一种同步整流电路转让专利

申请号 : CN201611015760.5

文献号 : CN106374739B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 李泽宏汪榕弋才敏吴玉洲

申请人 : 贵州恒芯微电子科技有限公司

摘要 :

本发明公开了种同步整流电路,本发明主要通过电荷泵和boost升压电路相结合的方式实现自驱动;其中包括整流管、电荷泵单元、逻辑控制模块、电压检测模块、振荡器模块、PWM产生模块、基准电压产生模块、开关管、续流管、隔离管、电感、电容和采样电阻。本发明初始阶段通过电荷泵在电容上存储电荷,等到电压升高到定程度,boost拓扑结构的升压电路开始工作,通过逻辑控制模块等的处理,打开整流管,实现同步整流电路的自驱动。其低压电荷泵+boost相结合的驱动方式,加快给电容充电的速度,降低整流电路的占空比,降低平均导通压降。

权利要求 :

1.一种同步整流电路,其特征在于:它包括低压电荷泵模块、Boost模块、外连接电容C和整流管M1;

其中,低压电荷泵模块由振荡器模块、电荷泵单元构成;Boost模块由逻辑控制1模块、电压检测1模块、PWM产生模块、基准电压产生模块、开关管PM1、续流管NM2、隔离管NM1、电感L和取样电阻R1与 R2构成;

其中,隔离管NM1的漏极连接整流管M1的漏极,其源极分别连接续流管NM2的源极、电阻R2下端和电容C的下极板,其栅极分别连接整流管M1的源极和电感L的一端;开关管PM1的源极分别连接振荡器、外连接电容C和电压检测模块2的输入端,其漏极连接电感L的另一端;

电容C的上极板分别连接电压检测模块1的输入端和电荷泵模块的输出端,电阻R1与R2串联分压后产生的电压Vf与基准电压产生模块产生电压Vref作为PWM模块的输入端;该逻辑控制1模块的第一输入端为电压检测1模块的输出端,该逻辑控制1模块的第二输入端为PWM模块输出端,该逻辑控制1模块的第三输入端为逻辑控制2的输出端;该逻辑控制1模块的第一输出端分别连接在续流管NM2的栅极,第二输出端连接在开关管的栅极,该逻辑控制1模块第三输出端连接到振荡器;电压检测2模块输入端连接电容C上极板,输入端连接逻辑控制2输入端;逻辑控制2输出端分别连接逻辑控制1和整流管M1的栅极。

2.根据权利要求1所述的同步整流电路,其特征在于,所述逻辑控制1模块控制Boost模块的开关管PM1和续流管NM2的开或关,所述逻辑控制2模块控制整流管M1的开或关。

3.根据权利要求1所述的同步整流电路,其特征在于:开关管PM1为P型mos管或PNP双极型晶体管;续流管NM2为N型mos管或NPN双极型晶体管。

4.根据权利要求1所述的同步整流电路,其特征在于:所述整流管M1为VDMOS或LDMOS。

说明书 :

一种同步整流电路

技术领域

[0001] 本发明属于电子电路技术领域,涉及一种同步整流电路。

背景技术

[0002] 同步整流技术(Synchronous Rectification,SR)采用低电压功率MOS管作为整流器件。利用其较低的正向压降和很小的通态电阻,可以很好的降低整流器模块的整体功耗。采用同步整流技术的主要难度在于其整流管的栅极控制。
[0003] 整流管的驱动主要采用PWM方式,其实现较为复杂,需要建立空间矢量数学模型,进行复杂的变换求解。电路组成上需要大量的逻辑处理,增加技术难度和成本。采用外部供电驱动的方式应用上较为复杂,而单独的电荷泵自驱动方式充电速度较慢,不利于同步整流技术的推广与应用。

发明内容

[0004] 本发明的目的,就是针对上述问题,提出一种新型的同步整流电路,以克服现有技术的不足。
[0005] 本发明的技术方案:一种同步整流电路,它包括低压电荷泵模块、Boost模块、外连接电容C和整流管M1;
[0006] 其中,低压电荷泵模块由振荡器模块、电荷泵单元构成;Boost模块由逻辑控制1模块、电压检测1模块、PWM产生模块、基准电压产生模块、开关管PM1、续流管NM2、隔离管NM1、电感L和取样电阻R1与 R2构成;
[0007] 其中,隔离管NM1的漏极连接整流管M1的漏极,其源极分别连接续流管NM2的源极、电阻R2下端和电容C的下极板,其栅极分别连接整流管M1的源极和电感L的一端;开关管PM1的源极分别连接振荡器、外连接电容C和电压检测模块2的输入端,其漏极连接电感L的另一端;电容C的上极板分别连接电压检测模块1的输入端和电荷泵模块的输出端,电阻R1与R2串联分压后产生的电压Vf与基准电压产生模块产生电压Vref作为PWM模块的输入端;该逻辑控制1模块的第一输入端为电压检测1模块的输出端,该逻辑控制1模块的第二输入端为PWM模块输出端,该逻辑控制1模块的第三输入端为逻辑控制2的输出端;该逻辑控制1模块的第一输出端分别连接在续流管NM2的栅极,第二输出端连接在开关管的栅极,该逻辑控制1模块第三输出端连接到振荡器;电压检测2模块输入端连连接电容C上极板,输入端连连接逻辑控制2输入端;逻辑控制2输出端分别连接逻辑控制1和整流管M1的栅极。
[0008] 前述的同步整流电路中,所述逻辑控制1模块控制Boost模块的开关管PM1和续流管NM2的开或关,所述逻辑控制2模块控制整流管M1的开或关。
[0009] 前述的同步整流电路中,开关管PM1为P型mos管或PNP双极型晶体管;续流管NM2为N型mos管或NPN双极型晶体管。
[0010] 前述的同步整流电路中,所述整流管M1为VDMOS或LDMOS。
[0011] 本发明的有益效果为:本发明的低压电荷泵+boost相结合的自驱动方式,不需要外部额外供电,同时加快给电容充电的速度,降低整流电路的占空比,降低平均导通压降,大大降低了应用复杂度,提高了应用范围。

附图说明

[0012] 图1所示是本发明的架构示意图。

具体实施方式

[0013] 下面结合附图对本发明进行详细的描述:
[0014] 如图1所示,一种同步整流电路,它包括低压电荷泵模块、Boost模块、外连接电容C和整流管M1;其中该低压电荷泵模块由振荡器模块、电荷泵单元构成;Boost模块由逻辑控制1模块、电压检测1模块、PWM产生模块、基准电压产生模块、开关管PM1、续流管NM2、隔离管NM1、电感L和取样电阻R1与 R2构成;
[0015] 其中,隔离管NM1的漏极连接整流管M1的漏极,其源极分别连接续流管NM2的源极、电阻R2下端和电容C的下极板,其栅极分别连接整流管M1的源极和电感L的一端;开关管PM1的源极分别连接振荡器、外连接电容C和电压检测模块2的输入端,其漏极连接电感L的另一端;电容C的上极板分别连接电压检测模块1的输入端和电荷泵模块的输出端,电阻R1与R2串联分压后产生的电压Vf与基准电压产生模块产生电压Vref作为PWM模块的输入端;该逻辑控制1模块的第一输入端为电压检测1模块的输出端,该逻辑控制1模块的第二输入端为PWM模块输出端,该逻辑控制1模块的第三输入端为逻辑控制2的输出端;该逻辑控制1模块的第一输出端分别连接在续流管NM2的栅极,第二输出端连接在开关管的栅极,该逻辑控制1模块第三输出端连接到振荡器;电压检测2模块输入端连连接电容C上极板,输入端连连接逻辑控制2输入端;逻辑控制2输出端分别连接逻辑控制1和整流管M1的栅极。
[0016] 而该逻辑控制1模块控制Boost模块的开关管PM1和续流管NM2的开或关,所述逻辑控制2模块控制整流管M1的开或关,开关管PM1为P型mos管或PNP双极型晶体管;续流管NM2为N型mos管或NPN双极型晶体管,该整流管M1为VDMOS或LDMOS。
[0017] 工作过程如下:
[0018] (1)当整流管反向体二极管导通,低压电荷泵模块开始工作,电容C上电压为0,电荷泵在振荡器的驱动下使电容C上的电压逐渐上升,进行低压启动,设此阶段的工作时间为T1。
[0019] (2)当电容C上的电位到达到Boost模块的工作条件时,电压检测1模块输出控制信号,关闭低压电荷泵模块,同时启动Boost模块,继续给电容C升压,电压检测2模块检测电容C上的电压值,当电容上电压值达到预设的上限值VH时,逻辑控制2模块打开整流管,同时关闭Boost模块,停止对电容充电。设此阶段工作时间为T2
[0020] (3)该阶段,Boost模块和低压电荷泵模块停止工作,电容C的能量维持整流管导通,同时电压检测2模块检测电容上的电压,当电容上的电压下降到预设的下限值VL时,逻辑控制模块关断整流管,此时低压电荷泵模块启动,对电容继续充电升压。设此阶段的工作时间为T3。
[0021] (4)重复上述过程,依次循环,在整流管S与D之间形成占空比为m的方波。
[0022] 设电流流过整流管的体二极管时,其S与D之间的电压为VF,则平均电压[0023] 综上所述,本方案的同步整流电路采用低压电荷泵+boost相结合的自驱动方式,不需要外部额外供电,同时加快给电容充电的速度,降低整流电路的占空比,降低平均导通压降,大大降低了应用复杂度,提高了应用范围。
[0024] 上述方案的描述是为便于该技术领域的普通技术人员能理解和使用的发明。熟悉本领域技术的人员显然可以容易地对实施方案做出各种修改。因此,本发明不限于上述实方案,本领域技术人员根据本发明的方法,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。