亲水性多孔聚四氟乙烯膜转让专利

申请号 : CN201610491536.7

文献号 : CN106397742B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : K·A-H·H·阿米尔H·埃特-哈多M·斯塔西亚克A·辛格

申请人 : 帕尔公司

摘要 :

本发明公开了亲水性多孔PTFE膜,其包含PTFE和两性共聚物,例如下式的共聚物:其中m和n如本文中所述。还公开了制备亲水性多孔PTFE膜的方法和通过这样的膜过滤流体的方法。

权利要求 :

1.亲水性多孔膜,包含聚四氟乙烯(PTFE)和两性共聚物的共混物,其中所述两性共聚物包含重复单元A和B,其中A选自以下结构的一种或多种:和B具有下式:

其中:

所述两性共聚物为嵌段共聚物或无规共聚物;和A和B的每一个的重复单元数量为m和n且在1至1000的范围,条件是m和n之和等于或大于10。

2.根据权利要求1所述的亲水性多孔膜,其中所述两性共聚物具有选自芳基和烷氧基的链端基。

3.根据权利要求1或2所述的亲水性多孔膜,其中所述两性共聚物具有下式之一:其中m1+m2=m。

4.制备亲水性多孔膜的方法,包括:(i)制备任选地具有润滑剂的包含PTFE和两性共聚物的共混物:(ii)将所述共混物挤出成条带;

(iii)将所述条带双轴拉伸,以获得所述亲水性多孔膜;任选地(iv)使所述亲水性多孔膜与试剂反应,以改变所述共聚物的化学结构;和任选地(v)使所述亲水性多孔膜退火;

其中所述两性共聚物包含重复单元A和B,其中A选自以下结构的一种或多种:和B具有下式:

其中:

所述两性共聚物为嵌段共聚物或无规共聚物;和A和B的每一个的重复单元数量为m和n且在1至1000的范围,条件是m和n之和等于或大于10。

5.根据权利要求4所述的方法,其中在(iv)中的所述试剂为碱。

6.通过根据权利要求4或5所述的方法制备的亲水性多孔膜。

7.过滤流体的方法,所述方法包括使所述流体通过根据权利要求1-3或6中任一项所述的亲水性多孔膜。

说明书 :

亲水性多孔聚四氟乙烯膜

[0001] 发明背景
[0002] 多孔PTFE膜的性质,包括其机械强度、化学耐性或惰性、不粘着性、优异的介电性质、在高温下的热稳定性和低摩擦系数使得其对于许多应用而言非常具有吸引力。然而,对于某些应用而言,将会有益的是改进其润湿特性而不影响其内在性质。已进行尝试来改变 PTFE膜的一种或多种性质。然而,许多这些尝试导致在PTFE的有吸引力的性质的一种或多种,例如机械强度方面降低。
[0003] 前文说明存在对于制备具有改进的润湿特性而不明显影响其机械强度的多孔PTFE膜的未满足的需求。
[0004] 发明简述
[0005] 本发明提供了包括聚四氟乙烯(PTFE)和两性共聚物的共混物的亲水性多孔膜,其中所述两性共聚物包括重复单元A和B,其中A选自以下结构的一种或多种:
[0006]
[0007] 和B具有下式:
[0008] 其中:
[0009] 所述两性共聚物为嵌段共聚物或无规共聚物;和
[0010] A和B的每一个的重复单元数量为n和m且在1至约1000的范围,条件是n和m之和等于或大于10。
[0011] 所述亲水性多孔膜具有PTFE膜的许多有利之处,例如机械强度,并且同时显示出高水平的水润湿性。
[0012] 本发明还提供了制备亲水性多孔膜的方法,包括:
[0013] (i)制备任选地具有润滑剂的包含PTFE和两性共聚物的共混物:
[0014] (ii)将所述共混物挤出成条带;
[0015] (iii)将所述条带双轴拉伸,以获得所述亲水性多孔膜;任选地
[0016] (iv)使所述亲水性多孔膜与试剂反应,以改变所述共聚物的化学结构;和任选地[0017] (v)使所述亲水性多孔膜退火;
[0018] 其中所述两性共聚物包含重复单元A和B,其中A选自以下结构的一种或多种:
[0019]
[0020] 和B具有下式:
[0021] 其中:
[0022] 所述两性共聚物为嵌段共聚物或无规共聚物;和
[0023] A和B的每一个的重复单元数量为n和m且在1至约1000的范围,条件是n和m之和等于或大于10。
[0024] 本发明还提供了通过这些亲水性多孔PTFE膜过滤流体的方法。

附图说明

[0025] 图1A展示了在拉伸之前的PTFE预成型品的横截面的SEM显微照片,和图1B展示了在拉伸之后的PTFE预成型品的横截面的SEM显微照片。
[0026] 发明详述
[0027] 根据一个实施方案,本发明提供了包含聚四氟乙烯(PTFE)和两性共聚物的共混物的亲水性多孔膜,其中所述两性共聚物包含重复单元A和B,其中A选自以下结构的一种或多种:
[0028]
[0029] 和B具有下式:
[0030] 其中:
[0031] 所述两性共聚物为嵌段共聚物或无规共聚物;和
[0032] A和B的每一个的重复单元数量为n和m且在1至约1000的范围,条件是n和m之和等于或大于10。
[0033] 所述重复单元的式上的虚线表示所述共聚物可以为嵌段共聚物或无规共聚物。嵌段共聚物通过圆括号:(重复单元)来表示。无规共聚物通过方括号:[重复单元]来表示。
[0034] 在实施方案种,n和m表示相应单体的聚合度,并且独立地为从约10至约1000,优选约20至约50。
[0035] 在其它实施方案中,n和m表示所述共聚物中存在的单体的摩尔份额,和n和m可以独立地在1至99摩尔%,优选20至50摩尔%范围内。
[0036] 相应单体嵌段可以以任意合适的质量%存在于嵌段共聚物中,例如在一个实施方案中,从约99%:约1%至约50%:约50%,优选从约90%:约10%至约70%:约30%,且更优选从约75%:约25%。
[0037] 所述共聚物可以为嵌段共聚物或无规共聚物。所述嵌段共聚物可以为二嵌段(A-B)、三嵌段(A-B-A或B-A-B)或多嵌段共聚物((A-B)x)。任选地,所述共聚物可以具有第三片段C,例如三嵌段共聚物或无规共聚物如A-B-C。
[0038] 所述共聚物可以具有任意合适的分子量,例如在一个实施方案中,约10kDa至约1000kDa,优选从约75kDa至约500kDa,且更优选从约250kDa至约500kDa的数均或重均分子量(Mn或Mw)。
[0039] 根据一个实施方案,所述两性共聚物具有下式之一:
[0040]
[0041]
[0042] 其中m1+m2=m。
[0043] 本发明的两性共聚物可以通过任意合适的方法,例如通过环状单体的开环易位聚合(ROMP)制备。典型地,含有卡宾配体的过渡金属催化剂介导易位反应。
[0044] 可以使用任意合适的ROMP催化剂,例如,Grubbs第一代、第二代和第三代催化剂,可以使用Umicore、Hoveyda-Grubbs、Schrock和Schrock-Hoveyda催化剂。这类催化剂的实例包括以下:
[0045]
[0046]
[0047]
[0048] 在一个实施方式中,尤其合适的是Grubbs第三代催化剂,因为它们具有多种优势,例如在空气中的稳定性,耐受多官能团,和/或聚合引发和增长速率快。此外,使用Grubbs第三代催化剂,端基可以设计为与任意相容基团相适应,并且催化剂可以容易地回收。这类催化剂的优选实例是:
[0049]
[0050] 上述第三代Grubbs催化剂(G3)可以商购获得或者从Grubbs第二代催化剂(G2)制备,如下所示:
[0051]
[0052] 具有选自以下的片段A的嵌段共聚物可以通过包括以下的方法制备:
[0053]
[0054] (i)使选自顺式-5-氧杂降冰片烯-外型-2,3-二甲酸酐、顺式-5-降冰片烯-外型-2,3-二甲酸的二甲酯和顺式-5-氧杂降冰片烯-外型-2,3-二甲酸的二甲酯的单体通过开环易位聚合(ROMP)催化剂催化聚合,以获得均聚物;和
[0055] (ii)继续在(i)中获得的均聚物的链端上通过ROMP催化剂催化聚合5-(全氟己基)降冰片烯。
[0056] 从顺式-5-氧杂降冰片烯-外型-2,3-二甲酸酐制备的共聚物(聚(C2-b-PNF6))可以与含水碱反应,以获得具有带有二甲酸的片段A 的共聚物。
[0057] 无规共聚物可以通过包括以下的方法制备:(i)通过ROMP催化剂催化使顺式-5-降冰片烯-外型-2,3-二甲酸的二甲酯和5-(全氟己基)降冰片烯的混合物聚合或(ii)通过ROMP催化剂催化使顺式-5-氧杂降冰片烯-外型-2,3-二甲酸的二甲酯、5-(全氟己基)降冰片烯和N-巯基乙基顺式-5-降冰片烯-外型-2,3-二甲酰亚胺的混合物聚合。
[0058] 在合适的溶剂例如通常用于进行ROMP聚合的溶剂中进行单体的聚合。合适的溶剂的实例包括芳族烃类如苯、甲苯和二甲苯,脂肪烃类如正戊烷、己烷和庚烷,脂环烃类如环己烷,和卤代烃类如二氯甲烷、二氯乙烷、二氯乙烯、四氯乙烷、氯苯、二氯苯和三氯苯,以及其混合物。
[0059] 单体浓度可以在1至50重量%,优选2至45重量%,且更优选3至40重量%范围内。
[0060] 可以在任意合适的温度,例如从-20至+100℃,优选10至80℃进行聚合。
[0061] 为了制备嵌段共聚物,可以使聚合进行任意合适的时间,以获得各嵌段的适当链长度,所述时间可以为从约1分钟至100小时。
[0062] 可以将催化剂的量选择为任意合适的量。例如,催化剂与单体的摩尔比可以为约1:10至约1:1000,优选约1:50至约1:500,且更优选约1:100至约1:200。例如,催化剂与单体的摩尔比可以是1:n和1:m,其中n和m是平均聚合度。
[0063] 可以通过合适的技术,例如采用非溶剂沉淀分离所述聚合物。
[0064] 所述共聚物可以通过任意已知技术表征其分子量和分子量分布。例如可以使用MALS-GPC技术。该技术经由高压泵,使用流动相穿过一堆填充有固定相的柱洗脱聚合物溶液。固定相根据链尺寸分离聚合物样品,随后通过三种不同的检测器检测聚合物。可以连续使用一系列检测器,例如紫外检测器(UV-检测器),随后是多角度激光散射检测器(MALS-检测器),接着又是折射率检测器(RI-检测器)。UV-检测器测量在254nm波长处的聚合物光吸收;MALS-检测器测量聚合物链相对于移动相的散射光。
[0065] 所述共聚物优选为单分散的。例如,所述共聚物具有1.05至1.5,优选1.1至1.2的Mw/Mn。
[0066] 例如,下式的共聚物可以通过包括以下的方法制备:
[0067]
[0068] (i)使顺式-5-氧杂降冰片烯-外型-2,3-二甲酸酐通过开环易位聚合(ROMP)催化剂催化聚合,以获得均聚物;和
[0069] (ii)继续在(i)中获得的均聚物的链端上通过ROMP催化剂催化聚合5-(全氟己基)降冰片烯,如下所示:
[0070]
[0071] 聚(C2二酸-b-NPF6)可以通过用含水碱水解聚(C2-b-PNF6)制备,如下所示:
[0072]
[0073] 聚(C3-b-NPF6)可以通过包括以下的方法制备:
[0074] (i)使顺式-5-降冰片烯-外型-2,3-二甲酸的二甲酯通过开环易位聚合(ROMP)催化剂催化聚合,以获得均聚物;和
[0075] (ii)在(i)中获得的均聚物的链端上通过ROMP催化剂催化聚合5-(全氟己基)降冰片烯,如下所示:
[0076]
[0077] 聚(C4-b-NPF6)可以通过包括以下的方法制备:
[0078] (i)使顺式-5-氧杂降冰片烯-外型-2,3-二甲酸的二甲酯通过ROMP催化剂催化聚合,以获得均聚物;和
[0079] (ii)在(i)中获得的所述均聚物的链端上通过ROMP催化剂催化聚合5-(全氟己基)降冰片烯
[0080]
[0081] 聚(C3-r-NPF6)可以通过包括以下的方法制备:顺式-5-降冰片烯-外型-2,3-二甲酸的二甲酯和5-(全氟己基)降冰片烯的混合物通过ROMP催化剂催化聚合。
[0082] 在上述方法中,可以以合适的方式,例如通过使用烷基乙烯基醚如乙基乙烯基醚终止聚合。因此,可以提供所述共聚物的端基之一。
[0083] 其它所述端基可以通过选择适当的ROMP催化剂来提供。例如,苯基端基可以通过使用具有在过渡金属上的亚苄基的ROMP催化剂来提供。
[0084] 本发明还提供了制备亲水性多孔PTFE膜的方法,包括:
[0085] (i)制备任选地具有润滑剂的包含PTFE和两性共聚物的共混物:
[0086] (ii)将所述共混物挤出成条带;
[0087] (iii)将所述条带双轴拉伸,以获得所述亲水性多孔膜;任选地
[0088] (iv)使所述亲水性多孔膜与试剂反应,以改变所述共聚物的化学结构;和任选地[0089] (v)使所述亲水性多孔膜退火;
[0090] 其中所述两性共聚物包含重复单元A和B,其中A选自以下结构的一种或多种:
[0091]
[0092] 和B具有下式:
[0093] 其中:
[0094] 所述两性共聚物为嵌段共聚物或无规共聚物;和
[0095] A和B的每一个的重复单元数量为n和m且在1至约1000的范围,条件是n和m之和等于或大于10。
[0096] 将需要的量的PTFE粉末与共聚物在合适的溶剂(例如醇溶剂如甲醇、乙醇、或异丙醇)中的溶液混合,以获得共混物,然后将所述共混物与润滑剂如无味溶剂油(例如Isopar G)混合,并使产生的糊剂经受剪切,例如在双辊中,并且在约300psi或更高的压力下成型为原始坯料至少两次,每次约55秒的时间。使产生的原始坯料在室温平衡约12小时或更久。然后将所述原始坯料挤出成期望的形状。例如,在26mm模头间隙尺寸,最大压力和55℃的恒定温度进行挤出,产生管状PTFE条带。接下来,将所述管状条带沿着中心轴切开并围绕移液管(pipette)再次辊轧,产生新的原始坯料(非压缩的)。将所述新的原始坯料在与第一次挤出工艺期间所使用的相同条件下再次挤出。增加该步骤以将有利的横向机械性质提供给PTFE条带。在30℃进行砑光,达到9-10密耳的厚度的条带并切割成4×4英寸。然后将产生的条带在125℃干燥1h,由此从挤出的条带除去所述润滑剂。
[0097] 然后使所述条带在以下条件伸长:纵向(MD)与横向(TD)的伸长比在300%/秒伸长率的情况下为3。将在伸长炉中的温度设定至150℃。
[0098] 然后使伸长的条带退火。退火在退火炉中于350℃进行5秒,之后将所述条带冷却。由上述伸长步骤产生的孔隙率在冷却时得以保持。
[0099] 任选地,使上述获得的多孔膜与碱反应,以使存在于所述共聚物中的任何酸酐单元开环。所述碱可以为胺或强碱(alkali)。在一个实施方案中,所述胺可以为聚醚一元胺如聚氧化乙烯一元胺、聚氧化丙烯一元胺,或聚氧化乙烯-共-聚氧化丙烯一元胺。聚醚一元胺的实例为可获自Huntsman Corporation的 M1000,其为具有3/19的PO/EO比的大约1000分子量的一元胺。可选地,所述聚醚胺可以为聚醚二胺。聚醚二胺的实例为同样可获自Huntsman Corporation的 ED176,其为主要是聚氧化乙烯骨架
的二胺。
[0100] 因此,例如制备所述胺在有机溶剂如四氢呋喃(THF)中的浓度为约5至10%(w/w)的溶液。将多孔膜样品在所述胺溶液中浸渍合适的时间段,例如约30分钟至约2小时,特别是约1小时。可以使所述胺溶液与所述膜在任意合适的温度,例如室温(20-25℃)接触。使经胺处理的样品干燥合适的时间段,例如30秒至1分钟,直至样品不再透明。将产生的膜在烘箱中于约160℃的温度热固化约30min的时间。将所产生的膜在过量THF中浸泡合适的时间段,例如12-16小时,之后将所述膜用新制THF洗涤并于约50℃干燥约30分钟的时间段。
[0101] 此外任选地,可以将所产生的膜用1N NaOH溶液处理,然后用去离子水冲洗并随后空气干燥。可选地或另外地,可以将所述膜暴露至在80℃或更高温度的水。
[0102] 根据本发明的一个实施方案,所述亲水性多孔PTFE膜为多孔膜,例如纳米多孔膜,例如具有介于1nm和100nm之间的直径的孔的膜,或具有介于1μm和10μm之间的直径的孔的微米多孔膜。
[0103] 可以如下测定所产生的多孔膜的表面张力。例如,将PTFE多孔载体的片材在室温通过用IPA溶剂预润湿所述膜片材并将所述膜浸泡在浓度为介于0.1质量%和10质量%之间的涂料聚合物溶液中而涂覆。涂覆时间在(1分钟至12小时)之间的范围内。在浸泡所述载体之后,将其在对流烘箱中于100℃至160℃干燥。干燥时间在10分钟至12h之间。所产生的多孔PTFE膜的润湿特性通过测量临界润湿表面张力来测量。
[0104] 表面张力方面的表面改性的变化通过测量临界润湿表面张力(CWST)来测量。所述方法依赖于一组某种组成的溶液。每种溶液具有特定的表面张力。所述溶液的表面张力在呈小的非等量增量的25至92达因/cm的范围内。为了测量膜表面张力,将膜置于白光桌顶部,将一滴某表面张力的溶液施加至所述膜表面,并记录液滴渗透所述膜并且变成亮白色(作为光穿过所述膜的指示)所花费的时间。当液滴渗透所述膜所花费的时间≤10秒时,认为是立即润湿。如果所述时间>10秒,则认为所述溶液部分润湿所述膜。
[0105] 根据本发明的实施方案的亲水性多孔PTFE膜可以用于多种应用中,包括例如,诊断应用(包括例如,样品制备和/或诊断侧向流动装置),喷墨应用,平版印刷,例如,作为HD/UHMW PE基介质的替代,过滤制药工业的流体,金属去除,生产超纯水,工业和地表水的处理,过滤用于医学应用的流体(包括家用的和/或患者使用的,例如静脉内应用,还包括例如过滤生物流体如血液(例如,病毒清除)),过滤电子工业的流体(例如过滤热SPM和微电子工业中的光致抗蚀剂流体),过滤食品和饮料工业的流体,啤酒过滤,澄清,过滤含抗体和/或含蛋白的流体,过滤含核酸的流体,细胞检测(包括原位),细胞收获,和/或过滤细胞培养液。可选地或额外地,根据本发明的实施方案的多孔膜可以用于过滤空气和/或气体和/或可以用于通气应用(例如,允许空气和/或气体从中通过,但不允许液体从中通过)。根据本发明的实施方案的多孔膜可以用于多种装置,包括外科装置和产品,例如,眼科手术产品。
[0106] 根据本发明的实施方案,亲水性多孔PTFE膜可以具有多种外形,包括平面、平片、褶皱、管状、螺旋形和中空纤维。
[0107] 根据本发明的实施方案的亲水性多孔PTFE膜典型地布置在包括至少一个入口和至少一个出口的壳体中,并且所述壳体在所述入口和所述出口之间限定至少一个流体流动路径,其中至少一个本发明的膜或包括至少一个本发明的膜的过滤器横跨所述流体流动路径,以提供过滤器装置或过滤器模块。在一个实施方案中,提供了一种过滤器装置,其包括含有入口和第一出口的壳体,并在所述入口和所述第一出口之间限定第一流体流动路径,以及至少一个本发明的膜或包括至少一个本发明的膜的过滤器,所述本发明的膜或包括至少一个本发明的膜的过滤器布置在壳体中横跨第一流体流动路径。
[0108] 优选地,对于横向流应用,将至少一个本发明的多孔膜或包括至少一个本发明的膜的过滤器布置在包括至少一个入口和至少两个出口的壳体中,所述壳体在所述入口和所述第一出口之间至少限定第一流体流动路径,并在所述入口和所述第二出口之间限定第二流体流动路径,其中本发明的膜或包括至少一个本发明的膜的过滤器横跨所述第一流体流动路径,以提供过滤器装置或过滤器模块。在一个示例性实施方案中,所述过滤器装置包括横向流过滤器模块,包括入口、包括浓缩物出口的第一出口和包括渗透物出口的第二出口的壳体,并且所述壳体在所述入口和所述第一出口之间限定第一流体流动路径,并在所述入口和所述第二出口之间限定第二流体流动路径,其中布置至少一个本发明的膜或包括至少一个本发明的膜的过滤器横跨所述第一流体流动路径。
[0109] 所述过滤器装置或模块可以是可消毒的。可以使用合适形状的任意壳体,并提供入口和一个或多个出口。
[0110] 可以由任意合适的刚性不可渗透性材料,包括与被处理的流体相容的任意不可渗透性热塑性材料生产所述壳体。例如,可以由金属如不锈钢,或由聚合物,例如透明或半透明聚合物如丙烯酸系、聚丙烯、聚苯乙烯或聚碳酸酯树脂生产所述壳体。
[0111] 本发明还提供了通过上述方法生产的亲水改性的多孔PTFE膜。
[0112] 本发明还提供了过滤流体的方法,所述方法包括使所述流体通过上述亲水性多孔PTFE膜。
[0113] 以下实施例进一步阐释了本发明,但是当然不应该被认为是以任意方式限制本发明的范围。
[0114] 实施例1
[0115] 原料:购买并如收到时使用以下原料。
[0116] 5-降冰片烯-2,3-二甲酸二甲酯(C3)购自Alfa Aesar,
[0117] 二氯甲烷(DCM)储存于活化的氧化铝上并在使用前用氩气吹扫,异丙醇(IPA)、二环戊二烯(DCPD)、1H,1H,2H-全氟-1-辛烯(PF6)、1H,1H,2H-全氟-1-十二烯(PF10)、甲苯、亚硫酰氯、乙酸乙酯、二甲基甲酰胺(DMF)、马来酰亚胺、呋喃、偶氮二甲酸二异丙酯(DIAD)、三苯基膦(Ph3P)、1-十六烷醇、四氢呋喃(THF)、乙酸乙酯、N-苯基马来酰亚胺、乙腈、甲醇、Grubbs第二代催化剂、3-溴吡啶和戊烷得自Sigma-Aldrich Co.并且不进一步处理而使用。将也得自Sigma-Aldrich Co.的二氯戊烷在使用前用碱性氧化铝处理。环辛二烯(COD)通过由三氟化硼真空蒸馏纯化并以新制方式使用。
[0118] 实施例2
[0119] 本实施例阐释了二氯[1,3-双(2,4,6-三甲苯基)-2-咪唑烷亚基](苯亚甲基)双(3-溴吡啶)合钌(II)(G3)催化剂的制备。
[0120]
[0121] 在50mL烧瓶中将上文所述的第二代Grubbs催化剂(G2)(1.0g,1.18mmol)与3-溴吡啶(1.14mL,11.8mmol)混合。在室温搅拌5min时,红色混合物变成鲜绿色。在搅拌下于15分钟内添加戊烷(40mL)并获得绿色固体。将混合物在冷冻箱中冷却24h并在真空下过滤。将所产生的绿色固体状G3催化剂用冷戊烷洗涤并在真空下于室温干燥,以产生0.9g的产量,88%产率。
[0122] 实施例3
[0123] 本实施例阐释了根据本发明的一个实施方案的均聚物和共聚物的凝胶渗透色谱法表征。
[0124] 通过MALS-GPC技术在以下条件下表征所获得的均聚物和嵌段共聚物的分子量和分子量分布性质:
[0125] 移动相:二氯甲烷(DCM)。
[0126] 移动相温度:30℃。
[0127] 紫外波长:245nm。
[0128] 所使用的柱:三根PSS SVD Lux分析柱(苯乙烯-二乙烯基苯共聚物网络),具有直径5μm和1000A、100,000A和1,000,000A孔尺寸的固定相小珠的柱,和保护柱。
[0129] 流速:1mL/min。
[0130] GPC系统:具有紫外和红外检测器的waters HPLC alliance e2695系统
[0131] MALS系统:8个具有运行664.5nm激光的检测器的DAWN HELEOS 8系统。
[0132] 实施例4
[0133] 本实施例阐释了根据本发明的一个实施方案制备NPF6单体的程序。
[0134]
[0135] 向Parr高压反应器圆柱容器装入DCPD(100ml,737mmol)、PF6(168ml,737mmol),并将所述圆柱连接至反应器,并装入氢醌(2.43g,22.1mmol),加热至170℃维持72小时。将反应内容物溶于150ml DCM并转移至500ml圆底烧瓶,以通过真空蒸馏纯化单体。
[0136] 1H-NMR(CDCl3):δ(ppm)6.2-6.0(2H),3.2(1H),3.0(1H),2.8(1H),2.0(1H),1.5(1H)和1.2-1.4(2H)。19F-NMR(CDCl3):δ-89.9(s),-112.6(m),-123.8至-121.3(m),-127.1至-125.3(m)。
[0137] 实施例5
[0138] 本实施例阐释了根据本发明的一个实施方案制备NPF10单体的程序。
[0139]
[0140] 向Parr高压反应器圆柱容器装入DCPD(24.6ml,183mmol)、PF6(132ml,370mmol),并将所述圆柱连接至反应器,并装入氢醌(1.08g,10mmol),加热至170℃维持72小时。将反应内容物溶于150ml DCM并转移至500ml圆底烧瓶,以通过真空蒸馏纯化单体。
[0141] 1H-NMR(CDCl3):δ(ppm)6.2-6.0(2H),3.2(1H),3.0(1H),2.8(1H),2.0(1H),1.5(1H)和1.2-1.4(2H)。19F-NMR(CDCl3):δ-80.9(s),-112.6(m),-123.8至-121.4(m),-127.2至-125.5(m)。
[0142] 实施例6
[0143] 本实施例阐释了根据本发明的一个实施方案制备C2单体的程序。
[0144]
[0145] 在配备有磁力搅拌子的干净的2L圆底烧瓶(RBF)中,将呋喃(390ml,3.35mol)添加至马来酸酐(350g,3.57mol)在1.5L甲苯中的溶液。将混合物于80℃加热6h。在用甲苯(200mL,3x)洗涤并过滤时从溶液中获得呈白色沉淀物的C2。将白色固体在真空下于室温干燥24h。作为纯外型异构体形式以650g,95%的产率获得C2。1H-NMR(300MHz,DMSO):δ(ppm)6.6(s,2H),5.4(s,2H),3.15(s,2H)。
[0146] 实施例7
[0147] 本实施例阐释了根据本发明的一个实施方式制备作为C2单体的二甲酯的C4单体的程序。
[0148]
[0149] 在500ml RBF中,将外型-7-氧杂降冰片烯-5.6-二甲酸酐(C2)(65g,0.4mol)溶于甲醇(750ml),将亚硫酰氯(25ml)缓慢滴加至所述C2溶液,以形成黄色溶液。将溶液回流48小时,之后将溶剂除去至干并获得单体。将固体溶于乙酸乙酯,用K2CO3溶液洗涤(200ml,2x),用去离子水洗涤(200ml,2x)并经MgSO4.干燥。浓缩所产生的黄色溶液,以产生所述C4单体。1H-NMR(CDCl3):δ(ppm)6.49(s,2H),5.2(s,2H),3.8(s,2H)3.7(s,6H),2.8(s,2H)。
[0150] 实施例8
[0151] 本实施例阐释了根据本发明的一个实施方案的共聚物聚(C2-b-NPF6)的合成和性质。
[0152]
[0153] 在配备有氟聚合物树脂-有机硅顶部开放隔膜帽的40mL小瓶中称量Grubbs第三代(G3)催化剂(22mg,0.025mmol)。将G3溶于经氩气脱气的THF(60mL)中并经由套管转移至配备有搅拌子的干净1L RBF中。将C2单体(3.05g,18.4mmol)在THF(86mL)中的溶液用氩气脱气并转移至所述G3溶液中并搅拌30分钟。将NPF6单体(1.03g,2.5mmol)在THF(208mL)中的溶液用氩气脱气并转移至生长中的聚(C2)嵌段溶液并搅拌另外的60分钟。然后将乙基乙烯基醚(2mL)添加至二嵌段共聚物的黄色溶液,以终止反应。使聚合物在MeOH(2L,2x)中沉淀,以回收纯聚合物的白色固体。将所产生的聚合物过滤并在真空下于室温干燥,产率/产量(4.0g,98%)。
[0154] 1H-NMR(300MHz,DMSO):δ(ppm)12.25(s),5.5至6.0(m),4.75至5.25(s),4.5至4.75(s),3.75(s),3.3(s),3.25(s)。
[0155] 元素分析数据示于下表1中。
[0156] 表1.元素分析
[0157]
[0158]
[0159] 实施例9
[0160] 本实施例说明了根据本发明的一个实施方案的另一种共聚物聚(C3-b-NPF6)的合成和性质。
[0161]
[0162] 在配备有氟聚合物树脂-有机硅顶部开放隔膜帽的40mL小瓶中称量Grubbs第三代(G3)催化剂(11mg,0.012mmol)。将G3溶于经氩气脱气的THF(60mL)中并经由套管转移至配备有搅拌子的干净1L RBF中。将C3单体(2.5g,12mmol)在THF(86mL)中的溶液用氩气脱气并转移至所述G3溶液中并搅拌30分钟。将NPF6单体(0.86g,2.0mmol)在THF(208mL)中的溶液用氩气脱气并转移至生长中的聚(C3)嵌段溶液并搅拌另外的60分钟。然后将乙基乙烯基醚(2mL)添加至二嵌段共聚物的黄色溶液,以终止反应。然后使聚合物在MeOH(2L,2x)中沉淀,以回收纯聚合物的白色固体。将所产生的聚合物过滤并在真空下于室温干燥,产率/产量(3.0g,90%)。
[0163] 1H NMR数据如下所示且元素分析示于表2中。1H-NMR(300MHz, CDCl3):δ(ppm)5.7至5.2(单宽峰),3.7至3.5(多重宽峰),3.3至2.8(多重宽峰),2.5至1.75(多重宽峰),1.6(单宽峰),1.25(单宽峰)。
[0164] 表2.聚(C3-b-NPF6)的元素分析
[0165]
[0166] 实施例10
[0167] 本实施例说明了根据本发明的一个实施方案的又一种共聚物的合成和性质。
[0168] 如下合成聚(C4-b-NPF6)。在配备有氟聚合物树脂-有机硅顶部开放隔膜帽的40mL小瓶中称量Grubbs第三代(G3)催化剂(25mg,0.028mmol)。将G3溶于经氩气脱气的THF(60mL)中并经由套管转移至配备有搅拌子的干净1L RBF中。将C4单体(2.5g,11.8mmol)在THF(86mL)中的溶液用氩气脱气并转移至所述G3溶液中并搅拌30分钟。将NPF6单体(0.86g,2.0mmol)在THF(208mL)中的溶液用氩气脱气并转移至生长中的聚(C4)嵌段溶液并搅拌另外的60分钟。然后将乙基乙烯基醚(2mL)添加至二嵌段共聚物的黄色溶液,以终止反应。然后使聚合物在MeOH(2L,2x)中沉淀,以回收纯聚合物的白色固体。将所产生的聚合物过滤并在真空下于室温干燥,产率/产量(3.0g,90%)。
[0169] 1H-NMR(300MHz,CDCl3):δ(ppm)6.85(单宽峰),5.8(单宽峰),5.6(单宽峰),5.2至4.9(单宽峰),4.8至4.5(单宽峰),4.4至4.0(多重宽峰),4.0至3.6(多重宽峰),3.2至2.9(多重宽峰),1.4至1.2(多重宽峰)。
[0170] 共聚物在CH2Cl2中的GPC图谱示于表3中。所述共聚物具有以下性质:Mn=98800,Mw=127200,PDI=1.28。
[0171] 实施例11
[0172] 该实施例说明了根据本发明的一个实施方案的另一种共聚物的合成和性质。
[0173] 使聚(C2二酸-b-NPF6):聚(C2-b-NPF6)与0.1N NaOH溶液反应,以获得聚(C2二酸-b-NPF6)。使聚(C2-b-NPF6)二嵌段共聚物溶于THF(1重量%),以形成均匀的溶液。将聚合物溶液用0.1N NaOH水溶液处理。将混合物于环境温度搅拌1h,然后在己烷中沉淀。
[0174] 1H-NMR(300MHz,CDCl3):δ(ppm)14至13(单宽峰),6.0至5.5(多重宽峰),5.3至4.75(单宽峰),5.375至4.25(单宽峰)3.25(单宽峰),3.3(单宽峰),3.1(单宽峰)。
[0175] 将聚合物涂覆在多孔PTFE载体上并测量其CWST。获得的结果列于表3中。
[0176] 表3.CWST测量的结果
[0177]
[0178]
[0179] 实施例12
[0180] 本实施例说明了根据本发明的一个实施方式的再一种共聚物聚(C3-r-NPF6)的合成和性质。
[0181]
[0182] 在配备有氟聚合物树脂-有机硅顶部开放隔膜帽的40mL小瓶中称量Grubbs第三代(G3)催化剂(11mg,0.012mmol)。将G3溶于经氩气脱气的DCM(20mL)中并经由套管转移至配备有搅拌子的干净250mL RBF中。将C3单体(2.5g,12mmol)和NYF6(0.86g,2.0mmol)溶于DCM(90ml)中的混合物用氩气脱气并转移至所述G3溶液中并于室温剪切12小时。然后将乙基乙烯基醚(2mL)添加至无规共聚物的黄色溶液中以终止反应。然后使聚合物通过碱性氧化铝、硅胶和硅藻土(Celite)的柱,以除去催化剂。在旋转蒸发仪中除去溶剂并且产生的聚合物为无色和高粘性的;产量/产率(3.0g,90%)。
[0183] 1H-NMR(300MHz,CDCl3):δ(ppm)6.0至5.0(单宽峰),3.7至3.5(多重宽峰),3.3至2.8(多重宽峰),2.5至1.75(多重宽峰),1.6(单宽峰),1.25(单宽峰)。
[0184] 实施例13
[0185] 本实施例阐释了根据本发明的一个实施方案制备亲水性多孔PTFE膜的方法。
[0186] 将PTFE树脂粉末、FLUON CD123与2.5重量%的共聚物聚(C2-b-NPF6)在异丙醇溶剂中的溶液混合,以获得包含5%的在PTFE树脂中的所述聚(C2-b-NPF6)的共混物。将所述共混物与18phr的润滑剂Isopar G混合,并将产生的糊剂在双辊中混合。通过施加300psi的压力至少两次,每次约55秒的时间,将共混物成型成原始坯料。使所产生的原始坯料于室温平衡约12小时。然后将所述原始坯料在最大压力和55℃的恒定温度通过26mm模头挤出,产生管状PTFE条带。将所述管状条带沿着中心轴(沿着其长度)切开并围绕移液管辊轧,产生新的原始坯料(非压缩的)。将所述新的原始坯料在与第一次挤出工艺期间所使用的相同条件下挤出。在30℃进行砑光,达到9-10密耳的条带厚度并切割成4×4英寸。将产生的条带在125℃干燥1h,由此从所述条带除去所述润滑剂。使所述条带在MD/TD比例为3的纵向和横向上在300%/秒的伸长率下伸长。将在伸长炉中的温度设定至150℃。使产生的膜在退火炉中于350℃退火5秒。图1A展示了在拉伸之前的膜表面的SEM显微照片,和图1B 展示了在拉伸之后的膜表面的SEM显微照片。两个显微照片中的放大率为10,000X。伸长的膜显示了在PTFE域之间存在增加的数量的互连原纤维。
[0187] 将经退火的膜的样品暴露至1N NaOH溶液60分钟的时间,然后用去离子水洗涤。在膜上测量接触角。获得的结果列于表4中。
[0188] 表4.PTFE样品的接触角
[0189]样品识别号 接触角(°)
聚(C2-b-NPF6)涂覆于PTFE上 101
具有PTFE的聚(C2-b-NPF6)共混物 113
对照PTFE 130
[0190] 当将由具有PTFE的聚(C2-b-NPF6)共混物制备的膜的样品在广口瓶中置于水上时,其被水润湿,并且沉至所述广口瓶的底部,证实其亲水性和润湿性。另一方面,对照PTFE膜在置于水上时仅漂浮,因为其不被水润湿。
[0191] 实施例14
[0192] 该实施例阐释根据本发明的一个实施方案使亲水性多孔PTFE膜化学改性的方法。
[0193] 如实施例13中制备PTFE膜,但是并不暴露至NaOH溶液,而是暴露至JEFFAMINE M1000或JEFFAMINE ED176溶液。将所产生的膜洗涤并干燥,并测试其CWST,并将获得的结果列于表5中。开环化学改性增加了CWST。
[0194] 表5.后改性的PTFE膜的CWST值
[0195]
[0196] 本文引用的所有参考文献,包括出版物、专利申请和专利,在此通过参考以如下相同的程度并入本文中:如同各参考文献单独且明确地表明通过参考且以其整体并入本文中或以其整体列举。
[0197] 在描述本发明的上下文中(特别是在随后权利要求书的上下文中)的术语“一”和“一个”和“所述(该)”和“至少一个”和相似的术语的使用,除非本文另有说明或通过上下文明显矛盾,将被解释为涵盖单数和复数。跟随一系列一个或多个项目(例如,“A和B中的至少一个”)的术语“至少一个”的使用,除非本文另有说明或通过上下文明显矛盾,将被解释为本意是选自所列出的项目中的一项(A或B)或两个或更多个所列出的项目的任意组合(A和B)。除非另有说明,术语“包含”、“具有”、“包括”和“含有”将被解释为开放式术语(即,意为“包括,但不限于”)。除非本文另有说明,本文数值范围的记载仅意为简记法,其独立地涉及落在该范围内的每个单独的值,且将每个单独的值如同其独立地被记载在本文而并入说明书中。除非本文另有说明或通过上下文明显矛盾,本文描述的所有方法可以以任何合适的顺序实施。除非另有要求,任何和所有实例的使用或本文提供的示例性语言(例如,“例如(如)”)仅旨在更好地说明本发明而不对本发明的范围施加限制。在说明书中没有语言应该被解释为指示任何未要求保护的要素对本发明的实施是必要的。
[0198] 在本文中描述了本发明优选的实施方案,包括本发明人已知的用于实施本发明的最佳模式。通过阅读上面的描述,这些优选的实施方案的变体对于本领域的普通技术人员可变得显而易见。本发明人预期本领域技术人员视情况而定会使用这些变体,且本发明人意在除了按照本文的具体描述不同地实践本发明。因此,本发明包括所附的权利要求中记载的主题的所有被适用的法律允许的变型和等价物。此外,除非本文另有说明或通过上下文明显矛盾,本发明涵盖了以其所有可能的变体形式的上述要素的任意组合。