组装结构体及组装结构体的制造方法转让专利

申请号 : CN201610438828.4

文献号 : CN106449444B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 日野裕久铃木康宽森将人大桥直伦

申请人 : 松下知识产权经营株式会社

摘要 :

本发明提供即使进行两面组装也不易引起焊料溢料的组装结构体及其制造方法。本发明的组装结构体为在被组装部件(8)的组装面(101)组装有组装部件(1)、并且在被组装部件(8)的组装面(102)组装有组装部件(9)的组装结构体,其设有基端与被组装部件(8)的组装面(101)连接而覆盖焊料(5)的一部分的整体、且前端不与凸块(4)接触的增强树脂(6),由于焊料(5)的一部分以在增强树脂(6)的前端与组装部件(1)的基板(2)之间所形成的露出部(Oa)露出,因此通过在被组装部件(8)的组装面(102)组装组装部件(9)时的二次回流使再熔融的焊料(5)从露出部(Oa)向外侧扩展,并通过冷却使焊料(5)回到原来的位置。

权利要求 :

1.一种组装结构体,其包含:

具有第一凸块的第一组装部件、

具有第二凸块的第二组装部件、

具有一次组装面和二次组装面的被组装部件、

将所述一次组装面的电极和所述第一凸块连接的第一焊料、将所述二次组装面的电极和所述第二凸块连接的第二焊料、覆盖所述第二凸块和所述第二焊料的侧面的全部且由第二焊料膏剂中包含的热固化性树脂成分构成的第二增强树脂、和在所述被组装部件的一次组装面侧覆盖所述第一焊料的一部分且不与所述第一凸块接触的第一增强树脂,该第一增强树脂由触变指数比所述第二焊料膏剂高的第一焊料膏剂中包含的热固化性树脂成分构成。

2.根据权利要求1所述的组装结构体,其中,

所述第一凸块经由所述第一焊料与所述被组装部件的电极接合,所述第二凸块经由所述第二焊料与所述被组装部件的电极接合,所述第一凸块和所述第二凸块的顶点不与所述被组装部件的一次组装面的电极、所述被组装部件的二次组装面的电极抵接。

3.根据权利要求1所述的组装结构体,其中,

所述第一凸块的顶点与所述被组装部件的电极抵接,所述第一凸块和所述电极经由所述第一焊料而接合。

4.一种组装结构体,其包含:

具有第一凸块的第一组装部件、

具有第二凸块的第二组装部件、

在一次组装面组装有所述第一组装部件且在二次组装面组装有所述第二组装部件的被组装部件、位于所述被组装部件的一次组装面的电极与所述第一凸块之间的第一焊料、位于所述被组装部件的电极与所述第二凸块之间的第二焊料、基端与所述被组装部件的二次组装面连接且前端不与所述第二凸块接触、由第二焊料膏剂中包含的热固化性树脂成分构成的第二增强树脂、和基端与所述被组装部件的一次组装面连接且前端不与所述第一凸块接触的第一增强树脂,该第一增强树脂由触变指数比所述第二焊料膏剂高的第一焊料膏剂中包含的热固化性树脂成分构成,所述第一焊料的一部分在形成于所述第一增强树脂的前端与所述第一组装部件的基板之间的露出部露出,所述第二焊料的一部分在形成于所述第二增强树脂的前端与所述第二组装部件的基板之间的露出部露出。

5.一种组装结构体的制造方法,其包括:

第一连接工序,对第一焊料膏剂进行一次回流而利用第一焊料将设置于第一组装部件的第一凸块与被组装部件的一次组装面的电极连接;和第二连接工序,对第二焊料膏剂进行二次回流而利用第二焊料将设置于第二组装部件的第二凸块与所述被组装部件的二次组装面的电极连接,在所述第一连接工序中,通过所述回流,使包含焊料成分和热固化性树脂成分且触变指数比所述第二焊料膏剂高的所述第一焊料膏剂分离为所述第一焊料和所述热固化性树脂成分,所述热固化性树脂成分的基端与所述被组装部件的一次组装面接触,所述热固化性树脂成分覆盖所述第一焊料的一部分,所述热固化性树脂成分的前端不与所述第一凸块接触。

6.根据权利要求5所述的组装结构体的制造方法,其中,在所述第二连接工序中,通过所述二次回流使再熔融后的所述第一焊料从形成于所述热固化性树脂成分的前端与所述第一凸块之间的露出部向外侧扩展,并通过之后的冷却使所述第一焊料返回到即将进行所述二次回流之前的位置。

说明书 :

组装结构体及组装结构体的制造方法

技术领域

[0001] 本发明涉及在电路基板等被组装部件的两面组装有具有焊料凸块的半导体芯片、半导体封装体、具有焊料凸块的电子部件等组装部件的组装结构体。

背景技术

[0002] 近年来,手机、PDA(Personal Digital Assistant)等便携式设备的小型化、高功能化不断发展。作为能够与之对应的组装技术,大多使用BGA(Ball Grid Array)、CSP(Chip Scale Package)等组装结构。便携式设备容易受到落下冲击等机械负荷。QFP(Quad Flat Package)以其导线部分吸收冲击。但是,在不具有缓和冲击的导线的BGA、CSP等中,确保耐冲击可靠性变得较为重要。
[0003] 以往的代表性焊料即Pb共晶焊料的熔点为183℃,但是就近来的无铅焊料的熔点而言,代表的Ag-Sn-Cu系焊料比Pb共晶焊料高30℃左右。回流炉的分布曲线的最高温度高达220~260℃。
[0004] 因此,在将高温耐性弱的部件组装于配线基板的情况下,仅该部件要利用另外工序进行点焊接合,因此生产率显著降低。
[0005] 为此,开始使用没有Sn-Ag-Cu系焊料的熔点高这样的缺点的Sn-Zn系、Sn-Ag-In系、Sn-Bi系等低熔点无Pb焊料。但是,对于使用了Sn-Zn系、Sn-Ag-In系、Sn-Bi系焊料的BGA连接而言,该焊料连接部的连接可靠性还尚不明确。
[0006] 作为其对策,提出为了提高连接部的耐冲击可靠性而使用焊剂采用了热固化性树脂的焊料膏剂的制造方法(专利文献1)。
[0007] 在该方法中,在焊接连接部时焊料膏剂中的树脂与焊料分离,覆盖焊料的边缘。结果通过树脂增强了焊料的强度。
[0008] 图1(a)~图1(d)表示在电路基板的双面组装组装部件的工序。
[0009] 在图1(a)中,在涂布于电路基板8的一次组装面101的焊料膏剂P上载置半导体元件1。焊料膏剂P为混有低熔点的焊料和热固化性树脂的组成。如图1(b)那样利用加热炉16对载置有半导体元件1的电路基板8进行加热。结果将半导体元件1与电路基板8进行金属接合。这是第一连接工序。接着,在图1(c)中,将电路基板8的上下进行翻转,在电路基板8的二次组装面102上涂布焊料膏剂P,载置半导体元件9。将其如图1(d)那样利用加热炉16进行回流加热,使焊料膏剂P中的焊料成分熔融。结果将半导体元件9与电路基板8进行金属接合。这是第二连接工序。这样,制作成在电路基板8的两面组装有半导体元件1、9的组装结构体。
[0010] 图2(a)中示出电路基板8与半导体元件1、9的连接部分的放大剖视图。
[0011] 将半导体元件1的电极3与一次组装面101的电极7a之间通过凸块4和从焊料膏剂P分离出的焊料5进行电连接。将半导体元件9的电极11与二次组装面102的电极7b之间通过凸块12和从焊料膏剂P分离出的焊料1进行电连接。进而,从焊料膏剂P分离并固化的树脂成分即增强树脂6覆盖电路基板8的一次组装面101与半导体元件1的基板2之间的焊料5的整面。另外,从焊料膏剂P分离并固化的树脂成分即增强树脂14覆盖电路基板8的二次组装面102与半导体元件9的基板10之间的焊料13的整面。
[0012] 现有技术文献
[0013] 专利文献
[0014] 专利文献1:日本专利第5204241号公报

发明内容

[0015] 发明要解决的问题
[0016] 在该结构中,实行将半导体元件1焊接于电路基板8的一次组装面的第1次热处理,之后,在电路基板8的二次组装面实行将半导体元件9钎焊的第2次热处理。
[0017] 在第2次热处理时是通过第1次组装完成连接的焊料5再熔融。此时,焊料5的边缘用增强树脂6覆盖,因此有时会引起焊料溢料。焊料溢料为:如图2(b)所示,在实行第2次热处理时于再熔融的焊料5的内部产生孔隙18,熔融后的焊料5的一部分飞出的焊料19从电路基板8与增强树脂6的连接部的破裂的间隙飞出的现象。
[0018] 若发生此种焊料溢料,则由于飞出的焊料19而引起电路的短路,成为组装结构体的工作不良的原因。因此,需要不引起焊料溢料的对策。
[0019] 在此,若增大焊料5与焊料13的熔点差,则利用第二次组装时的热处理不会使第一次的焊料5熔化,从而能够解决上述技术问题。但是,仅限于低熔点的无铅焊料材料,无法增大熔点差。另外,若使用不同的焊料膏剂,则工艺上变得复杂,故不良。
[0020] 另外,还考虑临时固定第一次(暂且仅固定在熔点以下)而在第二次时使上下两方的焊料熔化。但是,在临时固定中,中间状态存在偏差,工艺变得复杂,若在电路基板8的下表面使焊料5整体熔化,则不能发挥自对准的作用等,因此不良。
[0021] 本发明的目的在于即使在电路基板等被组装部件的两面组装组装部件的情况下也不易引起焊料溢料的组装结构体及其制造方法。
[0022] 用于解决问题的技术手段
[0023] 本发明的组装结构体包含具有第一凸块的第一组装部件、具有第二凸块的第二组装部件、具有一次组装面和二次组装面的被组装部件、将上述一次组装面的电极和上述第一凸块连接的第一焊料、将上述二次组装面的电极和上述第二凸块连接的第二焊料、和覆盖上述第一焊料的一部分且不与上述第一凸块接触的增强树脂。
[0024] 另外,本发明的组装结构体包含具有第一凸块的第一组装部件、具有第二凸块的第二组装部件、在一次组装面组装有上述第一组装部件且在二次组装面组装有上述第二组装部件的被组装部件、位于上述被组装部件的一次组装面的电极与上述第一凸块之间的第一焊料、位于上述被组装部件的电极与上述第二凸块之间的上述第二焊料、覆盖上述第二凸块和第二焊料的侧面的全部的第二增强树脂、和基端与上述被组装部件的一次组装面连接且前端不与上述第一凸块接触的第一增强树脂,其中,上述第一焊料的一部分在形成于上述第一增强树脂的前端与上述第一组装部件的基板之间的露出部露出。
[0025] 另外,本发明的组装结构体包含具有第一凸块的第一组装部件、具有第二凸块的第二组装部件、在一次组装面组装有上述第一组装部件且在二次组装面组装有上述第二组装部件的被组装部件、位于上述被组装部件的一次组装面的电极与上述第一凸块之间的第一焊料、位于上述被组装部件的电极与上述第二凸块之间的第二焊料、基端与上述被组装部件的二次组装面连接且前端不与上述第二凸块接触的第二增强树脂、和基端与上述被组装部件的一次组装面连接且前端不与上述第一凸块接触的第一增强树脂,上述第一焊料的一部分在形成于上述第一增强树脂的前端与上述第一组装部件的基板之间的露出部露出,上述第二焊料的一部分在形成于上述第二增强树脂的前端与上述第二组装部件的基板之间的露出部露出。
[0026] 本发明的组装结构体的制造方法包括对第一焊料膏剂进行一次回流而利用第一焊料将设置于第一组装部件的第一凸块与被组装部件的一次组装面的电极连接的第一连接工序、和对第二焊料膏剂进行二次回流而利用第二焊料将设置于第二组装部件的第二凸块与上述被组装部件的二次组装面的电极连接的第二连接工序,在上述第一连接工序中,通过上述回流使包含焊料成分和热固化性树脂成分的上述第一焊料膏剂分离为上述第一焊料和上述热固化性树脂成分,上述热固化性树脂成分的基端与上述被组装部件接触,上述热固化性树脂成分覆盖上述第一焊料的一部分,上述热固化性树脂成分的前端不与上述第一凸块接触。
[0027] 发明效果
[0028] 根据该构成,覆盖将第一组装部件与被组装部件的一次组装面的电极接合的第一焊料的一部分的增强树脂为不与第一凸块接触、且未被树脂覆盖第一焊料的周围整体的结构。结果:在将第二组装部件组装到被组装部件的二次组装面时,即使对第一焊料进行再回流,再熔融的第一焊料也会从露出部向外侧扩展,并利用之后的冷却使第一焊料返回到原来的位置,因此不会产生焊料溢料。

附图说明

[0029] 图1(a)~(d)为以往的钎焊方法的工序图。
[0030] 图2(a)为以往的钎焊方法的连接部分的放大剖视图,(b)为产生焊料溢料时的放大剖视图。
[0031] 图3为实施方式1的组装结构体的剖视图。
[0032] 图4为实施方式2的组装结构体的剖视图。
[0033] 图5为实施方式3的组装结构体的剖视图。
[0034] 图6为实施方式4的组装结构体的剖视图。
[0035] 图7为实施方式5的组装结构体的剖视图。

具体实施方式

[0036] (实施方式1)
[0037] 实施方式1的组装结构体如图3所示。
[0038] 在该组装结构体中,选定所使用的焊料膏剂的成分等。由此仅通过实施图1(a)~图1(d)中说明的相同工序即可制作良好的组装结构体。
[0039] 予以说明,对与表示现有例的图1(a)~图1(d)、图2(a)、图2(b)同样的部分标记同一符号进行说明。
[0040] 该组装结构体通过在作为被组装部件的电路基板8的一次组装面101焊料组装作为第一组装部件的半导体元件1、并且在电路基板8的二次组装面102焊料组装作为第二组装部件的半导体元件9而构成。
[0041] 在形成于半导体元件1的基板2的电极3上形成半圆球状的凸块4。通过焊料5将该凸块4与位于电路基板8的一次组装面101的电极7a接合。焊料5为将图1(a)中使用的焊料膏剂P进行回流而分离得到的焊料成分。
[0042] 在形成于半导体元件9的基板10的电极11上形成半圆球状的凸块12。通过焊料13将凸块12与位于电路基板8的二次组装面102的电极7b接合。焊料13为将图1(c)中使用的焊料膏剂P回流而分离得到的焊料成分。
[0043] 在凸块4、12中使用Sn-Ag-Cu系的焊料。在焊料5、13中使用Sn-Bi系焊料。凸块4、12的强度比焊料5、13更强。
[0044] 二次组装面102与半导体元件9的基板10之间的焊料13的整体被增强树脂14覆盖。增强树脂14的高度B同电路基板8与基板10的间隙宽度D为相同高度。凸块12和焊料13形成以增强树脂14被覆整个周围而使其增强的结构。增强树脂14为将图1(c)中使用的焊料膏剂P进行回流而分离得到的树脂成分。在该例中,增强树脂14的高度B比凸块12的高度F还大。
半圆球状的凸块12的顶点不与电路基板8的电极7b接触。
[0045] 在电路基板8的一次组装面101与半导体元件1的基板2之间的焊料5的周围,从一次组装面101至高度A的区间被增强树脂6覆盖。增强树脂6为将图1(a)中使用的焊料膏剂P进行回流而分离得到的树脂成分。在该例中,增强树脂6的高度A比电路基板8与基板2的间隙宽度C还低。因此,在焊料5与基板2之间形成使焊料5的一部分露出的露出部Oa。另外,凸块4的高度E比间隙宽度C还低。因此,半圆球状的凸块4的顶点成为不与电路基板8的电极7接触的结构。
[0046] 增强树脂6、14以使基端与电路基板8接触、底边(日文原文:裾)扩展到电路基板8侧的方式形成倒角。凸块4与焊料5的连接部的一部分被增强树脂6覆盖。详细而言,增强树脂6覆盖第一焊料5的一部分且不与第一凸块4接触。进而,增强树脂6的前端不与半导体元件1的基板2及电极3接触。另外,凸块12与焊料13的连接部被增强树脂14覆盖。详细而言,增强树脂14覆盖第二焊料13的全部,增强树脂14的前端与半导体元件9的基板10及电极3接触。
[0047] 因此,在受到热冲击或机械冲击的情况下,可以抑制电路基板8的变形,并且可以使耐冲击性提高。但是,与二次组装侧的增强树脂14相比,一次组装侧的增强树脂6所覆盖的面积狭小,因此耐冲击性的效果存在变小的倾向。
[0048] 予以说明,增强树脂6、14大致均匀地覆盖凸块4、12的周围的一周。这是由于焊料膏剂P熔化而使焊料和树脂分离并移动。根据浆料涂布位置,还产生不覆盖整体的情况。增强树脂6、14未必需要覆盖凸块4、12的周围的一周,只要覆盖至少一部分即可。
[0049] 这样,将焊料5的一部分用增强树脂6覆盖而形成焊料5的一部分露出的露出部Oa。因此,即使通过二次组装时的回流而使焊料5再熔融,也能够确保熔融而膨胀后的焊料5的扩展空间,因此若在二次组装后进行冷却,则焊料5返回到原来的形态。因此,不产生焊料溢料。
[0050] 予以说明,组装条件和所使用的焊料膏剂P的成分的具体例、以及凸块4、12的形状和大小、电路基板8与基板2的间隙宽度C、电路基板8与基板10的间隙宽度D的具体例等将在后面的实施例1、2、5中进行叙述。
[0051] (实施方式2)
[0052] 图4表示实施方式2的组装结构体。
[0053] 在图3所示的实施方式1中,半导体元件1的凸块4的顶点不直接与电路基板8的一次组装面101的电极7a抵接。另外,在凸块4的顶点与电极7a之间夹杂固化后的焊料5。另一方面,在该实施方式2中,半导体元件1的凸块4的顶点直接与电路基板8的一次组装面101的电极7a抵接。除此以外均与实施方式1相同。
[0054] 即,与图3的情况同样,焊料5与一半凸块4的整面并未被增强树脂6被覆。形成露出了焊料5的一部分的露出部Oa。与实施方式1的图3的不同点为:凸块4的顶点与电路基板8上的电极7a接触,电路基板8与基板2的间隙宽度C变得狭小。
[0055] 因此,与二次组装侧的增强树脂14相比,一次组装侧的增强树脂6所覆盖的体积小。但是,强度比焊料5优异的凸块4到达电路基板8上的电极7a。因此,该组装结构体的耐冲击性比实施方式1的图3的实施结构体高。
[0056] 予以说明,组装条件和所使用的焊料膏剂P的成分的具体例、以及凸块4、12的形状和大小、电路基板8与基板2的间隙宽度C、电路基板8与基板10的间隙宽度D的具体例等将在后面的实施例3中进行叙述。
[0057] (实施方式3)
[0058] 图5表示实施方式3的组装结构体。
[0059] 在图3所示的实施方式1的组装结构体中,在半导体元件1的电极3上形成半圆球状的凸块4。但是,在图5的组装结构体中,在半导体元件1的电极3上使用球状的凸块41,仅这一点与图3不同。除此以外均与实施方式1相同。即,增强树脂6的顶点不与凸块41接触,露出了焊料5的一部分的露出部Oa与图3的情况同样地形成。凸块41的组成与凸块4相同。
[0060] 因此,电路基板8与基板2的间隙宽度C比图3情况的间隙大很多。因此,强度比实施方式1弱。
[0061] 予以说明,组装条件和所使用的焊料膏剂P的成分的具体例、以及凸块4、12的形状和大小、电路基板8与基板2的间隙宽度C、电路基板8与基板10的间隙宽度D的具体例等将在后面的实施例6中进行叙述。
[0062] (实施方式4)
[0063] 图6表示实施方式4的组装结构体。
[0064] 与图3所示的实施方式1的组装结构体的焊料5的体积相比,图6的组装结构体中的焊料5的体积非常小。焊料5的扩展宽度G比图3的组装结构体的焊料5的宽度小。除此以外均与实施方式1的组装结构体相同,增强树脂6的前端不与凸块4接触。露出了焊料5的一部分的露出部Oa与图3的组装结构体的情况同样地形成。优选以增强树脂6覆盖至焊料5的高度E的一半的组装结构体。
[0065] 因此,在实施方式4的组装结构体中,增强树脂6的增强效果变小,接合可靠性比图3的组装结构体差。
[0066] 予以说明,组装条件和所使用的焊料膏剂P的成分的具体例、以及凸块4、12的形状和大小、电路基板8与基板2的间隙宽度C、电路基板8与基板10的间隙宽度D的具体例等将在后面的实施例7中进行叙述。
[0067] (实施方式5)
[0068] 图7表示实施方式5的组装结构体。
[0069] 在图3所示的实施方式1的组装结构体中,处于电路基板8与基板10之间的焊料13的全部被增强树脂14覆盖,仅处于电路基板8与基板2之间的焊料5的一部分被增强树脂6覆盖,焊料5的剩余部分以露出部Oa露出。但是,在图7的组装结构体中,焊料5的一部分露出的露出部Oa和使焊料13的一部分露出的露出部Ob形成在增强树脂14的前端与基板10之间。
[0070] 即,就焊料13而言,仅一部分被基端与电路基板8接触的增强树脂14覆盖,增强树脂14的前端不与凸块12接触。进而,在图3中,凸块4、12的顶点不与电极7a、7b抵接,但是在图7的组装结构体中,凸块4、12的顶点与电极7a、7b抵接。除此以外均与实施方式1的组装结构体相同。
[0071] 这样,在该实施方式的组装结构体中,在一次组装面101的侧形成露出部Oa,并且在二次组装面102上也形成露出部Ob,因此作为整体的厚度较薄。
[0072] 另外,强度比焊料5、13优异的凸块4、12达到电路基板8的电极7a、7b为止。因此耐冲击性提高,并且补充增强树脂6、14的面积减少的量,能够维持优异的可靠性。
[0073] 予以说明,组装条件和所使用的焊料膏剂P的成分的具体例、以及凸块4、12的形状和大小、电路基板8与基板2的间隙宽度C、电路基板8与基板10的间隙宽度D的具体例等将在后面的实施例4中进行叙述。
[0074] 上述的各实施方式的具体例即实施例1~7的内容和综合判定等如表2所示。将图2(a)所示的以往的构成设为比较例1。焊料膏剂P使用表1所示的成分不同的6种焊料膏剂P-1~P-6。
[0075] 【表1】
[0076]
[0077] 【表2】
[0078]
[0079] 首先,对比较例1及实施例1~7中共通的具体构成进行说明。
[0080] <半导体元件1、9>
[0081] 作为组装部件的半导体元件1、9使用具有菊链(Daisy-chain)电路的相同的元件。其大小为11mm×11mm×0.5mm的大小。所搭载的基板2、10的厚度为0.2mm。
[0082] 另外,电路基板8为30mm×70mm×1.0mm,电极7a、7b的材质为铜,电路基板8的材质为玻璃环氧材料。
[0083] <凸块4、12>
[0084] 凸块4、12为具有包含Sn-Ag-Cu系的选自Bi、In、Ag、Zn及Cu中的1种以上的元素和Sn的组合的合金组成的元件,因此优选熔点比Sn-Bi系焊料高的凸块。凸块4、12的间距为0.4mm,凸块数为441个。将Sn3.0Ag0.5Cu焊料(熔点219℃/商品名“M705-GRN360-L60C”、千住金属工业株式会社制)的焊料膏使用金属掩模印刷到基板2、10的电极7a、7b上,通过加热熔融形成凸块4、12。
[0085] <焊料5、13>
[0086] 从焊料膏剂分离后形成焊料5、13的焊料成分为Sn-Bi系焊料,例如单独的锡系合金或这些合金的混合物,例如可以使用选自Sn-Bi系、Sn-In系、Sn-Bi-In系、Sn-Ag-Bi系、Sn-Cu-Bi系、Sn-Ag-Cu-Bi系、Sn-Ag-In系、Sn-Cu-In系、Sn-Ag-Cu-In系、及Sn-Ag-Cu-Bi-In系中的合金组成。
[0087] <增强树脂6、14>
[0088] 从焊料膏剂分离后形成增强树脂6、14的树脂成分为热固化性树脂,可以包含环氧树脂、聚氨酯树脂、丙烯酸类树脂、聚酰亚胺树脂、聚酰胺树脂、双马来酰亚胺、酚醛树脂、聚酯树脂、硅酮树脂、氧杂环丁烷树脂等各种树脂。这些树脂可以单独使用,也可以组合使用2种以上。其中,如后述那样,特别优选环氧树脂。环氧树脂使用在室温为液体的环氧树脂。例如适合为双酚A型环氧树脂、双酚F型环氧树脂、双酚S型环氧树脂、脂环式环氧树脂等。也可以使将这些树脂改性后的环氧树脂。这些液状环氧树脂可以单独使用,也可以组合使用2种以上。
[0089] <固化剂>
[0090] 作为与上述的热固化性树脂组合使用的固化剂,可以使用选自硫醇系化合物、改性胺系化合物、多官能酚系化合物、咪唑系化合物及酸酐系化合物中的化合物。这些化合物可以单独使用,也可以组合使用2种以上。另外,作为根据需要使用的用于除去焊料粒子的表面的氧化膜的还原剂,可以添加有机酸、卤素化合物。
[0091] 作为该有机酸,使用具有1个羧基的化合物或具有多个羧基的化合物,低分子量的有机酸对于表现低温下的还原反应是有效的,在需要显著的还原反应的情况下,具有多个羧基的化合物是有效的。作为具有1个羧基的化合物,可例示乙酰丙酸、苯基丁酸、松香酸等。另外,作为具有2个羧基的化合物,可列举琥珀酸、丙二酸、戊二酸、己二酸、癸二酸、庚二酸、柠檬酸等多种化合物。
[0092] <增强树脂6、14的硬度的控制>
[0093] 由于采取在一次组装侧形成有露出部Oa的结构,因此可以防止在二次组装工序的一次组装侧的Sn-Bi系焊料5的溢料。为了形成该效果的结构,将一次组装时的树脂的扩展控制得较小是非常重要的。即,通常,在一次组装时,Sn-Bi系的焊料5被加热而熔化,其熔融扩散到Sn-Ag-Cu系的凸块4时,还未固化的树脂也会追随焊料5而向焊料5一方流平,逐渐形成倒角结构,但是需要在其扩展的途中停止。
[0094] 即,需要使在树脂粘合剂中包含Sn-Bi系焊料的低熔点的焊料膏剂的树脂具有流动性控制特性的功能。为此发现:作为为了调整增强树脂6、14的硬度而抑制焊料熔融时的环氧树脂的流动性的手段之一,环氧树脂的高粘度化是有效的。尤其判明软化点70~110℃、环氧当量250~1000的环氧树脂是有效的。作为用于该高粘度化的环氧树脂,具体而言,选自多官能环氧树脂、溴化环氧树脂、缩水甘油基酯型环氧树脂、高分子型环氧树脂中的环氧树脂是有效的。例如优选使用高分子量的双酚A型环氧树脂、高分子量的双酚F型环氧树脂、高分子量的联苯型环氧树脂、萘型环氧树脂、苯酚酚醛型环氧树脂、甲酚酚醛型环氧树脂等。也可以使用将这些树脂改性而成的环氧树脂。这些树脂可以单独使用,也可以组合使用2种以上。
[0095] 进而,就实施方式而言,发现:作为抑制一次组装面的低熔点的焊料膏剂的、焊料熔融时的环氧树脂的流动性的方法,添加触变性赋予剂的是有效的。
[0096] 触变性赋予剂可以使用有机系或无机系的触变性赋予剂。作为触变性赋予剂,低分子量的酰胺、聚酯系、蓖麻油的有机衍生物等是有效的。另外,作为无机系的触变性赋予剂,一次粒径为7nm~40nm的疏水化煅制氧化硅(fumed silica)等是有效的。通过适当配合这些触变性赋予剂,可以抑制焊料熔融时的环氧树脂的扩展。
[0097] 予以说明,若在焊剂成分中添加高熔点的环氧树脂或触变性赋予剂,则变成高粘度的油灰状态,因此印刷操作性变差。因此,可以添加溶剂。作为溶剂的种类,优选与环氧树脂的溶解性良好、而且在加热固化时挥发而不会以孔隙(void)的形式残留的溶剂,但是并非限定于此。具体而言,可列举异丙醇、异丁醇、甲苯、正己烷、甲乙酮、1,2—丁二醇等。
[0098] 分别使用表1所示的焊料膏剂P-1~P-6的焊料膏剂,实现图3~图7及比较例的图2所示的结构。
[0099] <焊料膏剂P-1>
[0100] 焊料膏剂P-1为标准类型的加入有树脂的低熔点焊料膏剂,其粘度低、触变性低,并且焊料熔融时的树脂的扩展也大。结果:扩展到焊料的边缘,增强树脂6、14覆盖焊料和凸块的侧面的全部。
[0101] <焊料膏剂P-2>
[0102] 就焊料膏剂P-2而言,通过与高熔点环氧树脂并用,从而使触变性略高,且焊料熔融时的树脂的扩展也较小。由于焊料膏剂并未扩展,因此并未覆盖焊料和凸块的侧面的全部。
[0103] <焊料膏剂P-3>
[0104] 就焊料膏剂P-3而言,焊料比率高,粘度略高,且焊料熔融时的树脂的扩展也很小。由于焊料膏剂并未扩展,因此并未覆盖焊料和凸块的侧面的全部。
[0105] <焊料膏剂P-4>
[0106] 就焊料膏剂P-4而言,通过使用无机系的触变剂,从而焊料熔融时的树脂的扩展也小。由于焊料膏剂并未扩展,因此并未覆盖焊料和凸块的侧面的全部。
[0107] <焊料膏剂P-5>
[0108] 就焊料膏剂P-5而言,若与高熔点环氧树脂并用,则因触变剂的量增加而使得触变性高、粘度高,且焊料熔融时的树脂的扩展也小。由于焊料膏剂并未扩展,因此并未覆盖焊料和凸块的侧面的全部。
[0109] <焊料膏剂P-6>
[0110] 就焊料膏剂P-6而言,通过与高熔点环氧树脂并用,从而使得粘度高、焊料熔融时的树脂的扩展也较小。由于焊料膏剂并未扩展,因此并未覆盖焊料和凸块的侧面的全部。
[0111] <热固化性树脂>
[0112] 使用作为热固化性树脂的环氧树脂。作为低粘度环氧树脂,使用双酚F型环氧树脂(商品名“806”、三菱化学公司制),另外,作为高熔点环氧树脂,使用高分子量双酚F型环氧树脂(商品名“4004P”、软化点85℃、环氧当量907,三菱化学公司制)和联苯型环氧树脂(商品名“YX4000”、熔点105℃、环氧当量186、三菱化学公司制)。
[0113] <固化剂>
[0114] 固化剂使用咪唑系固化剂(商品名“Curezol 2P4MZ”、四国化成制)、活性剂使用戊二酸(和光纯药工业公司制)。
[0115] <触变性赋予剂>
[0116] 有机系触变性赋予剂使用蓖麻油系触变性赋予剂(商品名“THIXCINR”、ELEMENTIS JAPAN制)。无机系触变性赋予剂使用疎水化煅制氧化硅(商品名“RY200”、日本AEROSIL公司制)。
[0117] <焊料成分>
[0118] 在焊料膏剂P-1~P-6的焊料成分中通用的是Sn-58Bi焊料(直径15-25μm、三井金属公司制)。
[0119] <焊料膏剂P-1~P-6的评价方法>
[0120] 使用东京计器制E型粘度计,测定各浆料的粘度和触变指数。测定条件如下。
[0121] 粘度转速:5rpm,测定开始后1分钟后的粘度值
[0122] 触变指数0.5rpm 2分钟后的粘度值/5rpm 1分钟后的粘度值
[0123] (树脂扩展量)
[0124] 使用开设有厚2.5mm、直径6mm的孔的金属掩模,在50×50×0.5mm的铜板上涂布加入有树脂的低熔点焊料膏剂,利用160℃热板使其加热熔融后,测量扩展到焊料周围的环氧树脂的扩展宽度。
[0125] (实施例1~7和比较例1的组装工序)
[0126] 将具有凸块4的半导体元件1组装到在电路基板8的一次组装面101涂布了选自焊料膏剂P-1~P-7中的焊料膏剂而成的电极7a上。然后,利用加热炉16使其熔融而连接。之后,将电路基板8翻转。
[0127] 接着,在将选自焊料膏剂P-1或P-5中的任一焊料膏剂涂布于电路基板8的二次组装面102而成的电极7b上组装具有凸块12的半导体元件9。之后,再度利用加热炉16使其熔融而连接,完成在两个面进行的组装。
[0128] 凸块12(SnAgCu球)的熔点为219℃,焊料膏剂(Sn58Bi焊料膏剂)的熔点为138℃。Sn58Bi焊料膏剂的回流加热温度(回流最高到达温度)为Sn58Bi焊料的熔点以上且不足焊料凸块的熔点的温度是必要条件,在实施例1~7及比较例1中是通用的,并且进行加热至
155℃再进行组装。
[0129] 在半导体元件的连接工序中,将混杂有Sn-58Bi低熔点的焊料和热固化性树脂的组成的低熔点的焊料膏剂涂布于电路基板8上,进行回流加热,使Sn-58Bi焊料熔融。
[0130] 通过使焊料膏剂P-2中的焊料成分熔融,从而使熔融的焊料成为与Sn-Ag-Cu系的凸块4及电极3的表面融合的状态(金属扩散状态)。基于该金属扩散状态的形成,在焊料膏剂中焊料成分处于凝聚状态,热固化性树脂被挤出,从而使2个成分分离。分离出的热固化性树脂配置于焊料的周围,之后,热固化性树脂热固化而成为增强树脂6,并且熔融的焊料成分固化而成为焊料5,将凸块4与电极3电连接。另外,增强树脂6覆盖焊料5与凸块4的接合部分、以及焊料5而起到增强的作用。
[0131] (实施例1)
[0132] 如表2所示,在一次组装面101中使用焊料膏剂P-2,在二次组装面102使用焊料膏剂P―1,如图3那样在两个面上进行组装,制成评价元件。
[0133] 二次组装面102的焊料膏剂P―1为标准类型的加入有树脂的焊料膏剂,其具有低粘度、低触变性。结果焊料熔融时的树脂的扩展也大。因此,在二次组装面102中采取增强树脂14覆盖焊料13与凸块12的接合部分、以及焊料13的整个周围、且增强树脂14从电路基板8达到半导体元件9的基板10的结构。
[0134] 就在一次组装面101上的焊料膏剂P-2而言,通过与高熔点环氧树脂(YX4000)并用,从而使触变性略高,焊料熔融时的树脂的扩展也较小。因此,即使增强树脂6覆盖焊料5与凸块4的接合部分、以及焊料5,也会抑制其流动性,因此不会从电路基板8达到半导体元件1的基板2,成为一部分的焊料5以露出部Oa大致均等地露出的结构。
[0135] 在实施例1中,由于一次组装侧并未采取增强树脂6覆盖焊料5的整个周围的结构,因此熔融的焊料5膨胀并扩展到树脂未覆盖到的部分的露出部Oa,从而不会引起内压上升,之后,在冷却时会回到原来的位置,因此不会产生溢料不良。
[0136] 另外,由于为在一次组装面101上的凸块4的顶点未到达电路基板8的接合,因而间隙宽度C较大,因此,将一次二次的各间隙之间加和而得的总间隙略大,为260μm。
[0137] 另外,完成了一次、二次组装的两面组装封装体的耐落下可靠性为90次。
[0138] 予以说明,表2的组装结构体的评价按照以下方式进行。
[0139] (有无溢料产生)
[0140] 制作组装结构体,并利用X射线照射装置目视观察从焊料5、13的部分的焊料飞出,判断有无溢料产生。
[0141] (耐落下性)
[0142] 使一次组装面101朝下而从30cm的高度落下,若在半导体元件1所制成的菊链电路的电阻值上升到20%以上,则判断为不良,测量直到不良产生为止的次数,将50次以上设为耐落下性合格。
[0143] (总间隙宽度)
[0144] 表示一次组装面101的半导体元件1的基板2与电路基板8的间隙宽度C、和二次组装面102的半导体元件9的基板10与电路基板8的间隙宽度D的总和。将200μm以下设为◎,将200~300μm设为○,将300μm以上设为×。
[0145] (综合判定)
[0146] 在结构及可靠性评价中,将只要有一者为×的情况设为综合判定×,将还有1个△的情况设为○,将无○×的情况设为◎。
[0147] 该组装结构体的评价方法在以下说明的实施例2~实施例7、比较例1中也同样。
[0148] (实施例2)
[0149] 如表2所示,在二次组装面102中使用焊料膏剂P-1,在一次组装面101使用焊料膏剂P-3,并且按照成为图3的结构的方式在两个面上进行组装,制成评价元件。
[0150] 就焊料膏剂P-3而言,焊料比率高达90wt%,并且粘度高,因此焊料熔融时的树脂的扩展也小。予以说明,为了调整粘度,添加相对于焊料膏剂P-3的总量为10wt%的溶剂(甲苯:异丙醇=1:1)。
[0151] 结果:由于并未采取一次组装面101的增强树脂6覆盖与凸块4的接合部分及焊料5的整个周围的结构,因此即使进行二次组装的加热,也不会引起内压上升,不会产生焊料溢料不良。
[0152] 另外,一次组装面101的半导体元件1的凸块4的顶点为与实施例1同样的结构,因此间隙大,从而将一次二次的各间隙之间加和的合计的总间隙略大,为250μm。
[0153] 另外,完成了一次、二次组装的两面组装封装体的耐落下可靠性为74次。认为这是由于:就一次组装中所使用的焊料膏剂P―3而言,由于焊料比率高达90wt%,因此树脂成分变少,为10wt%,树脂的增强效果变小。
[0154] (实施例3)
[0155] 与实施例1,2同样,在一次组装面101中使用焊料膏剂P-4,按照成为图4的结构的方式进行两面组装,制成评价元件。焊料膏剂P-4使用无机系的触变性赋予剂(疏水化煅制氧化硅),焊料熔融时的树脂的扩展也小。尤其,无机系的触变剂即使在焊料熔融温度也不会熔解,因此可以可靠地抑制环氧树脂的流动性。结果:一次组装面101设有露出部Oa,因此即使进行二次组装时的加热,也不会引起内压上升,不会产生焊料溢料不良。
[0156] 另外,一次组装面101的半导体元件1的凸块4的顶点未到达电路基板8,因此将一次二次的各间隙之间加和的合计的总间隙略小,为230μm。
[0157] 另外,完成了一次、二次组装的两面组装封装体的耐落下可靠性为高达112次的结果。推测这是由于:高强度的凸块4的顶点到达电路基板8,由此使结构变得牢固。
[0158] (实施例4)
[0159] 一次组装面101、二次组装面102的焊料膏剂使用焊料膏剂P-5,按照成为图7的结构的方式进行两面组装,制成评价元件。就焊料膏剂P-5而言,若与高熔点环氧树脂(4004P)并用,则通过增加有机系触变性赋予剂的量,从而使触变性高、粘度高,并且焊料熔融时的树脂的扩展也小。因此,在增强树脂6、14设有露出部Oa、Ob,从而与其他的实施例同样,即使进行二次组装的加热,也不会引起内压上升,不会产生焊料溢料不良。
[0160] 另外,在两面的半导体元件1、9的凸块4、12的顶点均到达电路基板8,因此将一次组装面101和二次组装面102的各间隙之间加和的合计的总间隙变小,为200μm。
[0161] 另外,完成了一次、二次组装的两面组装封装体的耐落下可靠性为71次。推测这是由于:高强度的凸块4、12的顶点到达电路基板8,由此使结构变得牢固,但是由于没有增强树脂14覆盖二次组装面102的焊料的整个周围的结构,因此略微变弱。
[0162] (实施例5)
[0163] 与实施例1~3同样,在二次组装面102中使用焊料膏剂P-1,在一次组装面101使用焊料膏剂P-6,按照成为图3的结构的方式进行两面组装,制成评价元件。予以说明,就焊料膏剂P-6而言,通过与高熔点环氧树脂(YX4000、4004P)并用,从而使得粘度高,且焊料熔融时的树脂的扩展也较小。
[0164] 通过与高熔点环氧树脂并用,从而在焊料熔融温度下的树脂粘度也变高,可以抑制环氧树脂的流动性。与其他的实施例同样,在一次组装面101设有露出部Oa,因此即使进行二次组装时的加热,也不会引起内压上升,不会产生焊料溢料不良。
[0165] 另外,由于为一次组装面101的半导体元件1的凸块4的顶点未到达电路基板8的接合,因而间隙宽度C大,从而将一次二次的各间隙之间加和的合计的总间隙略大,为260μm。
[0166] 另外,完成了一次、二次组装的两面组装封装体的耐落下可靠性为98次。推测:与实施例1相比,由于在环氧树脂中并用了高熔点的树脂,因此树脂强度提高,耐落下可靠性出现些许上升。
[0167] (实施例6)
[0168] 在一次、二次组装中均使用焊料膏剂P-1,按照成为图5的结构的方式进行两面组装,制成评价元件。在一次组装中使用通常的球状的凸块41,因此环氧树脂的增强部变小。因此,不会引起二次组装时的焊料溢料不良,但是将一次、二次的各间隙之间加和的合计的总间隙非常大,为360μm,与薄型组装的趋势呈相反的结果。另外,耐落下可靠性为101次。
[0169] (实施例7)
[0170] 在一次、二次组装中均使用焊料膏剂P-1,按照成为图6的结构的方式进行两面组装,制成评价元件。一次组装面101中的每个连接部位的焊料膏剂P-1的分量比二次组装面102中的每个连接部位的焊料膏剂P-1的分量少,因此在将焊料膏剂涂布于一次组装面101时所使用的印刷掩模的厚度比在将焊料膏剂涂布于二次组装面102时所使用的印刷掩模的厚度薄,印刷掩模的开口径也小。
[0171] 推测:由于一次组装面101中所使用的焊料膏剂P-1的量少,因此不会覆盖凸块4的整个周围,不会产生Sn-Bi焊料飞出的焊料溢料不良,但是,焊料5少,并且增强树脂6也少,因此连接强度变小。落下可靠性为25次,是非常低的值。但是,将一次二次的各间隙之间加和的合计的总间隙略小,为240μm。
[0172] (比较例1)
[0173] 如表2所示,在一次、二次组装中均使用焊料膏剂P-1,按照成为图2的结构的方式进行两面组装,制成评价元件。
[0174] 在一次、二次组装面上,环氧树脂的增强树脂6、14均覆盖焊料5、13的整个周围,因此如前所述,产生再熔融的Sn-Bi系焊料飞出的焊料溢料不良。
[0175] 另外,将一次二次的各间隙之间加和的合计的总间隙为260μm,与实施例1相同。另外,由于两面被增强树脂6、14覆盖整个周围,因此完成了一次、二次组装的两面组装封装体的耐落下可靠性为高达120次的值。
[0176] <实施例1~7和比较例1的比较>
[0177] 就一次组装面101而言,在实施例1~实施例6中所使用的焊料膏剂P-2~P-6以抑制该低熔点的焊料熔融时的增强树脂的流动的方式来设计树脂。因此,即使采取低熔点的焊料熔融、并且增强树脂覆盖低熔点的焊料与凸块的接合部分以及焊料而起到增强的作用的结构,也会抑制流动性,因此并未到达设置于半导体元件的电极。即,若将增强树脂的增强高度A和半导体元件1的基板2与电路基板8的间隙宽度C进行比较,则A<C。
[0178] 相反,就二次组装面102而言,焊料膏剂P-1设计成使该低熔点的焊料熔融时的增强树脂的流动良好的树脂。因此,采取成为覆盖焊料5与凸块4的接合部分及焊料5的整个周围而起到增强作用的结构、且到达设置于半导体元件9的基板10的结构。即,二次组装面102的增强树脂14的高度B和半导体元件9的基板10与电路基板8的二次组装面102的间隙宽度D的关系为B≤D。
[0179] 将实施例1~7和比较例1进行比较。
[0180] 在实施例1~7中,采用在电路基板8的两面使半导体元件1、9与凸块4,14和焊料5、13进行电连接、并且将焊料周围用增强树脂6、14覆盖的组装结构体。在该组装结构体中,一次组装面101的增强树脂6并未覆盖焊料5的整面,以露出部Oa大致均等地露出焊料5的一部分的整体。因此,可以防止在二次组装时的一次组装面101一侧的焊料溢料的产生。而且,若进行薄型组装,则可以制作具有优异的耐落下性的组装结构体。
[0181] 在实施例1的图3的组装结构体中,凸块4被焊料5完全覆盖。另一方面,在实施例7的图6的组装结构体中,凸块51仅一部分被焊料5覆盖。根据该差异,使实施例7比实施例1耐落下性差。结果:优选使凸块4用焊料5完全覆盖。
[0182] <树脂高度A>
[0183] 由表2可知:树脂高度A为间隙宽度C的25%~50%时较佳。若树脂高度A为间隙宽度C的100%,则焊料5被关在里面,为不良。若树脂高度A为间隙宽度C的25%以下,则不会出现由树脂所获得的增强。
[0184] <树脂的宽度>
[0185] 在焊料膏剂P中的树脂浓度低的焊料膏剂为焊料膏剂P-3、P-5。使用这些焊料膏剂的例子为实施例2、4。与其他实施例相比,耐落下性差。根据表1,只要至少使树脂相对于焊料的比例为8重量%以上即可。
[0186] 予以说明,电极11,7a、7b的凸块的大小为50~100μm,对上述数值不产生影响。
[0187] 予以说明,可以将实施方式进行组合。
[0188] 另外,以作为组装部件的半导体元件1、9为由BGA型半导体形成的BGA半导体元件的情况为代表,就一个例子进行说明。但是,并不限定于此。不仅可以应用于半导体元件的组装,还可以应用于非封装体的半导体元件、其他电子部件的组装。不仅可以应用于在两面各组装1个半导体元件的情况,还可以应用于在电路基板8的两面组装多个半导体元件的组装结构体中。若为具有焊料凸块的半导体、电子部件,则可以应用该发明。作为被组装部件的例子,可列举例如电路基板8,但是也可以将在内部设置有半导体、电路部件的多层配线基板、半导体集成电路等作为被组装部件来构成。
[0189] 产业上的可利用性
[0190] 本发明的组装结构体可以在电气/电子电路形成技术的领域中使用于广泛的用途。例如可以使用在CCD元件、全息(hologram)元件、芯片部件等电子部件的连接用途及将这些电子部件与被组装部件接合的用途中,可以使用内置有这些元件、部件或基板的制品例如便携式设备、手机、便携式AV设备、数码相机等中。
[0191] 符号说明
[0192] 1    半导体元件(第一组装部件)
[0193] 2    半导体元件1的基板
[0194] 3    半导体元件1的电极
[0195] 4     凸块
[0196] 5    焊料
[0197] 6     增强树脂
[0198] 7a、7b   电极
[0199] 8    电路基板(被组装部件)
[0200] 9    半导体元件(第二组装部件)
[0201] 10    半导体元件9的基板
[0202] 11    半导体元件2的电极
[0203] 12    凸块
[0204] 13    焊料
[0205] 14    增强树脂
[0206] 101    电路基板8的一次组装面
[0207] 102    电路基板8的二次组装面
[0208] A     增强树脂6的高度
[0209] B     增强树脂14的高度
[0210] C    电路基板8与基板2的间隙宽度
[0211] D    电路基板8与基板10的间隙宽度
[0212] E    凸块4、41的高度
[0213] F    凸块12的高度
[0214] G    焊料5的扩展宽度
[0215] Oa、Ob   露出部