用于运行机动车的动力传动系的方法以及相应的动力传动系转让专利

申请号 : CN201580025010.3

文献号 : CN106458025B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : M·萨格夫卡S·施特拉塞尔M·贝尔C·克内利T-W·迈尔A·米哈伊列斯库S·许夫纳

申请人 : 奥迪股份公司

摘要 :

本发明涉及一种用于运行机动车的动力传动系(1)的方法,所述机动车具有至少一个初级驱动桥(2)和至少一个次级驱动桥(3),所述初级驱动桥和次级驱动桥通过传输转矩可调的耦合装置(11)彼此作用连接。在此规定了,当在次级驱动桥(3)上识别到车轮滑移超出确定的滑移限值时,降低传输转矩。本发明还涉及一种用于机动车的动力传动系(1)。

权利要求 :

1.一种用于运行机动车的动力传动系(1)的方法,所述动力传动系具有至少一个初级驱动桥(2)和至少一个次级驱动桥(3),所述初级驱动桥和次级驱动桥通过传输转矩可调的耦合装置(11)彼此作用连接,当在次级驱动桥(3)上识别到车轮滑移超出确定的滑移限值时,降低传输转矩,其特征在于,传输转矩被减小到与次级驱动桥(3)所能执行的最大转矩相对应的期望传输转矩。

2.根据权利要求1所述的方法,其特征在于,耦合装置(11)设计为膜片离合器,通过对膜片离合器的压紧力进行匹配来调节传输转矩。

3.根据权利要求1或2所述的方法,其特征在于,当次级车桥转速超过初级车桥转速时,在次级驱动桥(3)上识别出车轮滑移。

4.根据权利要求1或2所述的方法,其特征在于,当由初级车桥转速和/或次级车桥转速确定的车辆速度超过实际车辆速度时,在次级驱动桥(3)上识别出车轮滑移。

5.根据权利要求1或2所述的方法,其特征在于,当初级驱动桥(2)上的滑移和次级驱动桥(3)上的滑移都超过滑移限值时,在次级驱动桥(3)上识别出车轮滑移。

6.根据权利要求1或2所述的方法,其特征在于,在使用如下参量中至少一个的情况下确定所述所能执行的最大转矩:次级驱动桥(3)的车桥负荷、车道摩擦系数、次级驱动桥(3)的车轮(7)的动态车轮半径以及在耦合装置(11)与次级驱动桥(3)之间的传动比。

7.根据权利要求6所述的方法,其特征在于,车道摩擦系数由机动车的纵向加速度确定。

8.根据权利要求1或2所述的方法,其特征在于,当耦合装置(11)的耦合装置滑差超过最大值时,再次提高传输转矩。

9.一种用于机动车的动力传动系(1),该动力传动系用于执行根据权利要求1-8中任一项所述的方法,所述动力传动系具有至少一个初级驱动桥(2)和至少一个次级驱动桥(3),所述初级驱动桥和次级驱动桥通过传输转矩可调的耦合装置(11)彼此作用连接,动力传动系(1)设计用于,当在次级驱动桥(3)上识别到车轮滑移超出确定的滑移限值时,降低传输转矩,其特征在于,传输转矩被减小到与次级驱动桥(3)所能执行的最大转矩相对应的期望传输转矩。

说明书 :

用于运行机动车的动力传动系的方法以及相应的动力传动系

技术领域

[0001] 本发明涉及一种用于运行机动车的动力传动系的方法,所述机动车具有至少一个初级驱动桥和至少一个次级驱动桥,所述初级驱动桥和次级驱动桥通过传输转矩可调的耦合装置彼此作用连接。本发明还涉及一种用于机动车的动力传动系。

背景技术

[0002] 所述方法用于运行动力传动系,其中所述运行例如针对机动车的驱动,尤其是加速。动力传动系设置用在机动车中,从而本发明也涉及一种具有相应设计的动力传动系的机动车。该动力传动系具有至少一个初级驱动桥和至少一个次级驱动桥。所述初级驱动桥和次级驱动桥通过耦合装置彼此作用连接,其中耦合装置的传输转矩——即通过耦合装置在初级驱动桥和次级驱动桥之间传输的转矩——是可调的。
[0003] 初级驱动桥是动力传动系或机动车的车桥,所述车桥当存在旨在驱动机动车的转矩时始终被加载该转矩或者该转矩的至少一部分。次级驱动桥能够选择性地被加载转矩或该转矩的至少一部分。为此,设置了存在于初级驱动桥和次级驱动桥之间的耦合装置。在耦合装置的第一运行状态中,次级驱动桥完全与初级驱动桥脱耦。相应地,机动车仅仅借助于初级驱动桥驱动。因此,不进行从初级驱动桥至次级驱动桥的转矩传输。在这种情况下,传输转矩等于零。在耦合装置的另一种运行状态中,传输转矩大于零,从而传输转矩从初级驱动桥传输至次级驱动桥上。因此在这种情况下,次级驱动桥用于机动车的驱动。
[0004] 根据前述实施方案的机动车至少偶尔具有多个,尤其是至少两个驱动桥,然而仅由至少一个初级驱动桥,尤其恰好是唯一的初级驱动桥来进行驱动也是可能的。例如,初级驱动桥永久地和/或刚性地与机动车的或动力传动系的驱动设备作用连接。驱动设备在此例如具有至少一个动力装置,例如内燃机和/或电机,以及起动离合器。初级驱动桥在此尤其通过运行离合器与动力装置作用连接或者能够作用连接,而次级驱动桥和动力装置之间的作用连接优选仅通过初级驱动桥,即通过耦合装置,初级驱动桥和运行离合器存在。
[0005] 耦合装置例如可以构造为摩擦耦合装置,尤其是膜片离合器,例如膜片式锁止式传输离合器。耦合装置的最大可传输的力矩例如通过操纵机构或执行器以控制方式和/或以调节方式设定。如果耦合装置滑差——对应于耦合装置的输入转速和输出转速之间的经标准化的差值——不等于零,那么由操纵机构设定的转矩也对应于实际传输的转矩。一旦耦合装置滑差等于零,则不再能确定实际传输的转矩的大小。仅已知最大可传输的转矩对应于设定的转矩,其可称为传输转矩。
[0006] 如果在耦合装置滑差等于零时进一步增大传输转矩,则由于在耦合装置上的不必要高的压力而称其为耦合装置超压,尤其是对膜片离合器的情况来说。然而这种耦合装置超压具有许多缺点。一方面,耦合装置的操纵机构消耗更多的能量且还产生了噪声,机动车的驾驶员会觉得该噪声是听觉负荷。另外,操纵机构受到不必要的强烈负荷,由此对其寿命产生不利影响。最后,实际传输的转矩的确定精度低,因为该实际传输的转矩所在的值范围被扩大。

发明内容

[0007] 因此,本发明的任务在于,建议一种用于运行机动车的动力传动系的方法,利用所述方法能在保持不变的或者甚至更好的牵引的情况下避免不必要的高传输转矩,尤其是避免耦合装置超压。
[0008] 根据本发明,当在次级驱动桥上识别到车轮滑移超出确定的滑移限值时,降低传输转矩。即例如规定,尤其根据机动车驾驶员的驾驶员规定来确定传输转矩。例如,由动力传动系或机动车的控制器来提供传输转矩。在此可以规定,首先设定耦合装置上的确定的传输转矩。如果随后识别到车轮滑移超出确定的滑移限值,则减小传输转矩并在耦合装置处设定或者说在耦合装置处设定的转矩被减小。可选地,当然也可以规定,在确定传输转矩之后但在耦合装置上设定该传输转矩之前,便使该传输转矩减小。
[0009] 在处于打滑范围内的高车轮滑移的情况下,需要考虑驱动力损失。也称为牵引力的机动车加速能力受到对车桥——尤其是初级驱动桥和次级驱动桥——的驱动力矩分配的影响。在此方面,车桥上设置的车轮的特性起主要作用。车轮沿纵向所能施加的车轮作用力尤其取决于车轮负荷和车轮滑移。车轮滑移K由车轮转速VWheel和车轮中心速度VWheelCenter根据关系式计算出:
[0010]
[0011] 附着系数μ(也称为摩擦系数)定义为所能施加的纵向力Fx与用于纵向动力学的轮胎负荷的车轮负荷FZ的比例。其满足:
[0012]
[0013] 对于次级驱动桥的速度小于初级驱动桥的速度的情况来说,借助于耦合装置传输到次级驱动桥上的转矩由于传输转矩的增大而增大,可能甚至直至最大可传输的转矩。这种解决方案在变形滑移的范围内也是有意义的。然而对车轮滑移较高的情况这不是最佳的,因为在次级驱动桥上会出现所述耦合装置超压并同时伴随纵向力损失。其例子是,在所有驱动桥上、尤其是在初级驱动桥和次级驱动桥上都出现高于变形滑移的车轮滑移的加速行驶。在这种情况下,传输转矩的增大、进而次级车桥的车轮上的车轮滑移的增大导致了传输的或可传输的纵向力的减小。
[0014] 因此,在此规定了,一旦识别到车轮滑移高的行驶情况,就减小传输转矩。在这种情况下应该识别到次级驱动桥上的车轮滑移超出确定的滑移限值。传输转矩的减小导致耦合装置处压力的降低,尤其是在保持实际传输转矩不变的情况下。
[0015] 本发明的另一个设计方案规定了,耦合装置设计为膜片离合器以及通过对膜片离合器的压紧力进行匹配来调节传输转矩。上文已经说明了耦合装置的这种设计方案。膜片离合器例如作为膜片式锁止传输离合器存在。通过相应的调整或调节压紧力可以调节在膜片离合器上的期望传输转矩。
[0016] 本发明的一种改进方案规定了,当次级车桥转速超过初级车桥转速时,在次级驱动桥上识别出车轮滑移。次级驱动桥转速和初级驱动桥转速之间的这种差尤其会由于动力传动系的弹性而出现。例如,如果在初级驱动桥的车轮上存在比次级驱动桥的车轮上更小的车轮滑移,则初级驱动桥的转速至少短时地相对于次级驱动桥的转速降低。在此,转速差是次级驱动桥车轮上的车轮滑移大于初级驱动桥车轮上的车轮滑移的标志。相应地,识别到次级驱动桥上的车轮滑移并减小驱动转矩。
[0017] 本发明的一种优选设计方案规定了,当由初级车桥转速和/或次级车桥转速确定的车辆速度超过实际车辆速度时,在次级驱动桥上识别出车轮滑移。由机动车的车桥,优选多个或所有车桥中的至少一个的转速可以至少近似确定理论车辆速度。把该理论车辆速度与实际存在的车辆速度比较。如果后者较小,则可以推断出,至少在次级驱动桥的车轮上存在车轮滑移或者在初级驱动桥的车轮上和次级驱动桥的车轮上都存在车轮滑移。优选地,当理论车辆速度超过实际车辆速度的差超出了一确定的速度容限时,才识别到次级驱动桥上的车轮滑移,其中该速度容限例如根据滑移限值确定。可以通过任意方式确定实际车辆速度。
[0018] 本发明的另一个有利的设计方案规定了,当初级驱动桥上的滑移和次级驱动桥上的滑移都超过滑移限值时,在次级驱动桥上识别出车轮滑移。仅当次级驱动桥上的滑移超过滑移限值时,不触发对传输转矩的减小。而是仅当初级驱动桥上和次级驱动桥上的滑移都大于确定的滑移限值时,才进行所述减小。
[0019] 本发明的另一个设计方案规定了,传输转矩被减小到与次级驱动桥所能执行的最大转矩相对应的期望传输转矩。次级驱动桥所能执行的最大转矩利用下式计算:
[0020] MAchse=FZ,Achse·μx·rdyn
[0021] 确定,其中MAchse表示所能执行的最大转矩,FZ,Achse表示车桥负荷,μx表示车道摩擦系数,rdyn表示次级驱动桥的车轮的动态车轮半径。通过把期望传输转矩减小至所能执行的最大转矩优选实现了:降低次级驱动桥上的车轮滑移,从而增大了车轮和车道之间的车道摩擦系数或附着系数。相应地,通过减小传输转矩可以改善机动车的牵引。传输转矩被减小到与所能执行的最大转矩相对应的期望传输转矩。
[0022] 在本发明的另一个优选的实施方案中规定了,在使用如下参量中至少一个的情况下确定所述所能执行的最大转矩:次级驱动桥的车桥负荷、车道摩擦系数、次级驱动桥的车轮的动态车轮半径以及在耦合装置与次级驱动桥之间的传动比。上文已经说明了车桥负荷FZ,Achse,车道摩擦系数μx和动态轮半径rdyn。此外,传动比也会影响所能执行的最大转矩或预期传输转矩。该传动比例如配属于存在于耦合装置和次级驱动桥之间的变速器。在此由下式来确定预期传输转矩:
[0023] MKupp=i·MAchse。
[0024] 在本发明的另一个设计方案中规定了,由机动车的纵向加速度确定车道摩擦系数。为了确定当前车道摩擦系数可以引入一个或多个传感器。例如,考虑纵向加速度传感器作为传感器。在机动车的加速过程期间,确定同时出现的最大纵向加速度。在此例如至少近似地由最大纵向加速度除以重力常数g来得到车道摩擦系数。该估计的车道摩擦系数可以考虑用于计算预期传输转矩。附加地或替代地,当然也可以考虑光学传感器用于确定车道摩擦系数。
[0025] 为了确定次级驱动桥的车桥负荷可以使用一个或多个传感器。在此,例如借助于纵向加速度传感器确定的纵向加速度已足以计算出动态负荷波动。
[0026] 本发明的另一个设计方案规定了,当耦合装置的耦合装置滑差超过最大值时,再次提高传输转矩。如果减小的传输转矩过低,从而在耦合装置中出现的耦合装置滑差过度增大,则再次增大传输转矩。这种情况优选根据初级车桥转速和次级车桥转速之间的差判断。传输至次级驱动桥的转矩借助于转速之间的偏差以控制方式和/或调节方式调整到较高水平。在此,允许一转速差容限,从而当次级车桥转速小于初级车桥转速的差值达到该转速差容限时,才增大传输力矩。
[0027] 优选增大传输力矩,直至耦合装置的耦合装置滑差小于最大值或者备选地等于零。在增大后重新检查,次级驱动桥上的车轮滑移是否超过确定的滑移限值并相应地做出反应。在此如果车轮滑移超过滑移限值,则重新减小传输转矩。
[0028] 即例如规定,动力传动系首先在第一运行模式中运行,在该第一运行模式中在必要时使传输转矩减小。如果确定:耦合装置滑差超过最大值,则由第一运行模式转换到第二运行模式,在该第二运行模式中再次增大传输转矩。如果耦合装置的耦合装置滑差由于传输转矩的增大而又小于最大值或等于零,则重新切换至第一运行模式。在该第一运行模式中重新检查,车轮滑移是否超过滑移限值。
[0029] 本发明还涉及一种用于机动车的动力传动系,尤其是用于执行根据前述实施方案的方法的动力传动系,所述动力传动系具有至少一个初级驱动桥和至少一个次级驱动桥,所述初级驱动桥和次级驱动桥通过传输转矩可调的耦合装置彼此作用连接。在此规定了,动力传动系设计用于,当在次级驱动桥上识别到车轮滑移超出确定的滑移限值时,降低传输转矩。上文已对动力传动系的这种设计方案或实施方式的优点作出说明。根据上述实施方案既能改进这种方法也能改进动力传动系,因此参见上述实施方案。

附图说明

[0030] 下面根据附图中示出的实施例更详细地描述本发明,但本发明不限于此。在此唯一的附图中:
[0031] 图1示意性示出机动车的动力传动系。

具体实施方式

[0032] 图1示意性示出动力传动系1,其例如是未具体示出的机动车的组成部分。例如,动力传动系1具有初级驱动桥2和次级驱动桥3。初级驱动桥2例如具有半轴4和5,其通过车桥差速器6彼此作用连接。在每个半轴4和5上设置了车轮7。与此类似,次级驱动桥3具有半轴8和9,其通过车桥差速器10彼此作用连接。在每个半轴8和9上同样设置了车轮7。
[0033] 初级驱动桥2和次级驱动桥3通过传输转矩可调的耦合装置11彼此作用连接。例如,半轴4和5和8和9在此分别作为相应的车桥差速器6和10的输出轴存在,而车桥差速器6和10的输入轴12和13借助于耦合装置11能彼此耦联。
[0034] 动力传动系1还具有驱动设备14。该驱动设备例如具有在此未具体示出的动力装置,例如内燃机和/或电机。驱动设备14还可以具有运行离合器。驱动设备14优选永久地与初级驱动桥2或相应的输入轴12作用连接。驱动设备14和次级驱动桥3之间的作用连接仅通过耦合装置11存在。这表示,动力传动系1或相应的机动车具有永久被驱动的车桥,即初级驱动桥2,以及仅偶尔被驱动的车桥,即次级驱动桥3。
[0035] 在动力传动系1的行驶运行期间,在耦合装置11处设定确定的传输转矩。如果接下来确定:在次级驱动桥3上出现的车轮滑移超过确定的滑移限值,则减小传输转矩。在此,一直进行传输转矩的减小直至耦合装置11的耦合装置滑差达到或超过最大值。在后一种情况下,即当耦合装置滑差大于最大值时,可以再次增大传输力矩,优选直至耦合装置滑差对应于或小于最大值。
[0036] 利用所述技术手段避免了在耦合装置11处存在过大的传输转矩并同时改善了机动车的牵引。对机动车牵引的改善是因为:次级驱动桥3上或次级驱动桥3的车轮7是的车轮滑移减小,从而优选增大了次级驱动桥3的车轮7与机动车的车道之间的附着系数。次级驱动桥3上的滑移例如通过确定次级驱动桥3的车轮7上的滑移和由此确定的平均值来得出。当需要在初级驱动桥2上存在滑移时,可以采取类似做法。
[0037] 附图标记列表
[0038] 1 动力传动系
[0039] 2 初级驱动桥
[0040] 3 次级驱动桥
[0041] 4 半轴
[0042] 5 半轴
[0043] 6 车桥差速器
[0044] 7 车轮
[0045] 8 半轴
[0046] 9 半轴
[0047] 10 车桥差速器
[0048] 11 耦合装置
[0049] 12 输入轴
[0050] 13 输入轴
[0051] 14 驱动设备