一种本征超疏水陶瓷涂层及其制备方法转让专利

申请号 : CN201611037634.X

文献号 : CN106367726B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 沈一洲刘森云朱春玲陶杰

申请人 : 南京航空航天大学

摘要 :

本发明公开了一种本征超疏水陶瓷涂层及其制备方法,属于金属基体表面处理技术领域。钛合金或不锈钢作为基体材料,首先采用双辉等离子渗技术,以镧系金属作为双辉等离子渗用金属靶材,在基体材料表面制备一层镧系金属涂层,随后采用等离子氧化技术将制备的镧系金属涂层转变为致密的氧化物陶瓷涂层。由于在等离子渗与等离子氧化过程中,金属基体表面不断地被Ar离子轰击而形成一定的微观粗糙结构,导致所制备的镧系金属氧化物陶瓷涂层,具有一定的超疏水特性,其接触角均大于150°。依据本发明提供的方法,制备的超疏水陶瓷涂层具有较稳定的环境适应性,相比于传统技术手段制备的超疏水表面将大幅度提高其工业化使用寿命。

权利要求 :

1.一种本征超疏水陶瓷涂层的制备方法,其特征在于,由以下步骤组成:

1)以Ti6Al4V钛合金或不锈钢为基体材料,采用金相砂纸对基体进行打磨,直至表面没有明显划痕,并进行抛光处理,最后采用去离子水、丙酮、无水乙醇以及去离子水依次进行超声清洗并晾干待用;

2)以镧系金属为靶材,通过双辉等离子渗技术手段,并调节相应的工艺参数,在纯Ar气氛围下实现上述金属基体表面镧系金属涂层的制备;

3)利用等离子氧化技术,在一定比例的Ar和O2的混合气体中,将金属基体表面的镧系金属涂层氧化成致密的氧化物陶瓷涂层。

2.根据权利要求1所述的制备方法,其特征在于,步骤2)中,镧系金属靶材为镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥金属之一经过热压制成的等离子渗用金属靶材。

3.根据权利要求1所述的制备方法,其特征在于,步骤2)中,金属基体表面镧系金属涂层的制备工艺参数为:在纯Ar气氛围下,压强为30~50MPa,控制工艺参数:源极 电压500~

800V、工件电压300~500V、极间距10~30mm、时间2~5h、温度500~750℃。

4.根据权利要求1所述的制备方法,其特征在于,步骤3)中,镧系金属涂层等离子氧化工艺参数为:在体积比4:1的Ar和O2的混合气体中,调节工件电压400~600V、氧化温度400~700℃和氧化时间2~4h。

5.根据权利要求1-4任一所述方法获得的本征超疏水陶瓷涂层。

说明书 :

一种本征超疏水陶瓷涂层及其制备方法

技术领域

[0001] 本发明属于金属基体表面处理技术领域,特别涉及一种具有本征超疏水特性的功能陶瓷的制备方法。制备的本征超疏水陶瓷涂层对促进超疏水表面的工业化应用具有重要实践意义。

背景技术

[0002] 仿生超疏水涂层(指表观接触角大于150°,滚动角小于10°)因其具有优异的自清洁性、防腐蚀性、流体减阻、防覆冰以及防水性能,在工业生产、日常生活及国防装备中展示出较强的应用潜力,而引起了各国科研工作者的广泛研究兴趣,期望能够在金属材料、无机[1-3]材料和高分子材料基体表面实现功能化复制 。当前主要是通过低表面自由能修饰剂修饰微观粗糙结构表面或者在低表面自由能材料基体表面加工微观粗糙结构来实现超疏水表面的有效制备。然而,纵观当前的制备手段,超疏水表面的制备离不开低表面自由能修饰剂的功能化修饰,且分析表明低表面自由能修饰剂主要由含氟有机物组成,卤素中的氟取代氢原子可以有效地降低高聚物的表面自由能,而且取代的氢原子数越多,表面自由能越低,材料表面则越难被润湿。Nishino T.等人研究发现迄今为止最低的表面自由能大约为
6.7mJ/m2,由十七个氟原子取代硅烷上的氢原子获得。
[0003] 然而,正是由于存在这样的低表面自由能的有机物修饰剂严重影响了超疏水表面在环境作用下的稳定性,进而限制了其在工业领域的实践应用,尤其是在一些航空航天等苛刻环境下的使用。研究表明,超疏水表面在常规的室外环境条件下,经过150d的风吹雨淋其表面接触角降低约20~30%,同时其滚动角出现大幅度增加,甚至失去超疏水的能力。此外,由于目前构筑超疏水表面的微观结构多以原位生长或者颗粒团聚附着为主,导致其表面微观结构与材料基体本身具有较低的结合力,因而在风沙等环境作用下,其表面微观结构极其容易遭到破坏,而失去超疏水性能,也直径影响其工业化应用。
[0004] 因此,在已有的超疏水表面润湿理论基础上,开发出一种免于低表面自由能有机物修饰剂的修饰,同时在苛刻环境作用下又具有较高的稳定性对促进超疏水表面的实际应用具有重要的意义。

发明内容

[0005] 本发明的目的在于提出一种免于低表面自由能有机物修饰的超疏水表面制备方法,以解决超疏水表面低使用寿命的问题。
[0006] 针对现有技术制备的超疏水表面具有较低的耐环境作用能力,本发明提供的一种新型本征超疏水陶瓷涂层的制备方法,由以下步骤组成:
[0007] 1)以Ti6Al4V钛合金或不锈钢为基体材料,采用金相砂纸对基体进行打磨,直至表面没有明显划痕,并进行抛光处理,最后采用去离子水、丙酮、无水乙醇以及去离子水依次进行超声清洗并晾干待用;
[0008] 2)以镧系金属为靶材,通过双辉等离子渗技术手段,并调节相应的工艺参数,在纯Ar气氛围下实现上述金属基体表面镧系金属涂层的制备;
[0009] 3)利用等离子氧化技术,在一定比例的Ar和O2的混合气体中,将金属基体表面的镧系金属涂层氧化成致密的氧化物陶瓷涂层。
[0010] 所述制备方法,步骤2)中,镧系金属靶材为镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥金属之一经过热压制成的等离子渗用金属靶材。
[0011] 所述制备方法,步骤2)中,金属基体表面镧系金属涂层的制备工艺参数为:在纯Ar气氛围下,压强为30~50MPa,控制工艺参数:源级电压500~800V、工件电压300~500V、极间距10~30mm、时间2~5h、温度500~750℃。
[0012] 所述制备方法,步骤3)中,镧系金属涂层等离子氧化工艺参数为:在体积比4:1的Ar和O2的混合气体中,调节工件电压400~600V、氧化温度400~700℃和氧化时间2~4h。
[0013] 根据任一所述方法获得的本征超疏水陶瓷涂层。
[0014] 本发明制备的产品可以通过以下手段进行结构、形貌、物相和超疏水特性等表征:采用德国BRUKER Advance D8的X射线衍射仪(XRD)对样品进行物相结构表征分析;选用日本HITACHI SU-4800的场发射扫描电子显微镜(FE-SEM)对样品进行微观形貌观察;选用德国DATAPHYSICS接触角测量仪OCA20测试分析其表面超疏水性能。
[0015] 采用本发明的方法制备的本征超疏水陶瓷涂层具有以下特点:
[0016] 1)制备的陶瓷涂层由于在Ar离子轰击作用表面存在一定的微观粗糙结构,同时不需要低表面自由能有机物修饰即可呈现出超疏水特性,即对水的接触角大于150°。
[0017] 2)制备的本征超疏水陶瓷涂层与基体之间具有较高的结合力,划痕法测其临界结合力达到了60N。
[0018] 3)制备的本征超疏水陶瓷涂层在苛刻环境的作用下仍具有较高的使用寿命,可用于国防装备工业、石油化工管道等领域。
[0019] 4)制备的本征超疏水陶瓷涂层在具有较高的超疏水性同时,还具有较高的耐磨损与耐腐蚀性能。

附图说明

[0020] 图1为本发明中实施例1的方法所制备的本征超疏水陶瓷涂层表面微观结构形貌;
[0021] 图2为本发明中实施例1的方法所制备的本征超疏水陶瓷涂层的XRD图谱;
[0022] 图3为本发明中实施例1的方法所制备的本征超疏水陶瓷涂层的EDS能谱;
[0023] 图4为本发明中实施例1的方法所制备的本征超疏水陶瓷涂层表面静态液滴光学图片;

具体实施方式

[0024] 以下结合具体实施例,对本发明进行详细说明。
[0025] 实施例1
[0026] 本发明的本征超疏水陶瓷涂层制备方法如下:
[0027] 第一步,以Ti6Al4V钛合金为基体材料,利用线切割将基体材料加工成15mm×15mm×3mm大小,依次采用1~6号金相砂纸打磨基体材料表面,直至肉眼观察下没有划痕为止,然后将其机械抛光直至在金相显微镜下没有明显的划痕,并在去离子水、丙酮、无水乙醇及去离子水中超声清洗10min,晾干待用;
[0028] 第二步,以高纯度(99.99%)的金属铈为靶材,在双辉等离子渗炉中将靶材置于源极处,Ti6Al4V钛合金置于工件电极处,并控制Ar气压强为40MPa、源级电压为600V、工件电压为400V、极间距为20mm、温度为650℃,等离子反应处理3h后,在钛合金基体表面获得纯金属铈涂层;
[0029] 第三步,从双辉等离子渗炉中取出金属铈靶,在一定比例(体积比4:1)的Ar和O2的混合气体中,调节工件电压500V、氧化温度550℃,等离子氧化处理3h后,即可获得超疏水陶瓷氧化铈涂层。
[0030] 依照上述实施步骤制备的本征超疏水陶瓷涂层表面的扫描电子显微镜照片如附图1所示。样品表面的XRD图谱如附图2所示,从图中可以看出所得到的氧化铈涂层纯度较高,且晶型单一。样品表面的EDS能谱如附图3所示。附图4为液滴在所制备的本征超疏水陶瓷涂层表面的静态光学照片,可以看出液滴呈完整球形,其接触角为157°达到了超疏水效果。
[0031] 实施例2
[0032] 本发明的本征超疏水陶瓷涂层制备方法如下:
[0033] 第一步,以316L不锈钢为基体材料,利用线切割将基体材料加工成15mm×15mm×3mm大小,依次采用1~6号金相砂纸打磨基体材料表面,直至肉眼观察下没有划痕为止,然后将其机械抛光直至在金相显微镜下没有明显的划痕,并在去离子水、丙酮、无水乙醇及去离子水中超声清洗10min,晾干待用;
[0034] 第二步,以高纯度(99.99%)的金属铈为靶材,在双辉等离子渗炉中将靶材置于源极处,316L不锈钢置于工件电极处,并控制Ar气压强为40MPa、源级电压为650V、工件电压为300V、极间距为20mm、温度为550℃,等离子反应处理2.5h后,即可在不锈钢基体表面获得纯金属铈涂层;
[0035] 第三步,从双辉等离子渗炉中取出金属铈靶,在一定比例(体积比4:1)的Ar和O2的混合气体中,调节工件电压500V、氧化温度550℃,等离子氧化处理3h后,即可获得超疏水陶瓷氧化铈涂层。
[0036] 依照上述实施步骤制备的本征超疏水陶瓷涂层表面,其接触角为160°达到了超疏水效果。
[0037] 实施例3
[0038] 本发明的本征超疏水陶瓷涂层制备方法如下:
[0039] 第一步,以Ti6Al4V钛合金为基体材料,利用线切割将基体材料加工成15mm×15mm×3mm大小,依次采用1~6号金相砂纸打磨基体材料表面,直至肉眼观察下没有划痕为止,然后将其机械抛光直至在金相显微镜下没有明显的划痕,并在去离子水、丙酮、无水乙醇及去离子水中超声清洗10min,晾干待用;
[0040] 第二步,以高纯度(99.99%)的金属铒为靶材,在双辉等离子渗炉中将靶材置于源极处,Ti6Al4V钛合金置于工件电极处,并控制Ar气压强为35MPa、源级电压为800V、工件电压为400V、极间距为20mm、温度为700℃,等离子反应处理3h后,即可在Ti6Al4V钛合金基体表面获得纯金属铒涂层;
[0041] 第三步,从双辉等离子渗炉中取出金属铒靶,在一定比例(体积比4:1)的Ar和O2的混合气体中,调节工件电压600V、氧化温度600℃,等离子氧化处理3h后,即可获得超疏水陶瓷氧化铒涂层。
[0042] 依照上述实施步骤制备的本征超疏水陶瓷涂层表面,其接触角为154°达到了超疏水效果。
[0043] 实施例4
[0044] 本发明的本征超疏水陶瓷涂层制备方法如下:
[0045] 第一步,以316L不锈钢为基体材料,利用线切割将基体材料加工成15mm×15mm×3mm大小,依次采用1~6号金相砂纸打磨基体材料表面,直至肉眼观察下没有划痕为止,然后将其机械抛光直至在金相显微镜下没有明显的划痕,并在去离子水、丙酮、无水乙醇及去离子水中超声清洗10min,晾干待用;
[0046] 第二步,以高纯度(99.99%)的金属铒为靶材,在双辉等离子渗炉中将靶材置于源极处,316L不锈钢置于工件电极处,并控制Ar气压强为35MPa、源级电压为800V、工件电压为300V、极间距为20mm、温度为550℃,等离子反应处理3h后,即可在316L不锈钢基体表面获得纯金属铒涂层;
[0047] 第三步,从双辉等离子渗炉中取出金属铒靶,在一定比例(体积比4:1)的Ar和O2的混合气体中,调节工件电压600V、氧化温度600℃,等离子氧化处理3h后,即可获得超疏水陶瓷氧化铒涂层。
[0048] 依照上述实施步骤制备的本征超疏水陶瓷涂层表面,其接触角为154°达到了超疏水效果。
[0049] 实施例5
[0050] 本发明的本征超疏水陶瓷涂层制备方法如下:
[0051] 第一步,以Ti6Al4V钛合金为基体材料,利用线切割将基体材料加工成15mm×15mm×3mm大小,依次采用1~6号金相砂纸打磨基体材料表面,直至肉眼观察下没有划痕为止,然后将其机械抛光直至在金相显微镜下没有明显的划痕,并在去离子水、丙酮、无水乙醇及去离子水中超声清洗10min,晾干待用;
[0052] 第二步,以高纯度(99.99%)的金属铈为靶材,在双辉等离子渗炉中将靶材置于源极处,Ti6Al4V钛合金置于工件电极处,并控制Ar气压强为30MPa、源级电压为500V、工件电压为400V、极间距为20mm、温度为550℃,等离子反应处理3h后,即可在Ti6Al4V钛合金基体表面获得纯金属铈涂层;
[0053] 第三步,从双辉等离子渗炉中取出金属铒靶,在一定比例(体积比4:1)的Ar和O2的混合气体中,调节工件电压400V、氧化温度500℃,等离子氧化处理4h后,即可获得超疏水陶瓷氧化铈涂层。
[0054] 依照上述实施步骤制备的本征超疏水陶瓷涂层表面,其接触角为157°达到了超疏水效果。
[0055] 实施例6
[0056] 本发明的本征超疏水陶瓷涂层制备方法如下:
[0057] 第一步,以316L不锈钢为基体材料,利用线切割将基体材料加工成15mm×15mm×3mm大小,依次采用1~6号金相砂纸打磨基体材料表面,直至肉眼观察下没有划痕为止,然后将其机械抛光直至在金相显微镜下没有明显的划痕,并在去离子水、丙酮、无水乙醇及去离子水中超声清洗10min,晾干待用;
[0058] 第二步,以高纯度(99.99%)的金属铈为靶材,在双辉等离子渗炉中将靶材置于源极处,316L不锈钢置于工件电极处,并控制Ar气压强为35MPa、源级电压为500V、工件电压为300V、极间距为20mm、温度为550℃,等离子反应处理4h后,即可在316L不锈钢基体表面获得纯金属铈涂层;
[0059] 第三步,从双辉等离子渗炉中取出金属铒靶,在一定比例(体积比4:1)的Ar和O2的混合气体中,调节工件电压400V、氧化温度500℃,等离子氧化处理3.5h后,即可获得超疏水陶瓷氧化铈涂层。
[0060] 依照上述实施步骤制备的本征超疏水陶瓷涂层表面,其接触角为158°达到了超疏水效果。
[0061] 实施例7
[0062] 本发明的本征超疏水陶瓷涂层制备方法如下:
[0063] 第一步,以Ti6Al4V钛合金为基体材料,利用线切割将基体材料加工成15mm×15mm×3mm大小,依次采用1~6号金相砂纸打磨基体材料表面,直至肉眼观察下没有划痕为止,然后将其机械抛光直至在金相显微镜下没有明显的划痕,并在去离子水、丙酮、无水乙醇及去离子水中超声清洗10min,晾干待用;
[0064] 第二步,以高纯度(99.99%)的金属钬为靶材,在双辉等离子渗炉中将靶材置于源极处,Ti6Al4V钛合金置于工件电极处,并控制Ar气压强为35MPa、源级电压为800V、工件电压为400V、极间距为20mm、温度为750℃,等离子反应处理3h后,即可在Ti6Al4V钛合金基体表面获得纯金属钬涂层;
[0065] 第三步,从双辉等离子渗炉中取出金属钬靶,在一定比例(体积比4:1)的Ar和O2的混合气体中,调节工件电压500V、氧化温度500℃,等离子氧化处理4h后,即可获得超疏水陶瓷氧化钬涂层。
[0066] 依照上述实施步骤制备的本征超疏水陶瓷涂层表面,其接触角为152°达到了超疏水效果。
[0067] 实施例8
[0068] 本发明的本征超疏水陶瓷涂层制备方法如下:
[0069] 第一步,以316L不锈钢为基体材料,利用线切割将基体材料加工成15mm×15mm×3mm大小,依次采用1~6号金相砂纸打磨基体材料表面,直至肉眼观察下没有划痕为止,然后将其机械抛光直至在金相显微镜下没有明显的划痕,并在去离子水、丙酮、无水乙醇及去离子水中超声清洗10min,晾干待用;
[0070] 第二步,以高纯度(99.99%)的金属钬为靶材,在双辉等离子渗炉中将靶材置于源极处,Ti6Al4V钛合金置于工件电极处,并控制Ar气压强为35MPa、源级电压为800V、工件电压为300V、极间距为20mm、温度为750℃,等离子反应处理3h后,即可在316L不锈钢基体表面获得纯金属钬涂层;
[0071] 第三步,从双辉等离子渗炉中取出金属钬靶,在一定比例(体积比4:1)的Ar和O2的混合气体中,调节工件电压600V、氧化温度700℃,等离子氧化处理3h后,即可获得超疏水陶瓷氧化钬涂层。
[0072] 依照上述实施步骤制备的本征超疏水陶瓷涂层表面,其接触角为150°达到了超疏水效果。
[0073] 应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。