共聚物和相关层状制品,以及器件形成方法转让专利

申请号 : CN201610632842.8

文献号 : CN106432625B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : J·W·萨克莱K·杜P·特雷福纳斯三世I·布莱基A·K·惠特克

申请人 : 罗门哈斯电子材料有限责任公司昆士兰大学

摘要 :

通过使包括紫外光吸收型单体以及碱溶解度增强型单体的单体聚合来制备共聚物。所述共聚物适用于形成电子束以及远紫外平版印刷术用的面涂层。还描述包括所述面涂层的层状制品以及形成电子器件的相关方法。

权利要求 :

1.一种共聚物,

其中所述共聚物包含单体聚合产物,所述单体包含∶

频带外吸收型单体,其中所述频带外吸收型单体包含未被取代或被取代的不含氟的C6-C18芳基、未被取代或被取代的C2-C17杂芳基、C5-C12二烯酮基团,或其组合;以及碱溶解度增强型单体,其中所述碱溶解度增强型单体选自由以下各物组成的群组:聚氧化乙烯的(甲基)丙烯酸酯、聚氧化丙烯的(甲基)丙烯酸酯、被内酯取代的(甲基)丙烯酸酯、被具有2到12的pKa的基团取代的(甲基)丙烯酸酯,及其组合;以及其中包含未被取代或被取代的不含氟的C6-C18芳基的所述频带外吸收型单体具有结构:其中

R1是氢或甲基,

n是0、1、2、3或4,以及

Ar1是未被取代或被取代的不含氟的C6-C18芳基;

其中所述被取代的不含氟的C6-C18芳基包含至少一个选自下组的取代基:Cl、Br、I、胺基、硫醇、羧基、羧酸酯、包括丙烯酸酯、甲基丙烯酸酯以及内酯在内的酯、酰胺、腈、硫化物、二硫化物、硝基、C1-18烷基、包括降冰片烯基以及金刚烷基在内的C1-18烯基、C1-18烷氧基、包括乙烯基醚在内的C2-18烯氧基、C6-18芳基、C6-18芳氧基、C7-18烷基芳基或C7-18烷基芳氧基;

其中由所述共聚物铸成的膜在150纳米到400纳米范围内的波长下具有0.1到0.5的消光系数k,以及所述共聚物具有1.05到1.2的分散度(Mw/Mn)。

2.根据权利要求1所述的共聚物,其中所述碱溶解度增强型单体包含聚氧化乙烯的(甲基)丙烯酸酯以及被1,1,1,3,3,3-六氟-2-丙基取代的(甲基)丙烯酸酯。

3.根据权利要求1所述的共聚物,

其中所述频带外吸收型单体具有结构:

其中R1是氢或甲基,n是0、1、2、3或4,并且Ar1是未被取代或被取代的不含氟的C6-C18芳基;其中所述被取代的不含氟的C6-C18芳基包含至少一个选自下组的取代基:Cl、Br、I、胺基、硫醇、羧基、羧酸酯、包括丙烯酸酯、甲基丙烯酸酯以及内酯在内的酯、酰胺、腈、硫化物、二硫化物、硝基、C1-18烷基、包括降冰片烯基以及金刚烷基在内的C1-18烯基、C1-18烷氧基、包括乙烯基醚在内的C2-18烯氧基、C6-18芳基、C6-18芳氧基、C7-18烷基芳基或C7-18烷基芳氧基;

其中所述碱溶解度增强型单体包含聚氧化乙烯的(甲基)丙烯酸酯以及被1,1,1,3,3,

3-六氟-2-丙基取代的(甲基)丙烯酸酯;

其中以单体的总摩尔数计,所述单体包含:

30摩尔%到50摩尔%的所述频带外吸收型单体,

30摩尔%到50摩尔%的聚氧化乙烯的(甲基)丙烯酸酯,以及

10摩尔%到30摩尔%的被1,1,1,3,3,3-六氟-2-丙基取代的(甲基)丙烯酸酯。

4.根据权利要求1所述的共聚物,其中所述频带外吸收型单体包含未被取代或被取代的C2-C17杂芳基、C5-C12二烯酮基团,或其组合。

5.根据权利要求1所述的共聚物,其中所述碱溶解度增强型单体选自由以下各物组成的群组:聚氧化乙烯的(甲基)丙烯酸酯、聚氧化丙烯的(甲基)丙烯酸酯、被内酯取代的(甲基)丙烯酸酯,及其组合。

6.一种形成聚合物层的方法,所述方法包含对聚合物溶液进行旋涂,所述聚合物溶液包含存在于溶剂中的0.1重量%到3重量%的根据权利要求1到权利要求5中任一权利要求所述的共聚物,所述溶剂选自由以下各物组成的群组:2-甲基-2-丁醇、2-甲基-2-戊醇、2-甲基-2-丁醇与2-甲基-2-戊醇的组合、二丙二醇单甲基醚与2-甲基-2-丁醇的含有至少90重量%2-甲基-2-丁醇的组合、二丙二醇单甲基醚与2-甲基-2-戊醇的含有至少90重量%2-甲基-2-戊醇的组合,以及二丙二醇单甲基醚与2-甲基-2-丁醇与2-甲基-2-戊醇的含有总计至少90重量%2-甲基-2-丁醇以及2-甲基-2-戊醇的组合。

7.一种层状制品,其包含∶

基板:

位于所述基板的光阻层;以及

包含根据权利要求1到权利要求5中任一权利要求所述的共聚物的面涂层,其中所述面涂层暴露于所述光阻层上并且和所述光阻层接触。

8.一种形成电子器件的方法,所述方法包含:

(a)在基板上涂覆光阻层;

(b)在所述光阻层上涂覆包含根据权利要求1到权利要求5中任一权利要求所述的共聚物的面涂层;

(c)使所述光阻层直到所述面涂层逐图案曝露于活化辐射;以及(d)使所述的所曝光光阻层显影以提供抗蚀剂浮雕影像。

9.根据权利要求8所述的方法,其中所述活化辐射包含电子束或远紫外辐射。

说明书 :

共聚物和相关层状制品,以及器件形成方法

技术领域

[0001] 本发明涉及共聚物、含有所述共聚物的照相平版印刷面涂层、包含所述面涂层的层状制品,以及形成电子器件的方法,其中所述方法利用所述面涂层。

背景技术

[0002] 远紫外(Extreme ultraviolet;EUV)平版印刷术和电子束平版印刷术在20纳米和以下的等级下是有前景的图案化技术。EUV辐射源还产生较长波长的辐射,所谓的频带外(out-of-band;OOB)辐射,其能使成像性能显著恶化。因此需要能减少频带外辐射的负面影响而不会过度降低其它照相平版印刷响应的组合物。共同提交的美国专利申请第14/820647号描述一种光阻组合物,其包含自分层的OOB辐射吸收型嵌段聚合物。就希望避免或最小化修饰光阻组合物的情形来说,本申请描述一种适用于OOB辐射吸收型、显影剂可溶性面涂层中的共聚物。

发明内容

[0003] 一个实施例是一种共聚物,其中所述共聚物包含单体聚合产物,所述单体包括:频带外吸收单体;和碱溶解度增强型单体;其中由所述共聚物铸成的膜在150纳米到400纳米范围内的波长下具有0.1到0.5的消光系数k。
[0004] 另一个实施例是形成聚合物层的方法,所述方法包含对聚合物溶液进行旋涂,所述聚合物溶液包含存在于溶剂中的0.1重量%到3重量%共聚物,所述溶剂选自由以下各者组成的群组:2-甲基-2-丁醇、2-甲基-2-戊醇、2-甲基-2-丁醇与2-甲基-2-戊醇的组合、二丙二醇单甲基醚与2-甲基-2-丁醇的组合(含有至少90重量%的2-甲基-2-丁醇)、二丙二醇单甲基醚与2-甲基-2-戊醇的组合(含有至少90重量%的2-甲基-2-戊醇),以及二丙二醇单甲基醚与2-甲基-2-丁醇与2-甲基-2-戊醇的组合(总计含有至少90重量%的2-甲基-2-丁醇以及2-甲基-2-戊醇)。
[0005] 另一个实施例是一种层状制品,其包含∶基板;位于所述基板上的光阻层;以及包含所述共聚物、位于所述光阻层上并且和所述光阻层接触的面涂层。
[0006] 另一个实施例是一种形成电子器件的方法,所述方法包含∶(a)在基板上涂覆光阻层;(b)在所述光阻层上涂覆包含共聚物的面涂层;(c)使光阻层直到面涂层逐图案曝露于活化辐射;以及(d)使所曝露的光阻层显影以提供抗蚀剂浮雕影像。
[0007] 下文详细描述这些和其它实施例。

附图说明

[0008] 图1是合成聚(PEGMA-共-BzMA-共-HFACHOH)的反应流程。
[0009] 图2是脱除聚(PEGMA-共-BzMA-共-HFACHOH)中的RAFT端基的反应流程。
[0010] 图3提供聚(PEGMA-共-BzMA-共-HFACHOH)在RAFT端基裂解(脱除)之前和之后的标准化紫外光-可见光光谱。
[0011] 图4是面涂层聚合物聚(PEGMA-共-BzMA-共-HFACHOH)的1H NMR光谱。
[0012] 图5A和图5B呈现:图5A CBP-4光阻层;以及图5B面涂层中的膜厚度(nm)相对于聚合物浓度(重量%(wt%))的图。
[0013] 图6是10纳米面涂层、30纳米面涂层、CBP-4+10nm面涂层、CBP-4+30nm面涂层以及CBP-4的接触角(°)与显影时间(1秒或60秒)关系的图。
[0014] 图7是具有10纳米以及30纳米厚度的面涂层的消光系数相对于波长(nm)的图。
[0015] 图8是具有10纳米以及30纳米厚度的面涂层的透射率(%)相对于波长(nm)的图。
[0016] 图9是(a)CBP-4光阻以及(b)CBP-4光阻+10nm面涂层的标准化膜厚度(%)与剂量(微库仑/厘米2(μC/cm2))关系的图。
[0017] 图10A、图10B、图10C、图10D、图10E和图10F由以下各物的线图案的扫描电子显微照片(scanning electron micrographs;SEM)组成:图10A 51μC/cm2的光阻CBP-4;图10B 2 2 2
53μC/cm的光阻CBP-4;图10C 55μC/cm 的光阻CBP-4;图10D 51μC/cm的光阻CBP-4+面涂层;图10E 57μC/cm2的光阻CBP-4+面涂层;图10F 60μC/cm2的光阻CBP-4+面涂层。

具体实施方式

[0018] 本发明人已确定特定共聚物在电子束或远紫外平版印刷术中适用作面涂层的主要或唯一组分。所述共聚物吸收频带外(OOB)辐射并且容易溶解于碱性显影剂中。
[0019] 如在此所用,术语“共聚物”包括无规共聚物(包括统计学共聚物)、嵌段共聚物以及接枝共聚物。无规共聚物可以包括两、三、四种或超过四种不同类型的重复单元。嵌段共聚物可以是多嵌段共聚物并且可以包括例如二嵌段共聚物、三嵌段共聚物、四嵌段共聚物,或具有五个嵌段或超过五个嵌段的共聚物。嵌段可以是线性共聚物、分支链共聚物(其中分支链接枝到主链上)(这些共聚物有时也称为“梳形共聚物”)、星形共聚物(有时称为径向嵌段共聚物)及其类似物的一部分。在接枝共聚物中,主链以及一或多个侧链的组成就组成或重复单元的顺序来说是不同的。
[0020] 如在此所用,术语“(甲基)丙烯酸酯”意指丙烯酸酯或甲基丙烯酸酯。
[0021] 如在此所用,术语“烃基”无论单独地还是作为另一术语的前缀、后缀或片段使用,是指仅含有碳和氢的残基,除非其特定地被标识为“被取代的烃基”。烃基残基可以是脂肪族或芳香族、直链、环状、双环、分支链、饱和或不饱和的。其还可含有脂肪族、芳香族、直链、环状、双环、分支链、饱和以及不饱和烃部分的组合。当烃基残基被描述为被取代时,除碳和氢之外,其还可以含有杂原子。
[0022] 除非另有说明,否则术语“被取代”意指包含至少一个取代基,例如卤素(即F、Cl、Br、I)、羟基、胺基、硫醇、羧基、羧酸酯、酯(包括丙烯酸酯、甲基丙烯酸酯以及内酯)、酰胺、腈、硫化物、二硫化物、硝基、C1-18烷基、C1-18烯基(包括降冰片烯基以及金刚烷基)、C1-18烷氧基、C2-18烯氧基(包括乙烯基醚)、C6-18芳基、C6-18芳氧基、C7-18烷基芳基或C7-18烷基芳氧基。
[0023] 如在此所用,术语“氟化”应理解为意指基团中并入一或多个氟原子。举例来说,在指示C1-18氟烷基的情况下,氟烷基可以包含一或多个氟原子,例如单个氟原子、两个氟原子(例如,如1,1-二氟乙基)、三个氟原子(例如,如2,2,2-三氟乙基)或位于碳的每个自由价上的氟原子(例如,如全氟化基团,例如-CF3、-C2F5、-C3F7或-C4F9)。
[0024] 如在此所用,术语“烷基”包括直链烷基、分支链烷基、环状烷基,以及合并直链、分支链以及环基的双向组合以及三向组合的烷基。烷基可以是未被取代或被取代的。烷基的特定实例包括甲基、乙基、1-丙基、2-丙基、环丙基、1-丁基、2-丁基、2-甲基-1-丙基、叔丁基、环丁基、1-甲基环丙基、2-甲基环丙基、1-戊基、2-戊基、3-戊基、2-甲基-1-丁基、3-甲基-1-丁基、2-甲基-2-丁基、3-甲基-2-丁基、2,2-二甲基-1-丙基(新戊基)、环戊基、1-甲基环丁基、2-甲基环丁基、3-甲基环丁基、1,2-二甲基环丙基、2,2-二甲基环丙基、2,3-二甲基环丙基、1-己基、2-己基、3-己基、2-甲基-1-戊基、3-甲基-1-戊基、4-甲基-1-戊基、2-甲基-2-戊基、4-甲基-2-戊基、2-甲基-3-戊基、3-甲基-2-戊基、3-甲基-3-戊基、2,2-二甲基-1-丁基、3,3-二甲基-1-丁基、3,3-二甲基-2-丁基、2,3-二甲基-1-丁基、2,3-二甲基-2-丁基、
1,2,2-三甲基环丙基、2,2,3-三甲基环丙基、(1,2-二甲基环丙基)甲基、(2,2-二甲基环丙基)甲基、1,2,3-三甲基环丙基、(2,3-二甲基环丙基)甲基、2,2-二甲基环丁基、2,3-二甲基环丁基、(1-甲基环丁基)甲基、1,2-二甲基环丁基、2,3-二甲基环丁基、(2-甲基环丁基)甲基、1,3-二甲基环丁基、2,4-二甲基环丁基、(3-甲基环丁基)甲基、1-甲基环戊基、2-甲基环戊基、环戊基甲基、环己基、1-降冰片烷基、2-降冰片烷基、3-降冰片烷基、1-金刚烷基、2-金刚烷基、八氢-1-并环戊二烯基、八氢-2-并环戊二烯基、八氢-3-并环戊二烯基、八氢-1-苯基-1-并环戊二烯基、八氢-2-苯基-2-并环戊二烯基、八氢-1-苯基-3-并环戊二烯基、八氢-
2-苯基-3-并环戊二烯基、十氢-1-萘基、十氢-2-萘基、十氢-3-萘基、十氢-1-苯基-1-萘基、十氢-2-苯基-2-萘基、十氢-1-苯基-3-萘基以及十氢-2-苯基-3-萘基。
[0025] 一个实施例是一种共聚物,其中所述共聚物包含单体聚合产物,所述单体包括:频带外吸收单体;和碱溶解度增强型单体;其中由所述共聚物铸成的膜在150纳米到400纳米范围内的波长下具有0.1到0.5的消光系数k。
[0026] 如在此所用,术语“频带外吸收型单体”意指吸收辐射的波长比打算曝露光阻的辐射长的单体。举例来说,若曝光器件使用13.5纳米波长的远紫外线辐射,则吸收150纳米到400纳米(确切地说,190纳米到300纳米)波长范围内的紫外辐射的单体将是频带外吸收型单体。“频带外吸收型单体”提供在150纳米到400纳米范围内具有吸光度的共聚物。确切地说,由共聚物铸成的膜在150纳米到400纳米范围内的波长(即,至少一种波长)下具有0.1到
0.5的消光系数k。在一些实施例中,在150纳米到400纳米范围内,消光系数k的最大值是0.1到0.5。应了解,消光系数k在150纳米到400纳米范围内的一些波长下可以小于0.1并且甚至是零。频带外吸收型单体不包括氟取代的酯基。在一些实施例中,频带外吸收型单体包含未被取代或被取代的不含氟的C6-C18芳基、未被取代或被取代的C2-C17杂芳基、C5-C12二烯酮基团,或其组合。
[0027] 在一些实施例中,频带外吸收型单体具有结构:
[0028]
[0029] 其中R1是氢或甲基;n是0、1、2、3或4;并且Ar1是未被取代或被取代的C6-C18芳基,其条件是被取代的C6-C18芳基不含氟。
[0030] 频带外吸收型单体的特定实例包括
[0031]
[0032]
[0033] 及其组合。
[0034] 以共聚物中的100摩尔%总重复单元计,共聚物可以包含20摩尔%到60摩尔%的衍生自频带外吸收型单体的重复单元。在20摩尔%到60摩尔%范围内,衍生自频带外吸收型单体的重复单元的含量可以是30摩尔%到50摩尔%。
[0035] 除衍生自频带外吸收型单体的重复单元之外,共聚物还包含衍生自碱溶解度增强型单体的重复单元。碱溶解度增强型单体包括聚(氧化乙烯)的(甲基)丙烯酸酯、聚(氧化丙烯)的(甲基)丙烯酸酯、碱不稳定性(甲基)丙烯酸酯、被具有2到12的pKa的基团取代的(甲基)丙烯酸酯,及其组合。
[0036] 聚(氧化乙烯)以及聚(氧化丙烯)的(甲基)丙烯酸酯可以具有结构:
[0037]
[0038] 其中R1是氢(对于丙烯酸酯)或甲基(对于甲基丙烯酸酯)、R2是氢(对于聚(氧化乙烯))或甲基(对于聚(氧化丙烯)),并且n是3到50,确切地说,5到30。
[0039] 碱不稳定(甲基)丙烯酸酯包括被内酯取代的单体,例如
[0040]
[0041]
[0042] 及其组合。
[0043] 被具有2到12的pKa的基团取代的(甲基)丙烯酸酯包括被羧酸、苯酚、芳基磺酸、邻苯二甲酰亚胺、磺酰胺、磺酰亚胺以及醇取代的(甲基)丙烯酸酯。所属领域的技术人员可容易确定包含这些酸性官能基之一的特定物质是否具有2到12范围内的pKa值。被具有2到12的pKa的基团取代的(甲基)丙烯酸酯的特定实例包括例如
[0044]
[0045]
[0046] 及其组合。
[0047] 在一些实施例中,碱溶解度增强型单体包含聚(氧化乙烯)的(甲基)丙烯酸酯,以及包含1,1,1,3,3,3-六氟-2-丙基的(甲基)丙烯酸酯。
[0048] 以共聚物中的100摩尔%总重复单元计,共聚物可以包含40摩尔%到80摩尔%的衍生自碱溶解度增强型单体的重复单元。在40摩尔%到80摩尔%范围内,衍生自频带外吸收型单体的重复单元的含量可以是50摩尔%到70摩尔%。在非常特定的实施例中,共聚物包含30摩尔%到50摩尔%的聚(氧化乙烯)的(甲基)丙烯酸酯以及10摩尔%到30摩尔%的被1,1,1,3,3,3-六氟-2-丙基取代的(甲基)丙烯酸酯。
[0049] 在一些实施例中,共聚物由衍生自频带外吸收型单体以及碱溶解度增强型单体的重复单元组成。
[0050] 共聚物在193纳米波长下具有0.1到0.4的消光系数“k”。在这个范围内,在193纳米波长下,消光系数“k”可以是0.15到0.35。测定消光系数“k”的程序描述于实施例中。
[0051] 对于共聚物的分子量不存在特定的限制。分子量特征可以通过尺寸排阻色谱法、使用聚苯乙烯标准以及四氢呋喃溶剂来测定。在一些实施例中,共聚物具有2,000道尔顿到100,000道尔顿(Daltons)的数目平均分子量。在这个范围内,数目平均分子量可以是3,000道尔顿到60,000道尔顿,确切地说,4,000道尔顿到40,000道尔顿。具体来说,当使用在此所述的RAFT方法制备共聚物时,其可以具有窄分子量分布。分子量分布可以通过分散度表征,分散度是重量平均分子量相对于数目平均分子量的比率。在一些实施例中,共聚物具有
1.05到1.2的分散度(Mw/Mn)。在这个范围内,分散度可以是1.05到1.15。然而,窄分子量分布并非是共聚物发挥预定功能所必需的。举例来说,在一些实施例中,共聚物具有1.05到2的分散度。
[0052] 在一些实施例中,使用选自由以下各者组成的群组的方法提纯共聚物:沉淀、过滤、溶剂交换、离心、倾析(包括多倾析)、离子交换及其组合。
[0053] 在共聚物的一个非常特定的实施例中,频带外吸收型单体具有结构:
[0054]
[0055] 其中R1是氢或甲基,n是0、1、2、3或4,并且Ar1是未被取代或被取代的不含氟的C6-C18芳基;碱溶解度增强型单体包含聚(氧化乙烯)的(甲基)丙烯酸酯以及被1,1,1,3,3,3-六氟-2-丙基取代的(甲基)丙烯酸酯;以单体的总摩尔数计,单体包含30摩尔%到50摩尔%的频带外吸收型单体、30摩尔%到50摩尔%的聚(氧化乙烯)的(甲基)丙烯酸酯以及10摩尔%到30摩尔%的被1,1,1,3,3,3-六氟-2-丙基取代的(甲基)丙烯酸酯;并且共聚物具有1.05到1.2的分散度(Mw/Mn)。
[0056] 共聚物特别适用于形成电子束平版印刷术或远紫外平版印刷术中的面涂层。共聚物在面涂层中可以占50重量%到100重量%。面涂层中的可选组分包括疏水性添加剂以增强面涂层与下伏光阻层的实体分离。
[0057] 面涂层可以具有5纳米到50纳米的厚度,确切地说,5纳米到40纳米的厚度。层厚度可以通过改变用于旋涂的溶液中的共聚物浓度来控制。
[0058] 一个实施例是形成聚合物层的方法,包含对共聚物溶液进行旋涂,所述共聚物溶液包含存在于溶剂中的0.1重量%到3重量%共聚物(其上述变型中的任一者),所述溶剂选自由以下各者组成的群组:2-甲基-2-丁醇、2-甲基-2-戊醇、2-甲基-2-丁醇与2-甲基-2-戊醇的组合、二丙二醇单甲基醚与2-甲基-2-丁醇的组合(含有至少90重量%的2-甲基-2-丁醇)、二丙二醇单甲基醚与2-甲基-2-戊醇的组合(含有至少90重量%的2-甲基-2-戊醇),以及二丙二醇单甲基醚与2-甲基-2-丁醇与2-甲基-2-戊醇的组合(总计含有至少90重量%的2-甲基-2-丁醇以及2-甲基-2-戊醇)。
[0059] 本发明另外包括一种层状制品,其包含∶基板;位于所述基板上的光阻层;以及包含所述共聚物(其上述变型中的任一者)、位于所述光阻层上并且和所述光阻层接触的面涂层。在此实施例中,层状制品可以任选地另外包含一或多个位于基板与光阻层之间的额外层。
[0060] 本发明另外包括一种形成电子器件的方法,所述方法包含∶(a)在基板上涂覆光阻;(b)在光阻层上涂覆面涂层(其上述变型中的任一者);(c)使光阻层直到面涂层逐图案曝露于活化辐射;以及(d)使所曝露的光阻层显影以提供抗蚀剂浮雕影像。方法可任选地另外包括(e)在下伏基板中蚀刻抗蚀剂浮雕图案。在一些实施例中,活化辐射是电子束或远紫外线辐射。
[0061] 基板的材料可以是例如半导体,例如硅或化合物半导体(例如III-V或II-VI)、玻璃、石英、陶瓷、铜及其类似物。典型地,基板是半导体晶片,例如单晶硅或化合物半导体晶片,其具有一或多个层以及在其表面上形成的图案化特征。下伏基底基板材料本身可以任选地被图案化,例如当需要在基底基板材料中形成沟槽时。在基底基板材料上形成的层可以包括例如一或多个导电层,例如铝层、铜层、钼层、钽层、钛层、钨层以及合金层、此类金属的氮化物层或硅化物层;掺杂非晶硅或掺杂多晶硅;一或多个电介质层,例如氧化硅层、氮化硅层、氮氧化硅层或金属氧化物层;半导体层,例如单晶硅;底层;抗反射层,例如底部抗反射层;及其组合。所述层可以通过各种技术形成,例如化学气相沉积(chemical vapor deposition;CVD),例如等离子体增强型CVD、低压CVD或外延生长;物理气相沉积(physical vapor deposition;PVD),例如溅镀或蒸镀、电镀或旋涂。
[0062] 可以使用适于电子束或远紫外平版印刷术中的任何光阻组合物。
[0063] 将光阻组合物涂覆到基板上可以通过任何适合方法完成,包括旋涂、喷涂、浸涂以及刀片刮抹。在一些实施例中,涂覆光阻组合物层是如下完成:使用涂布轨道旋涂溶剂中的光阻,其中将光阻组合物分配于旋转晶片上。在分配期间,晶片的旋转速度可以高达4,000转/分钟(rotations per minute;rpm),确切地说,500rpm到3,000rpm,且更确切地说,1,000rpm到2,500rpm。旋转所涂布的晶片以去除溶剂,并且在加热板上烘烤以自膜中去除残余溶剂和自由体积来使其密度均匀。
[0064] 接着使用曝光工具(例如步进器)来进行逐图案曝光,其中膜经由图案遮罩照射并且借此逐图案曝光。在一些实施例中,方法使用先进曝光工具,其在能够实现高分辨率的波长下产生活化辐射,包括远紫外(EUV)或电子束(e束)辐射。此类曝光工具的分辨率可以小于30纳米。
[0065] 接着通过用能够均匀溶解面涂层的适合正型显影剂处理曝光层并且覆盖面涂层并且选择性地去除光阻层的曝光部分来完成曝光光阻层的显影。在一些实施例中,正型显影剂是不含金属离子的四烷基氢氧化铵溶液,例如0.26当量浓度的四甲基氢氧化铵水溶液。
[0066] 当用于一或多种此类图案形成方法中时,光阻组合物可以用于制造电子以及光电器件,例如记忆体器件、处理器芯片(包括中央处理单元或CPU)、图形芯片以及其它此类器件。
[0067] 实例
[0068] 表1提供用于合成面涂层共聚物以及光阻共聚物的单体的化学结构以及首字母缩写词。
[0069] 表1
[0070]
[0071] 藉由RAFT技术合成聚(PEGMA-共-BzMA-共-HFACHOH)统计学共聚物。RAFT合成聚(PEGMA-共-BzMA-共-HFACHOH)的反应流程呈现于图1中。将PEGMA(4.75克,0.01摩尔)、甲基丙烯酸苯甲酯(BzMA,1.76克,0.01摩尔)、HFACHOH(1.67克,0.005摩尔)、4-氰基-4-[(十二烷基硫基硫羰基)硫基戊酸(CDTPA,RAFT剂,221.8毫克(91%纯),5×10-4摩尔)、偶氮异丁腈(AIBN,引发剂,8.2毫克,5×10-5摩尔)以及1,4-二噁烷(15毫升)引入装备有电磁搅拌器的50毫升舒伦克瓶(Schlenk flask)中([M]0:[mCTA]0:[Init]0=50:1:0.1,[PEGMA]:[BzMA]:
[HFACHOH]=2:2:1)。反应混合物在冰浴中用氩气吹洗30分钟以去除氧气,且接着在70℃下加热。根据1H NMR计算单体转化率并且通过在己烷中进行双沉淀来回收聚合物。使用聚苯乙烯标准物以及四氢呋喃溶剂,通过质子核磁共振谱(1H NMR)、紫外光-可见光光谱法(UV-VIS)以及尺寸排阻色谱法(SEC)来表征聚合物。SEC指示分散度(Mw/Mn)为1.12。聚合物表征概述于表2中。
[0072] 表2
[0073]单体1(M1) PEGMA
单体2(M2) BzMA
单体3(M3) HFACHOH
M1转化率百分比(%) 94.6
M2转化率百分比(%) 97.7
M3转化率百分比(%) 99.2
理论分子量(道尔顿) 16,200
M1聚合度 19.1
M2聚合度 19.9
M3聚合度 9.6
数目平均分子量,1H NMR(道尔顿) 16,200
分散度,SEC 1.12
[0074] 聚(PEGMA-共-BzMA-共-HFACHOH)的RAFT裂解。从RAFT聚合物中脱除端基的反应流程呈现于图2中。统计学共聚物的端基裂解如下进行。将聚(PEGMA-共-BzMA-共-HFACHOH)(3克,1.85×10-4摩尔)、AIBN(0.912克,5.6×10-3摩尔,30当量)以及1,4-二噁烷(25毫升)引入装备有电磁搅拌器的100mL舒伦克瓶中。反应混合物在冰浴中用氩气吹洗30分钟以去除氧气,且接着在70℃下加热。8小时之后,通过在甲醇中透析且接着去除溶剂来提纯聚合物。通过1H NMR、UV-VIS以及SEC来表征聚合物。1H NMR谱显示于图3中,并且端基脱除之前和之后的共聚物的UV-VIS光谱呈现于图4中。
[0075] 薄膜制备
[0076] 测定膜厚度与聚合物浓度的关系。光阻聚合物CBP-4之结构显示于表3中。以乳酸乙酯或丙二醇单甲基醚乙酸酯(propylene glycol monomethyl ether acetate;PGMEA)作为溶剂,以1重量%、2重量%、3重量%、4重量%以及5重量%的目标浓度,如同光阻聚合物CBP-4溶液来制备一系列光阻溶液。如下执行代表性旋涂工艺。首先,用丙酮以及异丙醇冲洗硅晶片。接着将硅晶片在100℃加热板上放置10分钟。接着通过O2等离子体处理来进一步清洁硅晶片。以3000转/分钟(rpm)的速度将光阻溶液在硅晶片旋涂60秒。光阻溶液涂布到晶片上之后,光阻层通过在100℃下加热90秒来干燥以去除溶剂,直至光阻层无粘性。在SCI Filmtek 4000光谱学反射计上测量膜厚度。膜厚度相对于聚合物浓度的线性曲线呈现于图5a中。根据曲线,使用2.5重量%到3重量%作为最终聚合物浓度,直到实现约50纳米的所要光阻层厚度。
[0077] 表3
[0078]
[0079] 由不同面涂层溶剂引起的光阻层厚度变化。这个步骤的目的是选择面涂层溶剂。一般来说,面涂层溶剂不应溶解光阻层。否则,在面涂层旋涂过程中,溶剂将部分地溶解抗蚀剂表面,形成互混层。评价抗蚀剂与面涂层之间的溶剂相容性的有效方法是通过使不同面涂层溶剂暴露于抗蚀剂膜来测量抗蚀剂的厚度变化。典型工艺如下。首先,将光阻溶液旋涂于硅晶片上。涂覆后烘烤之后,测量光阻层的厚度。接着通过旋涂于光阻层上来涂覆不同溶剂。再进行涂覆后烘烤之后,测量膜厚度。溶剂特性概述于表4中,其中“TMAH”表示四甲基氢氧化铵。不同溶剂引起的厚度变化呈现于表5中,其中“二(丙二醇)单甲基醚+2-甲基-2-丁醇”是指11:89重量比的二(丙二醇)单甲基醚和2-甲基-2-丁醇。
[0080] 表4
[0081]溶剂 面涂层聚合物溶解 沸点(℃)
丙酮 √ 56
乙醇 √ 78.1
甲醇 √ 64.7
四氢呋喃 √ 66
2.38%TMAH √ --
水 √ 100
异丁醇 √ 107.9
2-甲基-2-丁醇 √ 102
2-甲基-4-戊醇 √ 131.6
苯甲醚 √ 154
二(丙二醇)单甲基醚 √ 190
[0082] 表5
[0083]
[0084] 互混测试
[0085] 用于互混测试的典型方法如下进行。首先,将光阻溶液旋涂于硅晶片上以形成50纳米层。涂覆后烘烤之后,测量光阻层的厚度。接着将面涂层溶液(含有聚(PEGMA-共-BzMA-共-HFACHOH)的2-甲基-2-丁醇)旋涂于光阻层上。涂覆后烘烤之后,测量总层厚度。将面涂层溶解于显影剂溶液(2.38重量%的TMAH溶液)中、随后用去离子水冲洗之后,测量“暗损失”。“暗损失”是去除面涂层之前与之后的光阻层厚度之间的差异并且由于曝光不涉及测量而被称为暗损失。
[0086] 互混测试的结果显示于表6中。将聚(PEGMA-共-BzMA-共-HFACHOH)/2-甲基-2-丁醇溶液涂布于裸硅基板上,得到10纳米(0.3重量%溶液)或27纳米(0.7重量%溶液)的层厚度。光阻层厚度为约50纳米。面涂层涂布于光阻层上之后,接着层厚度是约60纳米(对于0.3重量%面涂层溶液)或约80纳米(对于0.7重量%溶液)。使用2.38%TMAH溶液去除面涂层并且用去离子水冲洗之后,光阻层的最终厚度类似于其原始厚度。这些结果表明,在此所述的面涂层不与光阻层形成混合层并且可以使用显影剂溶液去除。
[0087] 表6
[0088]
[0089] 测量接触角
[0090] 用于制备供测量接触角用的样品的典型程序如下。将CBP-4光阻溶液旋涂于洁净的硅晶片上。涂覆光阻层之前,在晶片上不涂覆助粘涂层。将面涂层溶液旋涂于光阻层上,形成10纳米或30纳米厚度的面涂层。在室温下,使用Dataphysics OCA20接触角系统测量接触角。在样品表面上滴加去离子水滴(2微升)以便对湿润行为进行测量。
[0091] 图6中所呈现的结果显示,裸面涂层(10纳米或30纳米)具有相当的亲水性。去离子水接触角是约35°并且去离子水滴伸展极快。60秒之后,去离子水接触角变成约11°。然而,在面涂层涂布于光阻层上的情况下,水接触角不同于直接涂布于硅晶片上的裸面涂层的水接触角。对于30纳米厚度的面涂层来说,水接触角(water contact angle;WCA)是55°并且在60秒之后变成25°。对于10纳米厚度的面涂层来说,WCA是72°并且在60秒之后变成46°。WCA在裸光阻层表面上是82°并且在60秒之后保持不变。众所周知,硅在空气中容易氧化而涂上氧化硅层,氧化硅层是亲水性表面。虽然不希望被任何特定假设束缚,但本发明人推测,如图6中的示意性影像所示,晶片表面上的亲水性羟基氢原子可以和HFACHOH重复单元羟基中的氧原子形成氢键。因此,面涂层表面可倾向于具有更大亲水性。然而,当面涂层旋涂于光阻层上时,由于在旋涂过程中表面能低,因此更多的HFACHOH重复单元可以移动到表面。这种情况的原因可能是,光阻层上所涂布的面涂层的疏水性倾向于比直接涂布于硅基板上的面涂层大。
[0092] VUV VASE椭偏仪表征
[0093] 为了检查面涂层对频带外光的阻挡作用,通过VUV VASE椭偏仪测量面涂层薄膜的TM TM光学特性。在J.A.Woollam  VUV VASE 光谱学椭偏仪上测量光学常数n和k以及膜厚度。使用1.2电子伏特(electron-volts;eV)到8.3电子伏特的光谱范围(对应于波长范围λ150纳米到1000纳米)以及65°到75°的入射角(以5°作为步长),进行VUV VASE测量。整个光学路径围封于干燥氮气吹扫环境内以消除环境水蒸汽以及氧气的吸收。此研究中的建模以及拟合程序由以下内容组成:首先使用柯西层(Cauchy layer)测定厚度以及300纳米到1000纳米透光光谱区间的光学常数,且接着使用逐点方法拟合150nm到300nm范围内的曲线以便获得光学常数消光系数‘k’以及折射率‘n’。面涂层的光学特性概述于表7中并且呈现于图7(消光系数与波长以及面涂层厚度的关系)以及图8(透射率百分比与波长以及面涂层厚度的关系)中。如表7以及图7以及图8中所示,对于13纳米以及30纳米厚度的面涂层来说,消光系数k分别是0.213以及0.215。193纳米下的透射率百分比分别计算为83.2%以及64%。吸收系数α是13.9μm-1以及14.0μm-1。
[0094] 表7
[0095]
[0096] 平版印刷性能
[0097] 电子束平版印刷术(electron beam lithography;EBL)用的样品如下制备。将光阻聚合物CBP-4(25毫克)以及三异丙醇胺(0.20毫克,20摩尔%,相对于CBP-4共聚物中的光酸产生重复单元)引入20毫升小瓶中。添加乳酸乙酯(760微升,786毫克)以制备CBP-4聚合物浓度为3重量%的溶液。将面涂层聚合物聚(PEGMA-共-BzMA-共-HFACHOH)(10毫克)溶解于2-甲基-2-丁醇(5毫升,4.02克)中以制备浓度为0.25重量%的溶液。
[0098] 如下执行代表性旋涂工艺。首先,用丙酮以及异丙醇冲洗硅晶片。接着将硅晶片在100℃加热板上放置10分钟。接着通过O2等离子体处理来进一步清洁硅晶片。以TI/HDMS涂漆获自MicroChemicals的助粘剂以3000rpm的速度在洁净硅晶片上旋涂20秒,随后在120℃加热板上焙烤5分钟以去除溶剂。光阻溶液以3000rpm的速度在底涂层上旋涂60秒。将光阻溶液涂布于晶片上之后,通过在100℃下加热90秒来干燥晶片以去除溶剂,直至光阻层无粘性。接着将面涂层溶液以3000rpm的速度在光阻层上旋涂60秒。在涂覆后烘烤步骤中,将所涂晶片在100℃加热板上放置90秒以去除残余溶剂。
[0099] 接着将具有面涂层的光阻图案化并且曝露于活化辐射,曝光能量典型地在约10μC/cm2到100μC/cm2范围内。典型地,使用电子束平版印刷技术作为产生图案的曝光工具。
[0100] 曝光之后,将具有面涂层的光阻在100℃的温度下烘烤60秒。随后,通过用水性碱性显影剂(例如0.26N四甲基氢氧化铵(2.38重量%TMAH))处理20秒、随后用水冲洗20秒来使样品显影。
[0101] 使用7800场发射扫描电子显微镜(Field Emission Scanning Electron Microscope;FE-SEM)联合热(肖特基(Schottky))电子枪进行电子束平版印刷分析,其在15kV下具有0.8nm的分辨率(与样品相关)并且在1kV下具有1.2nm的分辨率。其装备有电子束平版印刷术用的RAITHTM系统。
[0102] 图9显示CBP-4光阻层以及CBP-4光阻层加10纳米面涂层的对比度曲线。根据曲线可以看出,抗蚀剂敏感性在面涂层存在下不发生变化。两个样品的清除剂量值是约40μC/2
cm。然而,CBP-4光阻层加10纳米面涂层的曲线的斜率较高。因此,对比度在添加面涂层的情况下改善。
[0103] 扫描电子显微法
[0104] 图10呈现以下线图案的扫描电子显微照片(SEM):(a)以51μC/cm2曝光的CBP-4光2 2
阻层;(b)以53μC/cm曝光的CBP-4光阻层;(c)以55μC/cm曝光的CBP-4光阻层;(d)以51μC/cm2曝光的CBP-4光阻层+10nm面涂层;(e)以57μC/cm2曝光的CBP-4光阻层+10nm面涂层;以及(f)以60μC/cm2曝光的CBP-4光阻层+10nm面涂层。