一种离线和在线结合调整驾驶曲线的方法和系统转让专利

申请号 : CN201610814700.3

文献号 : CN106379378B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 董海荣朱海楠高士根孙绪彬

申请人 : 北京交通大学

摘要 :

本发明实施例提供了一种离线和在线结合调整驾驶曲线的方法和系统。将调整起点至列车终点之间按照距离进行区间划分,使每个区间内列车的限速和坡度保持相同;其中,根据列车在线运行数据及调整前的初始驾驶曲线确定列车调整起点;在所述区间中选取调整区间;采用预设的牵引距离调整量调整更新所述本次调整区间的牵引距离;基于上一次的驾驶曲线,根据所述调整区间的本次的牵引距离获取本次调整的驾驶曲线。本实施例将在列车运行过程中以一定的时间间隔在线采集列车当前运行状态信息后经过本实施例提供的方法离线处理后获取调整的驾驶曲线,满足列车运行过程中的安全、准点和节能要求下提供较为准确的驾驶曲线供驾驶员参考,节省了在线资源。

权利要求 :

1.一种离线和在线结合调整驾驶曲线的方法,其特征在于,包括:

将调整起点至列车终点之间按照距离进行区间划分,使每个区间内列车的限速和坡度保持相同;其中,根据列车在线运行数据及调整前的初始驾驶曲线确定列车调整起点;

在所述区间中选取调整区间;

采用预设的牵引距离调整量调整更新本次调整区间的牵引距离;

基于上一次的驾驶曲线,根据所述调整区间的本次的牵引距离获取本次调整的驾驶曲线;

基于本次调整的驾驶曲线判断待调整的时间偏差是否消除;其中,基于调整前的初始驾驶曲线计算所述待调整的时间偏差,基于调整前的初始驾驶曲线对应的调整区间中每个调整区间的起点的实时速度和调整区间的末点的预计速度和调整区间的末点的实时速度计算待调整的时间偏差;若待调整的时间偏差未消除,则在所述区间中选取调整区间,采用预设的牵引距离调整量调整更新所述本次调整区间的牵引距离,基于上一次的驾驶曲线,根据所述调整区间的本次的牵引距离获取本次调整的驾驶曲线;若待调整的时间偏差消除,则停止执行所述在所述区间中选取调整区间,采用预设的牵引距离调整量调整更新所述本次调整区间的牵引距离,基于上一次的驾驶曲线,根据所述调整区间的本次的牵引距离获取本次调整的驾驶曲线。

2.根据权利要求1所述的一种离线和在线结合调整驾驶曲线的方法,其特征在于,所述根据列车在线运行数据及调整前的初始驾驶曲线确定列车调整位置起点,包括:根据列车在线运行数据获取的列车实时位置以及实时速度;

在离线调整的驾驶曲线中索引的当前位置的离线速度;

当实时速度和离线速度发生偏差时,以所述实时速度与所述离线速度发生偏差的位置为列车调整起点。

3.根据权利要求2所述的一种离线和在线结合调整驾驶曲线的方法,其特征在于,所述采用预设的牵引距离调整量调整更新本次调整区间的牵引距离,包括:使所述调整区间以其牵引距离与预设的牵引距离调整量的差值作为本次所述调整区间的牵引距离。

4.根据权利要求3所述的一种离线和在线结合调整驾驶曲线的方法,其特征在于,所述在所述区间中选取调整区间,包括:在所述区间中选取参考指标最大的区间作为首个调整区间,其中,计算每个区间的牵引距离与各个区间能耗的比值作为选择首个调整区间的参考指标;以及,基于本次驾驶曲线获取本次调整总能耗;

选择使本次调整总能耗与上一次调整总能耗的差值最大区间作为非首个调整区间。

5.一种离线和在线结合调整驾驶曲线的系统,其特征在于,包括:

划分模块:用于将调整起点至列车终点之间按照距离进行区间划分,使每个区间内列车的限速和坡度保持相同;其中,根据列车在线运行数据及调整前的初始驾驶曲线确定列车调整起点;

选取模块:用于在所述区间中选取调整区间;

调整模块:用于采用预设的牵引距离调整量调整更新本次调整区间的牵引距离;

获取模块:用于基于上一次的驾驶曲线,根据所述调整区间的本次的牵引距离获取本次调整的驾驶曲线;

判断模块:用于基于本次调整的驾驶曲线判断待调整的时间偏差是否消除;其中,基于调整前的初始驾驶曲线计算所述待调整的时间偏差;用于基于调整前的初始驾驶曲线对应的调整区间中每个调整区间的起点的实时速度和调整区间的末点的预计速度和调整区间的末点的实时速度计算待调整的时间偏差;若待调整的时间偏差未消除,则在所述区间中选取调整区间,采用预设的牵引距离调整量调整更新所述本次调整区间的牵引距离,基于上一次的驾驶曲线,根据所述调整区间的本次的牵引距离获取本次调整的驾驶曲线;若待调整的时间偏差消除,则停止执行所述在所述区间中选取调整区间,采用预设的牵引距离调整量调整更新所述本次调整区间的牵引距离,基于上一次的驾驶曲线,根据所述调整区间的本次的牵引距离获取本次调整的驾驶曲线。

6.根据权利要求5所述的一种离线和在线结合调整驾驶曲线的系统,其特征在于,所述划分模块具体用于,根据列车在线运行数据获取的列车实时位置以及实时速度;

在离线调整的驾驶曲线中索引的当前位置的离线速度;

当实时速度和离线速度发生偏差时,以所述实时速度与所述离线速度发生偏差的位置为列车调整起点。

7.根据权利要求6所述的一种离线和在线结合调整驾驶曲线的系统,其特征在于,所述调整模块具体用于,使所述调整区间以其牵引距离与预设的牵引距离调整量的差值作为本次所述调整区间的牵引距离。

8.根据权利要求7所述的一种离线和在线结合调整驾驶曲线的系统,其特征在于,所述选取模块具体用于,在所述区间中选取参考指标最大的区间作为首个调整区间,其中,计算每个区间的牵引距离与各个区间能耗的比值作为选择首个调整区间的参考指标;以及,基于本次驾驶曲线获取本次调整总能耗;

选择使本次调整总能耗与上一次调整总能耗的差值最大区间作为非首个调整区间。

说明书 :

一种离线和在线结合调整驾驶曲线的方法和系统

技术领域

[0001] 本发明涉及通信技术领域,尤其涉及一种离线和在线结合调整驾驶曲线的方法和系统。

背景技术

[0002] 铁路交通系统作为一种运输效率较高、单位运输成本较低的运输方式,承载着大量旅客和货物运输的重要任务,是国民经济发展的大动脉。铁路客运系统的运营体系主要包含开行计划与时刻表、站间参考运行曲线和列车操纵方式方法三个层级,各层级之间互相配合、互相制约,共同形成了列车的运营行为。我国的幅员广阔,干线客运列车在长距离运行过程中,线路情况、周边环境和列车特性都有可能发生变化。在事先编排运行图和确定列车站间运行操纵参考策略时,其所考虑的情况可能与实际存在偏差。列车司机作为列车运行过程中的控制主体,在按照控制中心下发的信号和指令完成列车的驾驶工作的过程中,也会根据实际的运行条件和自身的驾驶经验在运行过程中对列车的驾驶策略和运行行为做出部分的调整,而这些由司机驾驶行为所产生的调整将直接影响列车的运营时间、能耗等关键指标。
[0003] 干线铁路交通系统多以信号机闭塞方式(半自动闭塞、自动闭塞)作为主要的列车控制手段。然而对于列车操纵而言,仅仅得知前方区间是否可以进入是远远不够的,列车司机对列车运行实时信息与状态的掌握不足很容易造成对列车运行条件的不恰当判断和采取不合适的驾驶操纵行为,进而导致列车整体运营质量的下降。列车辅助驾驶系统(DAS:Driver Advisory System)就是在这样的背景下应运而生,在常用的列车辅助驾驶系统中,常用的驾驶曲线调整方法通常都基于实时采集实时在线计算调整,这样的方案在应用中较为浪费实时的在线资源。

发明内容

[0004] 本发明的实施例提供了一种离线和在线结合调整驾驶曲线的方法,本发明提供如下方案:
[0005] 将调整起点至列车终点之间按照距离进行区间划分,使每个区间内列车的限速和坡度保持相同;其中,根据列车在线运行数据及调整前的初始驾驶曲线确定列车调整起点;
[0006] 在所述区间中选取调整区间;
[0007] 采用预设的牵引距离调整量调整更新所述本次调整区间的牵引距离;
[0008] 基于上一次的驾驶曲线,根据所述调整区间的本次的牵引距离获取本次调整的驾驶曲线。
[0009] 根据本发明的上述方法,包括:
[0010] 基于本次调整的驾驶曲线判断待调整的时间偏差是否消除;其中,基于调整前的初始驾驶曲线计算所述待调整的时间偏差;
[0011] 若未消除,则
[0012] 在所述区间中选取调整区间;
[0013] 采用预设的牵引距离调整量调整更新所述本次调整区间的牵引距离;
[0014] 基于上一次的驾驶曲线,根据所述调整区间的本次的牵引距离获取本次调整的驾驶曲线;
[0015] 若消除,则停止执行所述
[0016] 在所述区间中选取调整区间;
[0017] 采用预设的牵引距离调整量调整更新所述本次调整区间的牵引距离;
[0018] 基于上一次的驾驶曲线,根据所述调整区间的本次的牵引距离获取本次调整的驾驶曲线。
[0019] 根据本发明的上述方法,所述基于调整前的初始驾驶曲线计算所述待调整的时间偏差,包括:基于调整前的初始驾驶曲线对应的调整区间中每个调整区间的起点的实时速度和调整区间的末点的预计速度和调整区间的末点的实时速度计算待调整的时间偏差。
[0020] 根据本发明的上述方法,所述根据列车在线运行数据及调整前的初始驾驶曲线确定列车调整位置起点,包括:
[0021] 根据列车在线运行数据获取的列车实时位置以及实时速度;
[0022] 在离线调整的驾驶曲线中索引的当前位置的离线速度;
[0023] 当实时速度和离线速度发生偏差时,以所述实时速度与所述离线速度发生偏差的位置为列车调整起点。
[0024] 根据本发明的上述方法,所述采用预设的牵引距离调整量调整并更新所述调整区间的牵引距离,包括:
[0025] 使所述调整区间以其牵引距离与预设的牵引距离调整量的差值作为本次所述调整区间的牵引距离。
[0026] 根据本发明的上述方法,所述在所述区间中选取调整区间,包括:
[0027] 在所述区间中选取参考指标最大的区间作为首个调整区间,其中,计算每个区间的牵引距离与各个区间能耗的比值作为选择首个调整区间的参考指标;以及,[0028] 基于本次驾驶曲线获取本次调整总能耗;
[0029] 选择使本次调整总能耗与上一次调整总能耗的差值最大区间作为非首个调整区间。
[0030] 根据本发明的另一方面,还提供一种离线和在线结合调整驾驶曲线的系统,包括:
[0031] 划分模块:用于将调整起点至列车终点之间按照距离进行区间划分,使每个区间内列车的限速和坡度保持相同;其中,根据列车在线运行数据及调整前的初始驾驶曲线确定列车调整起点;
[0032] 选取模块:用于在所述区间中选取调整区间;
[0033] 调整模块:用于采用预设的牵引距离调整量调整更新所述本次调整区间的牵引距离;
[0034] 获取模块:用于基于上一次的驾驶曲线,根据所述调整区间的本次的牵引距离获取本次调整的驾驶曲线。
[0035] 根据本发明的另一方面,包括:
[0036] 判断模块:用于基于本次调整的驾驶曲线判断待调整的时间偏差是否消除;其中,基于调整前的初始驾驶曲线计算所述待调整的时间偏差;
[0037] 若未消除,则
[0038] 在所述区间中选取调整区间;
[0039] 采用预设的牵引距离调整量调整更新所述本次调整区间的牵引距离;
[0040] 基于上一次的驾驶曲线,根据所述调整区间的本次的牵引距离获取本次调整的驾驶曲线;
[0041] 若消除,则停止执行所述
[0042] 在所述区间中选取调整区间;
[0043] 采用预设的牵引距离调整量调整更新所述本次调整区间的牵引距离;
[0044] 基于上一次的驾驶曲线,根据所述调整区间的本次的牵引距离获取本次调整的驾驶曲线。
[0045] 根据本发明的另一方面,所述判断模块具体用于基于调整前的初始驾驶曲线对应的调整区间中每个调整区间的起点的实时速度和调整区间的末点的预计速度和调整区间的末点的实时速度计算待调整的时间偏差。
[0046] 根据本发明的另一方面,所述划分模块具体用于,
[0047] 根据列车在线运行数据获取的列车实时位置以及实时速度;
[0048] 在离线调整的驾驶曲线中索引的当前位置的离线速度;
[0049] 当实时速度和离线速度发生偏差时,以所述实时速度与所述离线速度发生偏差的位置为列车调整起点。
[0050] 根据本发明的另一方面,所述调整模块具体用于,
[0051] 使所述调整区间以其牵引距离与预设的牵引距离调整量的差值作为本次所述调整区间的牵引距离。
[0052] 根据本发明的另一方面,所述选取模块具体用于,
[0053] 在所述区间中选取参考指标最大的区间作为首个调整区间,其中,计算每个区间的牵引距离与各个区间能耗的比值作为选择首个调整区间的参考指标;以及,[0054] 基于本次驾驶曲线获取本次调整总能耗;
[0055] 选择使本次调整总能耗与上一次调整总能耗的差值最大区间作为非首个调整区间。由上述本发明的实施例提供的技术方案可以看出,本发明实施例将调整起点至列车终点之间按照距离进行区间划分,使每个区间内列车的限速和坡度保持相同;其中,根据列车在线运行数据及调整前的初始驾驶曲线确定列车调整起点;在所述区间中选取调整区间;采用预设的牵引距离调整量调整更新所述本次调整区间的牵引距离;基于上一次的驾驶曲线,根据所述调整区间的本次的牵引距离获取本次调整的驾驶曲线。本实施例将在列车运行过程中以一定的时间间隔在线采集列车当前运行状态信息后经过本实施例提供的方法离线处理后获取调整的驾驶曲线,可以在满足列车运行过程中的安全、准点和节能要求下提供较为准确的驾驶曲线供驾驶员参考,节省了在线资源。

附图说明

[0056] 为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
[0057] 图1为本发明实施例一提供的一种离线和在线结合调整驾驶曲线的方法的处理流程图;
[0058] 图2为发明实施例一提供的一种选择调整区间的方法;
[0059] 图3为本发明实施例二提供的一种离线和在线结合调整驾驶曲线的方法的处理流程图;
[0060] 图4为本发明实施例三提供的一种离线和在线结合调整驾驶曲线系统的系统模块图。

具体实施方式

[0061] 为便于对本发明实施例的理解,下面将结合附图以几个具体实施例为例做进一步的解释说明,且各个实施例并不构成对本发明实施例的限定。
[0062] 实施例一
[0063] 在本实施例中,需要预先建立列车驾驶曲线的计算模型,包括:
[0064] 建立列车运行的过程中的运动表达式;其中,根据机车质量、车厢质量和乘客质量建立质量方程,根据戴维斯方程以及列车速度建立列车所受阻力方程,结合列车位置建立列车重力在列车线路方向的分力方程;根据列车在线路方向上的受力并建立加速度方程;
[0065] 基于速度、路程的基本运算分别做离散处理,获取列车耗能的迭代关系表达式;
[0066] 基于所述运动表达式以及列车耗能的迭代表式建立节能目标函数,其中根据实际列车的路程规划对列车的速度、距离、运行时间、档位建立约束条件。
[0067] 具体地,列车驾驶曲线的计算模型为基于经典牛顿力学公式:
[0068]
[0069] M=ML+∑MT+∑MP
[0070]
[0071] R(v)=ML*wl(v)+wT(v)*∑(MP+MT)
[0072] 其中,a为列车所受各力的和加速度;F为与列车牵引档位和当前速度相关的列车最大牵引力;B为与列车制动档位和当前速度相关的列车最大牵引力;G为与位置相关的重力在线路方向上的分力;R为列车所受基本阻力,具体与速度相关,由戴维斯方程给出;M为列车总质量,由机车质量、车厢质量和乘客质量三部分求和而得;L为列车长度;g为坡度前分度;Ri为弯道半径。列车在各区间内的工况转换为牵引-惰行对或惰行-制动对构成。
[0073] 其中,中间变量的迭代关系为运动学关系公式:
[0074] vi+1=vi+ai*Δt
[0075]
[0076] Ei+1=Ei+F(ci,vi)*si
[0077] 节能目标函数为:
[0078]
[0079] 对应的限制条件为:
[0080] 速度约束:0≤vi≤min(vmax_s,vmax_d)
[0081] 距离约束:s0=0,sn=S,0≤si≤S
[0082] 运行时间约束:t0=0,tn=T,0≤t≤T
[0083] 档位约束:cmin≤ci≤cmax,c∈Z
[0084] 基于列车驾驶曲线的计算模型及各计算点之间的迭代关系,获取列车驾驶曲线;列车驾驶曲线以距离-速度点集的形式给出,,假定各区间内只有一次工况切换前提下,可以由各区间的牵引距离与档位唯一确定,即输入列车在各区间内的牵引距离,即可通过上述计算方法得出整个站间列车驾驶曲线。在给定区间初始速度和牵引距离的情况下,可确定工况切换点位置,进而确定区间内的列车驾驶曲线。即,列车在整个站间的运行曲线可由一组{牵引距离,牵引档位}数值来唯一决定。
[0085] 该实施例提供了一种离线和在线结合调整驾驶曲线的方法的处理流程如图1所示,包括如下的处理步骤:
[0086] 步骤11、将调整起点至列车终点之间按照距离进行区间划分,使每个区间内列车的限速和坡度保持相同;其中,根据列车在线运行数据及调整前的初始驾驶曲线确定列车调整起点;将新近一次最新更新的驾驶曲线作为本实施例中所述的调整前的初始驾驶曲线。
[0087] 具体地,本实施例中,区间是根据坡度和限速信息划分的,只要坡度和限速有一个变化了,则需要划分为一个新的区间。如附图2所示,图中的上面的横线段描述限速的各个区段,下面的横线段描述坡度的各个区段,虚线画出的为各个区间;各个区间的距离实际上是该区间内牵引距离的最大值,下述对于调整区间中使用调整量调整牵引距离,是调整的该区间的实际牵引距离。
[0088] 步骤12、在所述区间中选取调整区间;
[0089] 步骤13、采用预设的牵引距离调整量调整更新所述本次调整区间的牵引距离;本实施例中,以所述调整区间调整前的牵引距离与预设的牵引距离调整量的差值作为本次所述调整区间的牵引距离。其中,预设的牵引距离调整量是依据实际运行情况所设定的一个调整量,该调整量小于每个调整区间的牵引距离。
[0090] 步骤14、基于上一次的驾驶曲线,根据所述调整区间的本次的牵引距离获取本次调整的驾驶曲线。
[0091] 实施例二
[0092] 在本实施例中,仍然需要预先建立列车驾驶曲线的计算模型,其具体建立过程与实施例一中相同,此处不多赘述;
[0093] 该实施例提供了一种离线和在线结合调整驾驶曲线的方法的处理流程如图3所示,包括如下的处理步骤:
[0094] 步骤21、将调整起点至列车终点之间按照距离进行区间划分,使每个区间内列车的限速和坡度保持相同;其中,根据列车在线运行数据及调整前的初始驾驶曲线确定列车调整起点;将新近一次最新更新的驾驶曲线作为本实施例中所述的调整前的初始驾驶曲线。具体地,本实施例中,区间是根据坡度和限速信息划分的,只要坡度和限速有一个变化了,则需要划分为一个新的区间。如附图2所示,图中的上面的横线段描述限速的各个区段,下面的横线段描述坡度的各个区段,虚线画出的为各个区间;各个区间的距离实际上是该区间内牵引距离的最大值,下述对于调整区间中使用调整量调整牵引距离,是调整的该区间的实际牵引距离。
[0095] 所述根据列车在线运行数据及调整前的初始驾驶曲线确定列车调整位置起点,包括:
[0096] 根据列车在线运行数据获取的列车实时位置以及实时速度;
[0097] 在离线调整的驾驶曲线中索引的当前位置的离线速度;
[0098] 当实时速度和离线速度发生偏差时,以所述实时速度与所述离线速度发生偏差的位置为列车调整起点。
[0099] 步骤22、基于调整前的初始驾驶曲线计算待调整的时间偏差;
[0100] 具体地,基于调整前的初始驾驶曲线对应的调整区间中每个调整区间的起点的实时速度和调整区间的末点的预计速度和调整区间的末点的实时速度计算待调整的时间偏差;
[0101] 对于每个调整区间,因为当实时速度和离线速度发生偏差时,以所述实时速度与所述离线速度发生偏差的位置为列车调整起点;此时列车调整的起点一定是一个区间的起点,设定列车从第N个区间的起点第i点作为调整起点,初始的实时速度为 列车在第N个区间的末点i+1点预计的速度为 但是出现偏差后,列车在第N个区间的末点i+1点实时速度为
[0102] 那么对于第N个区间,
[0103] 从第N+1个区间的起点第i+1点作为调整起点,初始的实时速度为 列车在第N个区间的末点i+2点预计的速度为 但是出现偏差后,列车在第N个区间的末点i+1点实时速度为
[0104] 对于第N+1个区间,
[0105] 以此类推,到最后一个调整区间M,
[0106]
[0107] 对于待调整的时间偏差ΔT=ΔT(N)+ΔT(N+1)+…+ΔT(N+M);
[0108] 步骤203、在所述区间中选取首个调整区间;
[0109] 在调整区间的选择中,原则上每一次调整都需要最大限度地节能,在实际应用中,首个调整区间的选择和非首个调整区间的选择方法不同;
[0110] 对于首个调整区间的选择时,本实施例中采用计算每个区间的牵引距离与各个区间能耗的比值作为选择首个调整区间的参考指标;所述参考指标用于可以反映节能效果,因此根据此参考指标选取节能效果最大的区间作为为首个调整的区间。
[0111] 在所述区间中选取参考指标最大的区间作为首个调整区间;
[0112] 在首个调整区间选择之后;
[0113] 步骤24、基于初始驾驶曲线,根据所述调整区间的首次的牵引距离获取首次调整的驾驶曲线;将调整后的首个调整区间的牵引距离作为调整区间的首次的牵引距离,根据调整区间的首次的牵引距离获取首次调整的驾驶曲线;
[0114] 步骤25、基于首次调整的驾驶曲线判断待调整的时间偏差是否消除;
[0115] 首次调整后,设定列车从第N个区间的起点第i点作为调整起点,初始的实时速度为 列车在第N个区间的末点i+1点预计的速度为 但是出现偏差后,列车在第N个区间的末点i+1点实时速度为
[0116] 那么对于第N个区间,
[0117] 从第N+1个区间的起点第i+1点作为调整起点,初始的实时速度为 列车在第N个区间的末点i+2点预计的速度为 但是出现偏差后,列车在第N个区间的末点i+1点实时速度为
[0118] 对于第N+1个区间,
[0119] 以此类推,到最后一个调整区间M,
[0120]
[0121] ΔT1=ΔT1(N)+ΔT1(N+1)+…+ΔT1(N+M);
[0122] 判断待调整的时间偏差是否消除,即判断ΔT1是否等于0,若等于0,则证明待调整的时间偏差已经消除,若不等于0,则待调整的时间偏差还需要继续调整;则再重复执行下述步骤23至步骤25;
[0123] 再次执行步骤23、在所述区间中选取非首个调整区间;
[0124] 选择调整区间时,除首个调整区间之外,选择使本次(第二次)调整总能耗与上一次调整总能耗的差值最大区间作为非首个调整区间;其中,基于本次(第二次)驾驶曲线获取本次调整总能耗;本次(第二次)调整总能耗与上一次调整总能耗的差值为本次能耗变化量。
[0125] 此时,对除首个调整区间之外的所有区间,进行一次预运算,对每个区间都假设其为预调整区间时,采用预设的牵引距离调整量调整并更新该预调整区间的牵引距离;基于首次调整的驾驶曲线可以获取每个预调整区间的调整驾驶曲线,分别针对每个预调整区间都获取本次的预调整总能耗Ei;基于首次(上一次)调整的驾驶曲线获取首次(上一次)调整的调整总能耗E;比较每个预调整区间获取本次的预调整总能耗Ei与首次(上一次)调整的调整总能耗E的差值ΔEi,
[0126] ΔEi=Ei-E;i表示每个预调整区间的编号;在运算结果ΔEi中选择最大的ΔE对应的预调整区间作为本次的调整区间。
[0127] 步骤24,基于上一次(首次)调整的驾驶曲线,根据所述非首个调整区间的本次(第二次)的牵引距离获取本次(第二次)调整的驾驶曲线;采用预设的牵引距离调整量调整并更新本次(第二次)所述调整区间的牵引距离;本实施例中,以所述调整区间调整前的牵引距离与预设的牵引距离调整量的差值作为本次所述调整区间的牵引距离。其中,预设的牵引距离调整量是依据实际运行情况所设定的一个调整量,该调整量小于每个调整区间的牵引距离。
[0128] 步骤25、判断本次调整后待调整的时间总量是否消除;
[0129] 本次(第二次)调整后,设定列车从第N个区间的起点第i点作为调整起点,初始的实时速度为 列车在第N个区间的末点i+1点预计的速度为 但是出现偏差后,列车在第N个区间的末点i+1点实时速度为
[0130] 那么对于第N个区间,
[0131] 从第N+1个区间的起点第i+1点作为调整起点,初始的实时速度为 列车在第N个区间的末点i+2点预计的速度为 但是出现偏差后,列车在第N个区间的末点i+1点实时速度为
[0132] 对于第N+1个区间,
[0133] 以此类推,到最后一个调整区间M,
[0134]
[0135] ΔT2=ΔT2(N)+ΔT2(N+1)+…+ΔT2(N+M);
[0136] 判断待调整的时间偏差是否消除,即判断ΔT2是否等于0,若等于0,则证明待调整的时间偏差已经消除,则停止执行步骤23至步骤25;
[0137] 若不等于0,则待调整的时间偏差还需要继续调整;则再重复执行步骤23至步骤25。
[0138] 实施例二
[0139] 该实施例提供了一种离线和在线结合调整驾驶曲线的系统,其具体实现结构如图4所示,具体可以包括如下的模块:
[0140] 划分模块31:用于将调整起点至列车终点之间按照距离进行区间划分,使每个区间内列车的限速和坡度保持相同;其中,根据列车在线运行数据及调整前的初始驾驶曲线确定列车调整起点;
[0141] 选取模块32:用于在所述区间中选取调整区间;
[0142] 调整模块33:用于采用预设的牵引距离调整量调整更新所述本次调整区间的牵引距离;
[0143] 获取模块34:用于基于上一次的驾驶曲线,根据所述调整区间的本次的牵引距离获取本次调整的驾驶曲线。
[0144] 13、根据权利要求7所述的一种离线和在线结合调整驾驶曲线的系统,其特征在于,包括:
[0145] 判断模块35:用于基于本次调整的驾驶曲线判断待调整的时间偏差是否消除;其中,基于调整前的初始驾驶曲线计算所述待调整的时间偏差;
[0146] 若未消除,则
[0147] 在所述区间中选取调整区间;
[0148] 采用预设的牵引距离调整量调整更新所述本次调整区间的牵引距离;
[0149] 基于上一次的驾驶曲线,根据所述调整区间的本次的牵引距离获取本次调整的驾驶曲线;
[0150] 若消除,则停止执行所述
[0151] 在所述区间中选取调整区间;
[0152] 采用预设的牵引距离调整量调整更新所述本次调整区间的牵引距离;
[0153] 基于上一次的驾驶曲线,根据所述调整区间的本次的牵引距离获取本次调整的驾驶曲线。
[0154] 所述判断模块35具体用于基于调整前的初始驾驶曲线对应的调整区间中每个调整区间的起点的实时速度和调整区间的末点的预计速度和调整区间的末点的实时速度计算待调整的时间偏差。
[0155] 所述划分模块31具体用于,
[0156] 根据列车在线运行数据获取的列车实时位置以及实时速度;
[0157] 在离线调整的驾驶曲线中索引的当前位置的离线速度;
[0158] 当实时速度和离线速度发生偏差时,以所述实时速度与所述离线速度发生偏差的位置为列车调整起点。
[0159] 调整模块33具体用于,
[0160] 使所述调整区间以其牵引距离与预设的牵引距离调整量的差值作为本次所述调整区间的牵引距离。
[0161] 选取模块32具体用于,
[0162] 在所述区间中选取参考指标最大的区间作为首个调整区间,其中,计算每个区间的牵引距离与各个区间能耗的比值作为选择首个调整区间的参考指标;以及,[0163] 基于本次驾驶曲线获取本次调整总能耗;
[0164] 选择使本次调整总能耗与上一次调整总能耗的差值最大区间作为非首个调整区间。用本发明实施例的系统进行离线和在线结合调整驾驶曲线的具体过程与前述方法实施例类似,此处不再赘述。
[0165] 综上所述,本发明实施例通过将调整起点至列车终点之间按照距离进行区间划分,使每个区间内列车的限速和坡度保持相同;其中,根据列车在线运行数据及调整前的初始驾驶曲线确定列车调整起点;在所述区间中选取调整区间;采用预设的牵引距离调整量调整更新所述本次调整区间的牵引距离;基于上一次的驾驶曲线,根据所述调整区间的本次的牵引距离获取本次调整的驾驶曲线。本实施例将在列车运行过程中以一定的时间间隔在线采集列车当前运行状态信息后经过本实施例提供的方法离线处理后获取调整的驾驶曲线,可以在满足列车运行过程中的安全、准点和节能要求下提供较为准确的驾驶曲线供驾驶员参考,节省了在线资源。本领域普通技术人员可以理解:附图只是一个实施例的示意图,附图中的模块或流程并不一定是实施本发明所必须的。
[0166] 通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例或者实施例的某些部分所述的方法。
[0167] 本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置或系统实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的装置及系统实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
[0168] 以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。