一种莪术醇纳米混悬剂及其制备方法和应用转让专利

申请号 : CN201610887059.6

文献号 : CN106344508B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 刘宇吴浩天陈立江

申请人 : 辽宁大学

摘要 :

本发明涉及一种莪术醇纳米混悬剂及其制备方法和应用,属于药物制剂领域。本发明采用沉淀法联合高速剪切和高压均质制备莪术醇纳米混悬剂。以粒径和多分散系数PDI为指标进行处方优化,透射电镜考察制剂形态,体外释放实验考察药物的溶出度。本发明的莪术醇纳米混悬剂,其特征为:包含莪术醇、卵磷脂和PVP,按质量比,莪术醇:卵磷脂:PVP=1:0.4‑0.6∶0.25‑4。混悬剂中药物粒径在50~500nm。混悬剂中莪术醇浓度在0.25~1mg/ml。本发明的纳米混悬剂制备方法简单可控,适合工业化生产,提高了药物的溶出度。

权利要求 :

1.一种莪术醇纳米混悬剂的制备方法,其特征在于:包括以下步骤:

1)将莪术醇原料药溶于乙醇中,得有机相;每50mg莪术醇,无水乙醇用量在1-5ml;

2)将表面活性剂溶于纯净水中,得水相;所述的表面活性剂由卵磷脂和PVP组成,按质量比,莪术醇:卵磷脂: PVP =1 : 0.4-0.6 : 0.25-4;

3)将有机相在冰水浴、3×103 r·min-1搅拌下缓慢滴入水相中,使莪术醇均匀分散在表面活性剂的水溶液中,旋转蒸发除去乙醇,得到粗混悬液;

4)将所得粗混悬剂于2×104 rpm下高速剪切4 min,13.6×107 Pa压力下均质15次,得莪术醇纳米混悬剂。

2.根据权利要求1所述的制备方法,其特征在于:按质量比,莪术醇:卵磷脂: PVP =1 : 

0.5 : 0.5。

3.一种莪术醇纳米混悬剂冻干粉,其特征在于:将权利要求1或2所述的莪术醇纳米混悬剂与冻干保护剂混合,经冷冻干燥得到莪术醇纳米混悬剂冻干粉。

4.根据权利要求3所述的莪术醇纳米混悬剂冻干粉,其特征在于:所述的冻干保护剂选自甘露醇、乳糖或葡萄糖中的一种或两种以上的组合。

5.按照权利要求1或2所述的方法制备的莪术醇纳米混悬剂在制备抗肿瘤药物中的应用。

说明书 :

一种莪术醇纳米混悬剂及其制备方法和应用

技术领域

[0001] 本发明属于药物制剂领域,特别涉及一种莪术醇纳米混悬剂及其冻干粉的制备方法。

背景技术

[0002] 莪术醇(curcumol),是从姜黄属莪术(Curcuma Phaeocaulis Val)的挥发油中提取得到的一个重要成分。莪术醇被认为是莪术的特征成分,是莪术油抗肿瘤药效的重要物质基础之一。与化学合成抗癌药物相比,莪术醇不良反应小,适合长期用药。传统中医认为莪术醇对于肝癌、胃癌、腹水癌、白血病、妇科肿瘤等多种癌症均具有明显疗效,在抗肿瘤药物应用方面具有很大发展前途。
[0003] 纳米混悬剂(nanosuspensions,NS)是纯药物纳米颗粒的亚微细粒胶态分散体,以微量的表面活性剂为助悬剂,通过匀化、湿磨等方法制备。纳米混悬剂主要应用于溶解度差的药物。将难溶性药物制成纳米混悬剂,不但有助于其稳定性,提高溶解度,提高药物的溶出度,提高药物的生物利用度,而且提高了水溶性,更适合药物制剂的临床应用。将药物制成纳米混悬剂后还可以进一步改变剂型制成片剂、胶囊剂,扩展了药物的应用范围。
[0004] 由于莪术醇在水中溶解度极低,导致吸收不完全或生物利用率差,极大地限制了实验研究和临床使用,目前尚无制剂产品上市。因此开发莪术醇的新剂型产品以推进莪术醇的治疗应用迫在眉睫。

发明内容

[0005] 本发明的目的是提供一种莪术醇纳米混悬剂及其制备方法,以提高药物的溶出度并改善药物的生物利用度。
[0006] 本发明采用如下技术方案:一种莪术醇纳米混悬剂,由莪术醇与表面活性剂制得,所述的表面活性剂选取自卵磷脂、聚乙烯吡咯烷酮(PVP)、pluronic F68和十二烷基硫酸钠中的一种或两种以上的混合。
[0007] 优选的,所述的表面活性剂为卵磷脂和PVP的混合。
[0008] 更优选的,按质量比,莪术醇:卵磷脂:PVP=1:0.4-0.6:0.25-4。
[0009] 更优选的,按质量比,莪术醇:卵磷脂:PVP=1:0.5:0.5。
[0010] 本发明的莪术醇纳米混悬剂,混悬剂中药物粒径在50-500nm。
[0011] 本发明的莪术醇纳米混悬剂的制备方法为沉淀法结合高速剪切和高压均质法,包括以下步骤:
[0012] 1)将莪术醇原料药溶于乙醇中,得有机相;
[0013] 2)将表面活性剂溶于纯净水中,得水相;
[0014] 3)将有机相在水浴、搅拌下缓慢滴入水相中,使莪术醇均匀分散在表面活性剂的水溶
[0015] 液中,旋转蒸发除去乙醇,得到粗混悬液;
[0016] 4)将粗混悬液依次进行高速剪切处理和高压均质处理,得莪术醇纳米混悬剂。
[0017] 优选的,所述步骤1)每50mg莪术醇,无水乙醇用量在1-5ml;所述步骤3)水浴温度在0-80℃;所述步骤4)所述高速剪切处理是:剪切转速在10000-20000rpm,剪切时间在4-8min;所述高压均质处理是:均质压力在5.46×107Pa-16.4×107Pa,均质次数在3-20次。
[0018] 一种莪术醇纳米混悬剂冻干粉,将上述的莪术醇纳米混悬剂与冻干保护剂混合,经冷冻干燥得到莪术醇纳米混悬剂冻干粉。
[0019] 优选的,所述的冻干保护剂选自甘露醇、乳糖或葡萄糖中的一种或两种以上的组合。
[0020] 本发明的莪术醇纳米混悬剂在制备抗肿瘤药物中的应用。
[0021] 本发明的有益效果是:
[0022] 1.本发明莪术醇纳米混悬剂,减小了药物粒径,增大了比表面积,显著提高了原料药的溶解度。
[0023] 2.本发明莪术醇纳米混悬剂,体外溶出度试验表明,能大大提高原料药的溶出度。
[0024] 3.本发明莪术醇纳米混悬剂,处方工艺简单,表面活性剂用量少,无有机溶剂残留,制剂安全性好,成本较低,易于工业化。
[0025] 4.本发明莪术醇纳米混悬剂,可进一步冷冻干燥,冻干粉末稳定性良好,易于储存和运输。
[0026] 5.本发明莪术醇纳米混悬剂,克服了原料药的溶解性不足,提高了药物的溶出度,可以改善其生物利用度,有助于促进莪术醇制剂应用的进一步研究与开发。

附图说明

[0027] 图1是实施例1高压均质压力对粒径的影响(n=3)。
[0028] 图2是实施例1高压均质次数对粒径的影响(n=3)。
[0029] 图3是实施例4制剂2样品莪术醇纳米混悬剂的粒径分布图。
[0030] 图4是实施例4制剂2样品莪术醇纳米混悬剂的透射电镜图。
[0031] 图5是实施例5莪术醇纳米混悬剂体外累积释放曲线。

具体实施方式

[0032] 下面通过具体实施例对本发明进一步阐述,但需要指出的是,本发明的保护范围不应受这些实施例的任何限制。
[0033] 实施例1条件筛选
[0034] 莪术醇纳米混悬剂制备方法如下:
[0035] 1)将50mg莪术醇完全溶解于1ml无水乙醇中,得到有机相。
[0036] 2)将25mg PVP、25mg卵磷脂溶解于50ml纯净水中,得到水相。
[0037] 3)在冰水浴(0℃)中,搅拌下(3×103r·min-1),将有机相缓慢滴加到水相中,使其分散均匀。滴加完毕后,旋除乙醇,得粗混悬剂。
[0038] 4)将所得粗混悬剂于2×104rpm下高速剪切4min,13.6×107Pa压力下均质15次,得莪术醇纳米混悬液。
[0039] (一)表明活性剂的影响
[0040] 其它条件不变,如表1改变步骤2)中的表面活性剂。
[0041] 表1表面活性剂的影响
[0042]
[0043] 注:-.不加表面活性剂。
[0044] 不同表面活性剂对纳米混悬剂的稳定作用效果,由表1可见,表面活性剂的种类对纳米混悬剂的粒径和稳定性有较大影响。结果表明当采用卵磷脂与PVP混合为表面活性剂时,纳米混悬剂粒径小,稳定性好。
[0045] (二)反应温度的影响
[0046] 其它条件不变,考察制备过程中温度对结果的影响,如表2改变步骤3)中温度,分别为冰水浴(0℃),室温(25℃),60℃水浴,结果见表2。
[0047] 表2温度的影响
[0048]
[0049] 由表2可见,纳米混悬剂制备过程中,温度较高时,高浓度的药物会增加粒子之间聚集的机会,纳米混悬剂易出现晶体成长和粒子聚集,导致粒子长大,需要降温从而防止颗粒相互间融合,提高稳定性。结果显示,冰水浴时,粒径和多分散系数较小,因此本发明选用冰浴法降温制备纳米混悬剂。
[0050] (三)高速剪切时间的影响
[0051] 其它条件不变,如表3改变步骤4)中高速剪切时间分别为4,6和8min,结果见表3。
[0052] 表3高速剪切时间的影响
[0053]
[0054] 由表3可见,高速剪切使粗混悬液粒径减小,降低了高压均质管路堵塞的风险,剪切4min时纳米混悬剂粒径较小,且剪切时间继续增加对最终粒径变化影响不大,乳化现象反而加剧不宜于下一步反应进行,故高速剪切4min为理想时间。
[0055] (四)均质压力的影响
[0056] 保持其它条件不变,考察高压均质压力对粒径的影响,将步骤4)高速剪切后的混悬液分别于5.46×107Pa、6.83×107Pa、8.19×107Pa、10.92×107Pa、13.6×107Pa、16.4×7
10Pa压力下均质15次,测得不同压力下纳米混悬剂的粒径,结果如图1所示。由图1可见,均质压力增加为13.6×107Pa时粒径较小,再增加压力粒径又增大,故均质压力为13.6×107Pa时较为理想。
[0057] (五)均质次数的影响
[0058] 保持其它条件不变,考察高压均质次数对粒径的影响,改变步骤4)中,将高速剪切后的混悬液于13.6×107Pa压力下分别均质3、6、9、12、15和20次,测得不同均质次数下纳米混悬剂的粒径。结果如图2所示,由图2可见,均质次数为15次时粒径较小,且增加均质次数到20次后粒径减小程度不明显,为节约资源,故理想均质次数为15次。
[0059] 实施例2莪术醇纳米混悬剂
[0060] 莪术醇纳米混悬剂制备方法如下:
[0061] 1)将50mg莪术醇完全溶解于1ml无水乙醇中,得到有机相。
[0062] 2)将12.5-200mg PVP、25mg卵磷脂溶解于50ml纯净水中,得到水相。
[0063] 3)在冰水浴(0℃)中,搅拌下(3×103r·min-1),将有机相缓慢滴加到水相中,使其分散均匀。滴加完毕后,旋除乙醇,得粗混悬剂。
[0064] 4)将所得粗混悬剂于2×104rpm下高速剪切4min,13.6×107Pa压力下均质15次,得莪术醇纳米混悬液。结果如表4。
[0065] 表4表面活性剂的影响
[0066]
[0067] 由表4可见,当莪术醇:卵磷脂:PVP=1:0.5:0.5时,粒径最小,为最佳表面活性剂用量。
[0068] 实施例3莪术醇纳米混悬剂冻干粉
[0069] 莪术醇纳米混悬剂冻干粉制备方法如下:
[0070] 1)将50mg莪术醇完全溶解于1ml无水乙醇中,得到有机相。
[0071] 2)将25mg PVP、25mg卵磷脂溶解于50ml纯净水中,得到水相。
[0072] 3)在冰水浴(0℃)中,搅拌下(3×103r·min-1),将有机相缓慢滴加到水相中,使其分散均匀。滴加完毕后,旋除乙醇,得粗混悬剂。
[0073] 4)将所得粗混悬剂于2×104rpm下高速剪切4min,13.6×107Pa压力下均质15次,得莪术醇纳米混悬液。
[0074] 5)如表5将冻干粉加入制得的莪术醇混悬液中,摇匀后于-80℃冰箱冷冻24h,冷冻干燥机中冷冻干燥8h,得到表面致密,有光泽,饼状的莪术醇纳米混悬剂冻干粉。结果如表5。
[0075] 表5不同冻干保护剂制备得到的莪术醇纳米混悬剂冻干粉
[0076]
[0077] 注:-.不加冻干保护剂。
[0078] 实施例4
[0079] 采用Nano-ZS纳米粒度及zeta电位分析仪检测莪术醇纳米混悬剂粒径分布。图3为实施例2中,莪术醇:卵磷脂:PVP=1:0.5:0.5(2号制剂)制备的纳米混悬剂粒径分布图,从图3可见,制备的莪术醇纳米混悬剂平均粒径为110nm。
[0080] 采用透射电镜观察莪术醇纳米混悬剂形态。图4为实施例2中2号制剂莪术醇纳米混悬剂透射电镜图。由图4可见,制得的莪术醇纳米混悬剂粒子呈均匀球形,粒径小于500nm。
[0081] 实施例5莪术醇纳米混悬剂体外溶出度研究
[0082] 将莪术醇原料药与实施例2中2号制剂莪术醇纳米混悬剂进行体外溶出度对比试验,不同时间点,样品经含量检测并计算累积释放百分率。
[0083] 溶出度试验方法:利用透析袋释放法考察莪术醇纳米混悬剂、原料药的体外溶出-1特性。溶出温度为(37±0.5)℃,转速为100r·min 。称取适量莪术醇原料药放入透析袋中,置于1%SDS-Na的PBS溶液(pH=7.4,20mL)的,另取相当于等量原料药的莪术醇纳米混悬剂两份放入透析袋中,分别置于含质量分数1%、2%SDS-Na的PBS溶液(pH=7.4,20mL)中。于0.5、1、1.5、2、4、8、12、24、36、48、60、72、84、96h取样1mL,经0.45μm微孔滤膜滤过。取样后立即补充1mL等温新鲜介质。高效液相色谱仪于210nm处测定其吸收峰面积(A),流动相为乙腈:水(体积比为85∶15),色谱柱温度为30℃,进样流速为1mL/min,进样量为20μL。标准曲线方程y=23947x-42973(r=0.99988),线性范围为10~200μg/mL。测定样品吸收峰面积,计算药物浓度。将不同时间测得的药物浓度对时间作图。结果如图5所示,显示本发明制得的莪术醇纳米混悬剂溶出度明显高于原料药。
[0084] 实施例6莪术醇纳米混悬剂的稳定性试验
[0085] 将实施例3制备的7号制剂莪术醇纳米混悬剂冻干粉,分装于2mL西林瓶中,于室温条件下放置,分别于第0,2,4,6,8周取样,观察冻干粉针的外观,并测定粒径及多分散系数。结果如表6。
[0086] 表6
[0087]
[0088] 由表6可见,样品常温放置,能在较长时间内保持良好的体系稳定,显示本发明制得的莪术醇纳米混悬剂溶出度明显高于原料药。