、三维微孔结构,其孔隙率高,对氮氧化物NOx的气流阻力小,是一种高速、高效、高温捕集贵金属的材料。与其它单一玻璃纤维针刺毡相比,其具有比表面积大、吸附容量更高、耐弯折,耐磨、尺寸稳定,运行阻力低于一般玻纤材料的优点。该玻璃纤维毡用于回收贵金属具有很高的回收率。同现有同类产品相比,本发明玻璃纤维毡对铂的捕集效果提高了32%,对钯的捕集效果提高了36%,对铑的效果提高了30%。

具体实施方式

[0016] 实施例1
[0017] ⑴釆用纯度工业级的硝酸铁试剂,加水并加热至85℃,搅拌溶解后,配制成5%wt的硝酸铁溶液。
[0018] ⑵将步骤⑴所得硝酸铁溶液分成两份,在其中一份硝酸铁溶液中放入其单丝直径为4微米的玻璃纤维,在另一份硝酸铁溶液中放入其单丝直径为4微米的玄武岩纤维,都分别浸泡10小时,取出晾干后于相同的温度650℃下分别煅烧8小时,制得玻璃纤维复合料和玄武岩纤维复合料。
[0019] ⑶将步骤⑵所得玻璃纤维复合料和玄武岩纤维复合料分别送入短切机,都切割成长约50mm的短纤维。
[0020] ⑷把步骤⑶所得玻璃纤维复合料和玄武岩纤维复合料两者的50mm短纤维按照重量份数比例7∶1混合,送入沉降室后,利用气体流动使二者均匀分布。关闭气流后,玻璃纤维复合料和玄武岩纤维复合料两者的短纤维无定向均匀地沉降至网带上,形成短纤维棉床。
[0021] ⑸利用滚轴冷压步骤⑷所得短纤维棉床,随后针刺经过冷压后的短纤维棉床,即制得复合毡体
[0022] ⑹用含有其纯度均为工业级的硝酸和磷酸的混合液对步骤⑸得到的复合毡体进行喷雾处理。喷雾处理的对象为复合毡体的表层纤维。在用来进行喷雾处理的混合液中,硝酸和磷酸之间的重量份数比例为8∶1。在用来进行喷雾处理的混合液中,硝酸和磷酸二者的重量数值之和占该混合液总重量的9%。喷雾处理时混合液的用量为70毫升/平方米。喷雾完毕后晾干复合毡体,即获得本发明玻璃纤维毡。
[0023] 实施例2
[0024] ⑴釆用纯度工业级的硝酸铁试剂,加水并加热至85℃,搅拌溶解后,配制成10%wt的硝酸铁溶液。
[0025] ⑵将步骤⑴所得硝酸铁溶液分成两份,在其中一份硝酸铁溶液中放入其单丝直径为10微米的玻璃纤维,在另一份硝酸铁溶液中放入其单丝直径为10微米的玄武岩纤维,都分别浸泡11小时,取出晾干后于相同的温度700℃下分别煅烧9小时,制得玻璃纤维复合料和玄武岩纤维复合料。
[0026] ⑶将步骤⑵所得玻璃纤维复合料和玄武岩纤维复合料分别送入短切机,都切割成长约50mm的短纤维。
[0027] ⑷把步骤⑶所得玻璃纤维复合料和玄武岩纤维复合料两者的50mm短纤维按照重量份数比例8∶2混合,送入沉降室后,利用气体流动使二者均匀分布。关闭气流后,玻璃纤维复合料和玄武岩纤维复合料两者的短纤维无定向均匀地沉降至网带上,形成短纤维棉床。
[0028] ⑸利用滚轴冷压步骤⑷所得短纤维棉床,随后针刺经过冷压后的短纤维棉床,即制得复合毡体
[0029] ⑹用含有其纯度均为工业级的硝酸和磷酸的混合液对步骤⑸得到的复合毡体进行喷雾处理。喷雾处理的对象为复合毡体的表层纤维。在用来进行喷雾处理的混合液中,硝酸和磷酸之间的重量份数比例为8.5∶1.5。在用来进行喷雾处理的混合液中,硝酸和磷酸二者的重量数值之和占该混合液总重量的10%。喷雾处理时混合液的用量为100毫升/平方米。喷雾完毕后晾干复合毡体,即获得本发明玻璃纤维毡。
[0030] 实施例3
[0031] ⑴釆用纯度工业级的硝酸铁试剂,加水并加热至85℃,搅拌溶解后,配制成17%wt的硝酸铁溶液。
[0032] ⑵将步骤⑴所得硝酸铁溶液分成两份,在其中一份硝酸铁溶液中放入其单丝直径为14微米的玻璃纤维,在另一份硝酸铁溶液中放入其单丝直径为14微米的玄武岩纤维,都分别浸泡12小时,取出晾干后于相同的温度750℃下分别煅烧10小时,制得玻璃纤维复合料和玄武岩纤维复合料。
[0033] ⑶将步骤⑵所得玻璃纤维复合料和玄武岩纤维复合料分别送入短切机,都切割成长约50mm的短纤维。
[0034] ⑷把步骤⑶所得玻璃纤维复合料和玄武岩纤维复合料两者的50mm短纤维按照重量份数比例9∶3混合,送入沉降室后,利用气体流动使二者均匀分布。关闭气流后,玻璃纤维复合料和玄武岩纤维复合料两者的短纤维无定向均匀地沉降至网带上,形成短纤维棉床。
[0035] ⑸利用滚轴冷压步骤⑷所得短纤维棉床,随后针刺经过冷压后的短纤维棉床,即制得复合毡体
[0036] ⑹用含有其纯度均为工业级的硝酸和磷酸的混合液对步骤⑸得到的复合毡体进行喷雾处理。喷雾处理的对象为复合毡体的表层纤维。在用来进行喷雾处理的混合液中,硝酸和磷酸之间的重量份数比例为9∶2。在用来进行喷雾处理的混合液中,硝酸和磷酸二者的重量数值之和占该混合液总重量的11%。喷雾处理时混合液的用量为120毫升/平方米。喷雾完毕后晾干复合毡体,即获得本发明玻璃纤维毡。
[0037] 表一示出了分别采用现有玻璃纤维毡和本发明实施例2玻璃纤维毡于安徽淮化化工股份有限公司属下年产15万吨硝酸生产系统中进行185天贵金属捕集回收后的回收结果。按照表一的实验结果,本发明玻璃纤维毡相较于现有玻璃纤维毡,其对铂(Pt)的捕集效果提高了32%,对钯(Pd)的捕集效果提高了36%,对铑(Rh)的捕集效果提高了30%。
[0038] 表一 现有玻璃纤维毡和本发明玻璃纤维毡贵金属捕集结果
[0039]
[0040] 注:现有玻璃纤维毡购自江苏东旺环保科技有限公司。
[0041] 将本发明实施例2玻璃纤维毡应用于安徽淮化化工股份有限公司属下年产15万吨硝酸生产系统中进行185天贵金属捕集回收,该玻璃纤维毡对铂(Pt)的回收率达到了35%,对钯(Pd)的回收率达到了36%,对铑(Rh)的回收率达到了33%。